
Binary	Representations
and	Arithmetic

9-1-2016

Common	number	systems.

• Base	10:	decimal
• Base	2:	binary

• Base	16:	hexadecimal		(memory	addresses)
• Base	8:	octal	(obsolete	computer	systems)
• Base	64	(email	attachments,	ssh keys)

Hexadecimal:	Base	16

• Indicated	by	prefacing	number	with	0x

A	number,	written	as	the	sequence	of	digits
dndn-1…d2d1d0 where	d	is	in	
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F},	represents	the	value

dn *	16n +	dn-1	*	16n-1 +	...	+	d2 *	162 +	d1 *	161 +	d0 *	160

What	is	the	value	of	0x1B7	in	
decimal?

A. 397

B. 409

C. 419

D. 437

E. 439

162 =	256	

Each	hex	digit	is	a	“nibble”

Hex	digit:16	values,		24	=	16				->				4	bits	/	digit

0x1B7
256s digit:	1
16s digit:	B	(decimal	11)
1s digit:	7

In	binary:	 0001 1011 0111
1 B 7

Converting	hex	and	binary

• A	group	of	four	binary	digits	maps	to	one	hex	digit.

0x	48C1	= 0b	0100	1000	1100	0001

4	à 0100
8	à 1000
C	à 1100		(12)
1	à 0001

What	is	0b101100111011	in	hex?

a) 0xb3b

b) 0x59d

c) 0xc5c

d) 0x37b

e) 0x5473

Converting	among	2x bases

Amounts	to	re-grouping	digits.

• Binary	à octal:	group	sets	of	three	digits
• Octal	à hex:	group	pairs	of	digits
• Hex	à base64:	group	sets	of	four	digits

• Split	digits	into	groups	to	reverse	the	conversion.

Converting	among	arbitrary	bases

• The	division-and-mod	method	always	works.
• Requires	division	and	mod	in	the	start-base

• The	subtract-base-powers	method	kind	of	works.
• Must	modify	to	subtract	multiples of	powers	of	the	base.
• Requires	multiplication,	powers	and	subtraction	in	the	start-
base.

• The	sum-up-digits	method	always	works.
• Requires	multiplication,	powers	and	addition	in	the	end-base.

• We’re	used	to	thinking	in	base	10,	so	it	often	helps	to	
use	base	10	as	an	intermediate	step.

I	will	only	make	you	do	conversions	among	bases	2,	10,	and	16.

Unsigned	Addition	(4-bit)

• Addition	works	like	grade	school	addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four	bits	give	us	range:	0	- 15

Unsigned	Addition	(4-bit)

• Addition	works	like	grade	school	addition:

1
0110 6 1100 12

+ 0100 + 4 + 1010 +10
1010 10 1 0110 6

^carry out

Four	bits	give	us	range:	0	- 15
Overflow!

What’s	the	sum?

01100111
+10001110

a) 11110101, carry out = 1

b) 11110011, carry out = 0

c) 11110101, carry out = 0

d) 00110101, carry out = 1

e) 01100101, carry out = 0

So	far:	Unsigned	Integers

• With	N	bits,	can	represent	values:	0	to	2n-1

• We	can	always	add	0’s	to	the	front	of	a	number	without	changing	it:

10110= 010110 = 00010110 = 0000010110

• 1 byte: char, unsigned char
• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float
• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

Representing	Signed	Values
• One	option	(used	for	floats,	NOT	integers)
• Let	the	first	bit	represent	the	sign
• 0	means	positive
• 1	means	negative

• For	example:
• 0101 -> 5
• 1101 -> -5

• Problem	with	this	scheme?

Two’s	Complement
The	Encoding	comes	from	Definition	of	the	
2’s	complement	of	a	number:

2’s	complement	of	an	N	bit	number,	x,	is	its	complement	with	
respect	to	2N

Can	use	this	to	find	the	bit	encoding,	y,	for	the	negation	
of	x:

For	N	bits,		y	=	2N – x

X -X 24 - X
0000 0000 10000	– 0000	=	0000		(only 4	bits)
0001 1111 10000	– 0001	=	1111
0010 1110 10000	– 0010	=	1110
0011 1101 10000	– 0011		=	1101

4	bit	examples:

Two’s	Complement
• Only	one	value	for	zero
• With	N	bits,	can	represent	the	range:
• -2N-1 to	2N-1 – 1

• First	bit	still	designates	positive	(0)	/negative	(1)

• Negating	a	value	is	slightly	more	complicated:
1	=	00000001, -1	=	11111111

From	now	on,	unless	we	explicitly	say	otherwise,	we’ll	assume	all	integers	
are	stored	using	two’s	complement!		This	is	the	standard!

Two’s	Compliment

• Each	two’s	compliment	number	is	now:
-2n-1*dn-1 +		2n-2*dn-2 +		…		+		21*d1 +		20*d0

Note	the	negative	sign	on	just	the	first	digit.		This	is	
why	first	digit	tells	us	negative	vs.	positive.

2’s	Complement	to	Decimal
High	order	bit	is	the	sign	bit,	otherwise	just	like	
unsigned	conversion.		4-bit	examples:

0110: 0*-23 + 1*22 + 1*21 + 0*20

0 + 4 + 2 + 0 = 6

1110: 1*-23 + 1*22 + 1*21 + 0*20

-8 + 4 + 2 + 0 = -2

Try:	1010

1111

What	is	11001	in	decimal?

• Each	two’s	compliment	number	is	now:
-2n-1*dn-1 +		2n-2*dn-2 +		…		+		21*d1 +		20*d0

A. -2

B. -7

C. -9

D. -25

Range	of	binary	values

Smallest	unsigned	value:
00000000	=	0

Largest	unsigned	value:
11111111	=	2N – 1

Smallest	2’s	complement	value:
10000000	=	-2N-1

Largest	2’s	complement	value:
01111111	=	2N-1 - 1

Addition	&	Subtraction

• Addition	is	the	same	as	for	unsigned
• One	exception:	different	rules	for	overflow
+		Can	use	the	same	hardware	for	both

• Subtraction	is	the	same	operation	as	addition
• Just	need	to	negate	the	second	operand…

• 6	- 7	=	6	+	(-7)

How	to	negate	in	2’s	complement

1. Flip	the	bits	(0’s	become	1’s,	1’s	become	0’s)
2. Add	1

Example:	-1	*	00101110

1. Flip	bits:			11010001	
2. Add	1:			+	00000001	=	11010010

Subtraction	Hardware
Negate	and	add	1	to	second	operand:
Can	use	the	same	circuit	for	add	and	subtract:
6	- 7	==		6	+	~7	+	1

input	1	------------------------------->
input	2	-->	possible	bit	flipper	-->	ADD	CIRCUIT	--->	result

possible	+1	input-------->

Let’s	call	this	possible	+1	input:	“Carry	in”	
(0:	on	add,	1:	on	subtract)

Examples:
4	bit	signed	values	(a-b	is	a	+	~b	+	1):	

subtraction:	flip	bits	and	add	1
3 - 6 = 0011

1001 (6: 0110 ~6: 1001)

+ 1

Addition:	don’t	flip	bits	or	add	1

3 + -6 = 0011

+ 1010

Convert	and	subtract

Perform	the	subtraction	12	– 19	in	6-bit	binary.

12 = 001100

19 = 010011

~19 = 101100

-19 = 101101

12 – 19 = 111001 = -7

Bits	and	Bytes
• Bit:	a	0	or	1	value	(binary)
• HW	represents	as	two	different	voltages

• 1:	the	presence	of	voltage	(high	voltage)
• 0:	the	absence	of	voltage	(low	voltage)

• Byte:	8	bits,	the	smallest	addressable	unit
Memory:			01010101						10101010						00001111 …
(address) [0] [1]

[2] …

• Other	names:
• 4	bits:
• “Word”:	Depends	on	system,	often	4	bytes

Nibble

How	many	unique	values	can	we	
represent	with	9	bits?
• One	bit:	two	values	(0	or	1)
• Two	bits:	four	values	(00,	01,	10,	or	11)
• Three	bits:	eight	values	(000,	001,	…,	110,	111)

A. 18
B. 81
C. 256
D. 512
E. Some	other	number	of	values.

How	many	values?
1	bit: 0 1

2	bits: 0 0 0 1 1 0 1 1

3	bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4	bits: 0
0
0
1
0
0
0
0

0
0
0
1
0
0
1
1

0
0
0
1
1
1
0
0

0
0
0
1
1
1
1
1

16	values

1
1
0
1
0
0
0
0

1
1
0
1
0
0
1
1

1
1
0
1
1
1
0
0

1
1
0
1
1
1
1
1

N	bits: 2N values

Determining	sizes	of	C	types
(on	my	laptop)

#include <stdio.h>

int main(){
char c;
short s;
int i;
long l;
long long ll;
float f;
double d;

printf("size of char: %lu\n", sizeof(c));
printf("size of short: %lu\n", sizeof(s));
printf("size of int: %lu\n", sizeof(i));
printf("size of long: %lu\n", sizeof(l));
printf("size of long long: %lu\n", sizeof(ll));
printf("size of float: %lu\n", sizeof(f));
printf("size of double: %lu\n", sizeof(d));

}

Written	homework	#1

• Will	be	released	tomorrow.

• Will	be	due	by	4:00pm	next	Friday.

• Topics:

• binary/hex	conversions

• binary	arithmetic

