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Abstract

Many mobile robot taskscan be most efficiently
solvedwhena groupof robotsis utilized. Thetype
of organization,andthe level of coordinationand
communicationwithin a teamof robotsaffectsthe
type of tasksthat can be solved. This paperex-
aminesthe tradeoff of homogeneityversushetero-
geneityin thecontrolsystemsby allowingateamof
robotsto coevolvetheirhigh-levelcontrollersgiven
differentlevelsof difficulty of thetask.Ourhypoth-
esisis thatsimply increasingthedifficulty of a task
is not enoughto inducea teamof robotsto create
specialists.The key factoris not difficulty per se,
but the numberof skill setsnecessaryto success-
fully solvethetask.As thenumberof skills needed
increases,the more beneficialand necessaryhet-
erogeneitybecomes. We demonstratethis in the
taskdomainof herding,whereoneor morerobots
mustherdanotherrobotinto a confinedspace.

1 Introduction
Many mobilerobottaskscanbemoreefficiently solvedwhen
a groupof robotsis utilized. Sometaskscannotbe solved
at all without multiple robots.Thetypeof organization,and
thelevel of coordinationandcommunicationwithin ateamof
robotsaffectsthetypeof tasksthatcanbesolved.

In swarm approaches,(usuallylarge)groupsof robotsexe-
cutethesamesimplestrategieswith no explicit communica-
tion. Complex groupbehaviors emerge from the simplein-
teractionsamongtherobots.Examplesof this includeflock-
ing behaviors. In cooperative approaches,(usuallysmaller)
groupsof robotscanhave differentstrategies,allowing some
of the robots to becomespecialistsin solving partsof the
task—thatis, robotscanassumeroles.Recently, thetermcol-
laborative hasbeenusedto indicatecooperative approaches
wherethe robotsexplicitly communicatetheir intent to one
another. Oneimportantissuein multi-agentroboticsis to un-

derstandwhenaparticularapproachis appropriatefor agiven
task,thatis tounderstandtherelativepowerof eachapproach.

This paperwill examinethe tradeoff of homogeneityver-
susheterogeneityin the control systemsby allowing a team
of robotsto coevolvetheirhigh-level controllersgivendiffer-
ent levelsof difficulty of thetask. In thehomogeneouscase,
wewill restricttherobotsto usingthesamecontrolstructure,
i.e. only onehigh-levelcontrolleris evolved,whichall robots
will use. In the heterogeneouscase,robotswill be allowed
to coevolve separatehigh-level controllers,thusenablingthe
emergenceof specialists.Our hypothesisis that simply in-
creasingthedifficulty of ataskis notenoughto induceateam
of robotsto createspecialists.Thekey factoris not difficulty
perse,but thenumberof skill setsnecessaryto successfully
solve thetask.As thenumberof skills neededincreases,the
morebeneficialandnecessaryheterogeneitybecomes.

Experimentswereconductedwithin a simulationmodelof
the taskdomain. The taskchosenfor theseexperimentsis
herding, wherea groupof robotsmust force anotherrobot
into a confinedspace. The robotsare Nomad200swhich
aremodeledusingtheTeamBotssystem[Balch,1998b]. We
show that simply increasingthe difficulty of the taskalone
doesnot necessarilyrequireheterogeneouscontrol systems,
but that introducinga predatorinto theenvironmentinduces
theevolutionof specialistsfor defendingagainstthepredator.

In thenext sectionwe will describerelatedwork. In Sec-
tion 3, we will describethe taskdomainandhow the com-
plexity of thetaskcanaffectcoevolvedbehaviors. Theuseof
aneuralnetwork asahigh-level controller, andtheevolution-
ary algorithmusedfor learningwill be describedin Section
4. We will thendescribetheexperimentalmethodologyand
the resultsin Section5, followed by our conclusionsanda
descriptionof futurework.

2 Related Work
Evolution of robotic shepherdingbehaviors was first de-
scribedin [Schultzet al., 1996], althoughonly oneshepherd
wasinvolved,andthereforemulti-robotcoordinationwasnot
required. Much hasbeenwritten aboutevolution (and co-



evolution) of robot behaviors (see[Mataric andCliff, 1996;
Meeden� and Kumar, 1998] for an overview). Several arti-
cleshave attemptedto lay out taxonomiesandgeneralissues
in multi-robot coordination[Dudeket al., 1993;Caoet al.,
1997].

A numberof researchershave explored heterogeneityat
the hardware level by equippingmembersof a robot team
with differentsetsof sensorsor effectors[Caoet al., 1997;
Parker, 1999]. Otherresearchershave utilized teamsof simi-
lar agents,andhave insteadexploredheterogeneityat thebe-
havior level [Balch,1998a;Bongard,2000;Good,2000]. Our
researchtakesthe latterapproachin thateachherdingagent
hasthe samephysicalcapabilities,but can develop unique
controlstrategiesthroughcoevolution.

It remainsanopenquestionasto whatkindsof taskswar-
rant a heterogeneousapproach. Homogeneousteamshave
oneclearadvantage—thereis built-in redundancy. If a team
memberfails for any reason,therestof theteamcanstill go
on andbe successful.However, asa task increasesin diffi-
culty, division of laboror specializationmaybecomeessen-
tial for success.

In doing reinforcementlearningstudies,Balch found that
diversitywithin ateamisnotalwaysdesirable[Balch,1998a].
Certainkinds of tasks,suchas foraging,weresolved more
easilywith a homogeneousapproach.Balchspeculatedthat
any domainin which an individual agentcould reasonably
performthetaskalone,is well suitedfor a homogeneousap-
proach. Otherdomains,suchassoccerwhich seemsto re-
quireavarietyof agenttypes,weremoreeasilysolvedwith a
heterogeneousapproach.

One result which is somewhat inconsistentwith Balch’s
conclusions,is Luke’s experiencesdevelopinga geneticpro-
grammingbasedsoftbotsoccerteamfor RoboCup97[Luke,
1998]. The main goal of his work was to producethe best
teampossiblein a limited amountof time. Luke developed
both homogeneousandheterogeneousteams.However, the
heterogeneousteamshada largersearchspaceandthuscon-
vergedmuchmoreslowly. By competitiontime, the homo-
geneousteamshad the advantageand were entered. Luke
predictsthatgivenenoughevolution time though,thehetero-
geneousteamsmightultimatelywin out.

Balch hassuggestedthat tasksthat cannotbe reasonably
solvedby a singleagentshouldleadto heterogeneity. Bon-
gardfocusesmoreon the domainratherthanthe agentand
arguesthat decomposabledomainsshould lend themselves
morereadily to heterogeneity[Bongard,2000]. Like Balch,
he found that a homogeneousteamwasmoresuccessfulat
foragingthanaheterogeneousone.Yet,it is notclearthatthis
supportshis hypothesis.Foragingcanbeeasilydecomposed
asBalch did in his hand-codedcontrol cases.For example,
thedomaincanbedecomposedinto separateterritoriesor the
targetscanbedecomposedinto particulartypes.

Our hypothesisis that theneedfor heterogeneitydepends
onthenumberof skill setsrequiredby thedomain.Theherd-
ing domainis a goodenvironmentfor testingthis hypothesis
aswell asthoseof BalchandBongard.We canincreasethe
difficulty of the taskalonga numberof dimensionswithout
requiringnew skill sets.We canalsoincreasethenumberof
skill setsrequiredby addinga predatorto theenvironment.

shepherds

fox

sheep
corral

pasture

Figure1: Herdingdomain

3 Task Domain and Complexity

The herdingenvironmentshown in Figure 1 consistsof a���	�
���
foot pasturethat is fencedon threesides,with a

smallerenclosedcorralontheright. Theherdingtaskrequires
thatagroupof robots(theshepherds) forceanotherrobot(the
sheep) into thecorral. Thesheepdoesnot want to enterthe
corral,but insteadwantsto escapethroughtheunfencedside
of thepasture.To furthercomplicatematters,in someexper-
imentsthereis a predatorrobot(the fox) thatattemptsto kill
thesheepby approachingwithin acertaindistance.

The sheep’s behavior is a fixed strategy that causesthe
sheepto avoid the approachor contactof other robotsand
obstacles,with additionaldrives to avoid the corral and to
seekescapethroughthe unfencedsideof the pasture. The
fox’s behavior is alsofixed, andcausesit to attemptto ap-
proachthesheepwhile avoiding theshepherdsandotherob-
stacles.If thefox is ableto getwithin acertaindistanceof the
sheep,the sheepdiesandthe trial is over. Thestrategiesof
theshepherdsareimplementedvia high-level neuralnetwork
controllerswhichareevolvedasdescribedin Section4.

Thecomplexity of thisdomaincanbecontrolledalongsev-
eraldimensions.For example,thedegreeto which thesheep
avoidsthecorralandseeksanescapefrom thefencedpasture
canbeincreased,thepredatoryfox canbeincluded,theradius
aroundthesheepin which the fox kills thesheepcanbe in-
creased,andwecanincreasethenumberof sheep.Giventhe
speedandturningratesof thesheepandshepherds,a single
shepherdalonecanforcethesheepinto thecorralif thesheep
only avoidsobstacles(includingtheshepherds).However, if
thesheepaggressivelyavoidsthecorralandseeksescapethen
a minimumof two shepherdsarerequiredto accomplishthis
task.By introducinga fox into theenvironment,a minimum
of threeshepherdsis required.

As a performancetask,successis measuredby theability
of theshepherdsto getthesheepinto thecorral.Thetaskhas
failed if the sheepescapesfrom thepasture,is killed by the
fox, or if a time limit is exceeded.The learningtask is for
theshepherdsto evolve neuralcontrollersthatallow themto
succeedin theperformancetask.Thefitnessmeasureasused
by theevolutionarylearningmethodis givenin Section4.
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Figure2: Derivationof sensorsusedby theneuralcontroller

4 Evolution of Neural Controllers
Thehigh-level controlleris implementedwith afeed-forward
neuralnetwork with one hiddenlayer. The weightsof the
neuralnetwork areevolvedusingaparticularevolutionaryal-
gorithmknown asanEvolution Strategy [Rechenberg,1964].
As will beseenin a moment,thestrategy beingevolvedrep-
resentsa high-level behavior, specifically, theneuralnetwork
generatesagoalpointateachtimesteptowhichtherobotwill
navigate. The lower-level behaviors suchascollision avoid-
anceandlocal navigationarebuilt into thebehavior andare
not learned.

4.1 Sensors and Actions
Eachshepherdis controlledby a neuralnetwork that maps
its currentsensorsto a new position to be obtainedby the
shepherd.This mappingoccursat a 10 Hz rate. Eachshep-
herdhasvisionsensorsthatrepresenttherangeandbearingto
otheragentsin theenvironment.In particular, ashepherdcan
detectthe sheep,the closestothershepherd,assumingthere
is at leastoneadditionalshepherdin theenvironment,andthe
fox, if present.

These shepherd-basedsensor values are translatedto
rangesandbearingegocentricto the sheepas illustratedin
Figure 2. The bearingsare relative to the sheep’s angleto
thecorral. Specifically, a polarcoordinatesystemis usedin
which the pole is centeredon the sheepand the polar axis
passesthroughapointat thecenterof theopeningof thecor-
ral. All angularmeasurementsarerelative to this polaraxis.
An agent’s positionis thendefinedas �
�����	����� , that is, the
rangeis the lengthof theradiusvectorfrom thesheepto the
agent,andthebearingis thesupplementof thepolarangleof
theradiusvector. Thesupplementof thepolarangleis used
sothatif anagentis directlybehindthesheepwith respectto
thecorral,its bearingwill be0 degrees.

Theinput to theneuralcontrollerincludesthefollowing:

1. shepherd b: Thebearingfrom thesheepto theshepherd
undercontrol.Presentin all experiments.

2. shepherd r: Therangefrom sheepto theshepherdunder
control.Presentin all experiments.

3. othershep b: Thebearingfrom thethesheepto theclos-
estothershepherd.Presentin all experimentswith two
or moreshepherds.

4. othershep r: The rangefrom the sheepto the closest
othershepherd.Presentin all experimentswith two or
moreshepherds.

5. fox b: Thebearingfrom thesheepto thefox. Presentin
experimentswith apredator.

6. fox r: The rangefrom the sheepto the fox. Presentin
experimentswith apredator.

In additionto the vision sensorsusedby the neuralcon-
troller, the shepherdalsohassonarsensorswhich areused
by the fixed, lower-level behaviors to avoid collisionswith
other objects,althoughthe distancein which the shepherd
will avoid the sheepis less than the distanceat which the
sheepwill avoid the shepherd,allowing the shepherdto be
ableto herdthesheep.

Theoutputof theneuralcontrolleris therangeandbearing
to the new positionto which the robot is to navigatein the
samecoordinatesystemasdescribedabove.Thesevaluesare
translatedto a coordinatesystemegocentricto theshepherd
undercontrol, and input into a motor schema(see[Arkin,
1989]) to producea linear attractionto the target position.
Thismotorschemais combinedwith motorschemafor obsta-
cle avoidanceandstochasticnoiseinto anassemblagewhich
controlstherobotvia turnandtranslationratecommands.

4.2 Neural Network Controller

We use a simple two-layer feed-forward neural network
topologyasshown in Figure3. Nodesareimplementedusing
a standardsigmoidcenteredat0 asfollows:

� ��������� ��! �"$#&% �'�(� � � �*),+.- (1)

�/�0�2143657� 3/893 � (2)

where
8 3

is the outputof node : , and 5 � 3 is the weight on
theconnectionfrom node: to node ; . All input nodeshave
weightedconnectionsto all hidden nodes,and all hidden
nodeshave weightedconnectionsto all outputnodes. The
network shown is the mostcomplex case,which is usedin
theexperimentswith two or moreshepherdsanda predator.
In the experimentswith two shepherdsandno predator, the
numberof inputnodesis reducedto 5, andin theexperiment
with oneshepherdandnopredator, thenetwork is furtherre-
ducedto 3 inputnodesand3 hiddennodes.

The network acceptsreal-valuedinputs correspondingto
thesensorsdescribedin theprevioussection.An additional
input is clampedto thevalue1.0 in orderto provide a learn-
ablebiasfor eachnodein thehiddenandoutputlayers.The
target rangeoutput is convertedto a valuebetween0.0 and
10.0unitsin simulation,whichcorrespondsto thefull 37foot
width of thepasturein therealworld, andthe targetbearing
outputis convertedto a valuein therange�'�7���'�<� .
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Figure3: Neuralnetwork usedashigh-level controller

4.3 Evolution of Controllers
Theevolutionaryalgorithmwe useto evolve theconnection
weightsfor theneuralcontrollersis a �
?  A@ � evolutionstrat-
egy (ES) as describedby Bäck and Schwefel[1993], with?B� � ) and @ � � )C) . Eachindividual consistsof a real-
valuedvectorof connectionweightsanda companionvec-
tor of standarddeviationsusedby the mutationoperatoras
describedbelow. This classof evolutionary algorithmwas
introducedin Germany by Rechenberg [1964] for numerical
optimization,andvariantssuchasthe �
?  *@ � –ES,originally
developedby Schwefel[1981], area goodchoicewhenthe
problemsolutionis naturallyrepresentedasa vectorof real-
valuednumbers,asis thecasewhenevolving neuralnetwork
connectionweights.

A � � )  D� )E)�� –ESbeginswith a populationof 10 individ-
uals,andgenerates100childrenby selectinguniformly from
thispopulationandmutatingeachchild. The100childrenand
their 10 parentsarethenevaluatedby applyingeachof them
in turn to thetargetproblem,andthe10 individualswith the
highestfitnessbecomethe next generationof parents.Mu-
tationof an individual FG with H genesanda companionvec-
tor of standarddeviations FI consistsof tweakingeachgeneG � , for ;(� � �9+J+J+J�KH , accordingto a normaldistribution with
meanzeroandstandarddeviation I � asfollows:GML� � G �  �N �O)P� I � �Q+ (3)

Furthermore, the standard deviations FI are themselves
adaptedasfollows:I L� � I � "J#�% �
R L N ��),� � �Q��R N � �O)P� � ���Q� (4)

where RS� �T UEV H (5)

R L � �V U H + (6)

Theelementsof FI areinitialized to 1.0 andarerestrictedto
therange �O)P+ ) � � � + )�� . In practice,thestandarddeviationsap-
proachthe lower limit of this rangeover time, which hasan
effectmuchlike thatof simulatedannealing.

In the experimentswhereheterogeneouscontrol systems
are evolved, we usethe architecturefor coevolution devel-
opedby PotterandDeJong[2000]. Thisarchitecturemodels
anecosystemconsistingof two or morespecies.As in nature,
the speciesaregeneticallyisolated—meaningthat individu-
als only matewith othermembersof their species.Mating
restrictionsare enforcedsimply by evolving the speciesin
separatepopulations.Thespeciesinteractwithin theherding
domainasdescribedbelow andhave a cooperative relation-
ship.

To evaluate an individual from one of the coevolving
speciesgivenheterogeneouscontrolsystems,we constructa
neuralcontrolsystemusingtheindividual’sgenesasconnec-
tion weights,andassignthe resultingcontrol systemto one
of the shepherds.We thenselectthe currentbestindividual
from eachof theotherspeciesandsimilarly constructneural
controlsystemsfrom themfor assignmentto theothershep-
herds. The shepherdsare then set to work on the herding
task.Alternatively, wecouldorganizethebestshepherdsinto
multiagentsquadsandassigneachsquadto adifferentneural
control system. In the experimentswherepurely homoge-
neouscontrolsystemsareevolved,theecosystemconsistsof
only onespecies.To evaluateoneof theseindividuals,aneu-
ral controlsystemis constructedfrom thatindividual’sgenes
andassignedto all theshepherds,that is, eachshepherdwill
becontrolledby anidenticalneuralnetwork.

In this currentstudy, evaluationsaredonein simulation.
Eachevaluationconsistsof 10 trials in which the shepherds
herdthesheepuntil it is corralled,killed by thefox, escapes
from thepasture,or 2.5simulatedminuteshaveexpired.The
cumulativedistanceof thesheepfrom thecorral is measured
at the rate of 10 Hz throughoutthe trial. If the trial ends
earlydueto thesheepescapingor beingkilled, we continue
to accumulatethe full pasture-widthdistanceuntil theclock
expires.Thefitnessof anindividualis takentobethefinal cu-
mulativedistanceaveragedover the10 trials. Theworstpos-
siblefitnessis 14,768,whichwould resultif thesheepimme-
diatelyinitiateda turn towardstheleft sideof thepastureand
escapedwithout any interferencefrom the shepherds.The
bestpossiblefitnessis 976, which would result if the sheep
seta coursedirectly towardsthe corral at maximumspeed.
TheESwill seekto minimizethismeasure.

5 Results
In order to test our hypothesis,we vary the complexity of
the taskin severaldimensionsusingbothhomogeneousand
heterogeneousmulti-agentapproaches.

We begin with the simplestcaseof oneshepherdherding
onepassive sheepthat just avoids obstacles.This is essen-
tially areimplementation(in simulation)of earlierwork done
by Schultzet al. [1996]. We repeatthisearlierexperimentto
validatethedesignof our neuralcontrollerandevolutionary
learningmethod. The resultsare shown in Figure 4 along
with resultsfrom a secondexperimentin which the sheep
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Figure4: Oneshepherdherdingonesheep

actively seeksescapefrom the pastureand avoids the cor-
ral. Thecurvesin thegraphrepresentthemeanfitnessof the
bestindividual seenso far averagedover 10 separateruns.
Overlaid on the curvesat incrementsof 5 generations(550
evaluations)are95-percentconfidenceintervalson themean.
Althoughthesecontrolsystemswereevolvedfor 50 genera-
tions (5,500evaluations),a controllerwith nearoptimal be-
havior on this simpletaskwaseasilyevolvedin aslittle as2
generations.We alsoobservedsimulatedrobotssolvingthis
taskusingthebestneuralcontrolsystemfrom thefinal gen-
erationof evolution, and it is clear that they areexhibiting
behavior very muchlike the behavior evolved in the earlier
work by Schultzet al.. Specifically, the robot positionsit-
self directly behindthesheepwith respectto thecorral,and
herdsthesheepby moving towardsit andtriggeringits obsta-
cle avoidancebehavior. The shepherdmakessubtleswings
from left to right to counterirregularitiesin the movement
of the sheep.In contrast,the morecomplex caseinvolving
the sheepseekingfreedom(herebyreferredto asthe active
sheep)doesnot appearsolvablewith a single shepherd,as
indicatedby the learningcurve flatteningout at a very poor
level of fitness.

Theresultof addingasecondshepherdto themoredifficult
taskof herdinganactive is shown in Figure5. We compare
boththeevolutionof two shepherdsusinghomogeneouscon-
trol systems,andtwo shepherdsusingheterogeneouscontrol
systems.Althoughit tookslightly fewerevaluationsto evolve
goodhomogeneouscontrol systems,adequatebehavior was
also evolved in the caseof heterogeneouscontrol. Due to
the significantlysmallersearchspaceof homogeneouscon-
trollers,it is not surprisingthatwhengoodhomogeneousso-
lutionsexist it is easierto find them.Whenobservingrobots
solving this taskusingthe bestneuralcontrol systemsfrom
the final generationof evolution, we seethat in both cases
(heterogeneousandhomogeneous)thepair of robotsassume
positionsbehindthesheep,but slightly to the left andright.
This countersthestrongtendency of thesheepto slip by the
shepherdsandescapefrom thepasture.This is clearlya co-
operativeapproachon thepartof theshepherds,andit shows
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theneedfor cooperationis notalonesufficient to warrantthe
useof heterogeneouscontrol.

Finally, we adda predatorto theenvironment,in theform
of a fox that seeksto kill the sheep.Now theshepherdsre-
quire two skills—theability to herdthe sheepandthe abil-
ity to keepthe fox a safedistanceaway from thesheep.To
encouragespecialization,we initially positiontwo shepherds
behindthesheep,anda third shepherdis positionedbetween
thesheepandthefox. As before,wecomparetheevolutionof
shepherdsusinghomogeneouscontrolsystemswith theevo-
lution of shepherdsusingheterogeneouscontrolsystems.In
the caseof heterogeneouscontrol, the two shepherdsposi-
tionedbehindthesheeparecontrolledby oneneuralnetwork
andtheshepherdpositionedcloserto thefox is controlledby
asecondneuralnetwork. Theresultsfromthisexperimentare
shown in Figure6. This taskis muchmoredifficult thanthe
previousones,so we evolved thesecontrol systemsfor 200
generations(22,000evaluations). The graphclearly shows
thesuperiorityof heterogeneouscontrolon this task.



Control Shepherds Sheep Fox Fitness Success Ratio

Mean Minimum Maximum

homogeneous 1 passive no 1273.9W 2.7 1205.3 1356.0 1.000
homogeneous 1 active no 7592.5W 127.3 5865.9 14548.7 0.000

homogeneous 2 active no 1808.9W 60.4 1636.8 14621.8 0.996
heterogeneous 2 active no 1865.5W 81.4 1645.7 14573.0 0.992

homogeneous 3 active yes 4336.0W 372.8 1669.9 13966.6 0.758
heterogeneous 3 active yes 3149.2W 305.5 1579.8 14153.8 0.874

Table1: Comparisonof the meanfitnessand successrate of the bestindividual from eachexperiment,evaluatedover an
additional500trials

Whenwe observe theheterogeneouscontrol systemsper-
formingthis task,weseethattheshepherdthatis initially po-
sitionedbetweenthesheepandfox doesindeedexhibit spe-
cializedblockingbehavior, while learningto herdaswell. It
begins by moving towardsthe sheep,keepingits body be-
tweenthe sheepandfox. Whenit nearsthesheep,it some-
times turns to facethe fox andperformsa quick deflection
maneuverbeforeit joinstheothertwo shepherdsbeginsherd-
ing. However, mostof thetime its blockingbehavior is more
subtle.Closeobservationrevealsthat theblockingshepherd
maintainsslightly moredistancebetweenitself andthesheep
thantheothertwo shepherds,whichenablesit to keepthefox
at a safedistancefrom the sheepwhile still providing some
help in herding. Without having to concernthemselves as
muchwith the fox, theothertwo shepherdsareableto herd
thesheepmoredirectlytowardsthecorral.Thehomogeneous
control systemsrely muchmoreon herdingthe sheepaway
from thefox, which is not aseffectiveasblockingbecauseit
givesthesheepmoreopportunitiestoescapefromthepasture.

It shouldbe notedthat thereis a differencein complex-
ity betweentheheterogeneousandhomogeneouscontrolsys-
tems. Sincethe heterogeneouscontrol systemutilizes two
separateneuralnetworks—onefor thepair of shepherdsini-
tially positionedbehindthesheep,andonefor theshepherd
positionedbetweenthe sheepand fox—a total of 94 con-
nectionweightsare being evolved, while only 47 connec-
tion weightsareevolvedfor thesingle-networkhomogeneous
controlsystem.To verify thattheobserveddifferencein per-
formanceis not simply dueto this differencein complexity,
weevolvedahomogeneouscontrolsystemwith acomplexity
on the orderof the heterogeneoussystemby increasingthe
numberof hiddenunits to 10, which produceda neuralnet-
work with 92 connectionweights. As expected,this homo-
geneouscontrol systemperformedmuch more poorly than
the homogeneouscontrol systemwith only 5 hiddenunits.
Specifically, averagedover10runsto 200generations,thefi-
nal meanfitnessof the morecomplex homogeneouscontrol
systemwas7,918,comparedwith anaveragefitnessof 4,614
for thesimplerhomogeneouscontrolsystem.

Theresultsfrom thepreviousthreegraphsaresummarized
andfurthersupportedby Table1. Herewetakethesinglebest
individual from the10 runsof eachexperimentandapply it
to theherdingtaskfor anadditional500trials. We reportthe

meanfitness,alongwith 95-percentconfidenceintervals on
this mean,themaximumandminimumfitnessachieved,and
thesuccessratio, thatis, thepercentageof trials in which the
sheepwasactuallycorralled.Thetablereinforcesour earlier
observation that a singleshepherdis not capableof herding
an active sheepinto the corral. However, two cooperating
shepherdsaresufficient to accomplishthis mission.Hetero-
geneouscontrol systemsarenot an advantagehere,in fact,
they performslightly worse,althougha t-teston the means
of the two-shepherdhomogeneousandheterogeneoustrials
produceda p-valueof 0.2729,indicating a lack of statisti-
cal significancein their difference. Only whenthe taskre-
quiresmultiple skills (e.g., herdingthe sheepandblocking
thepredator)doesheterogeneouscontrolperformbetterthan
homogeneouscontrol, as indicatedby the trials with three
shepherds.A t-teston themeansof thethree-shepherdtrials
produceda p-valueof )P+ )E)C)E) , clearlyshowing a statistically
significantadvantageto usingheterogeneouscontrol.

6 Conclusion

In this paper, we have tried to demonstratethat simply in-
creasingthedifficulty of ataskis notenoughto induceateam
of robotsto createspecialists.Thekey factoris not difficulty
perse,but thenumberof skill setsnecessaryto successfully
solve the task. As the numberof skills neededincreases—
in this studyby addingtheresponseto a predator—themore
beneficialandnecessaryheterogeneitybecomes.

Althoughheterogeneouscontrolsystemscanpromotebet-
tersolutionsfor many tasks,thereis atradeoff. Learning(co-
evolving) a teamof homogeneousagentscantake muchless
time,sinceeachevaluationof anindividual in thepopulation
goestowardsall individuals’progressandthesearchspaceis
smaller. In a heterogeneousgroup, the availableCPU time
during evolution must be divided amongthe different skill
sets.

Ongoingexperimentsareattemptingto moregenerallyde-
terminethe propertiesthat dictatethe type of approachthat
is appropriate.In addition,resultswill be duplicatedon the
physicalNomad200 robotsto show that the simulationre-
sultsholdon theactualrobots.
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[BäckandSchwefel,1993] Thomas Bäck and Hans-Paul
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