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Abstract

Many mobile robot taskscan be most efficiently
solvedwhena groupof robotsis utilized. Thetype
of organization,andthe level of coordinationand
communicatiorwithin ateamof robotsaffectsthe
type of tasksthat can be solved. This paperex-
aminesthe tradeof of homogeneityersushetero-
geneityin thecontrolsystemsy allowing ateamof
robotsto coevolvetheir high-level controllersgiven
differentlevelsof difficulty of thetask.Ourhypoth-
esisis thatsimplyincreasinghedifficulty of atask
is not enoughto inducea teamof robotsto create
specialists.The key factoris not difficulty per se,
but the numberof skill setsnecessaryo success-
fully solvethetask.As thenumberof skills needed
increasesthe more beneficialand necessanhet-
erogeneitybecomes. We demonstratehis in the
taskdomainof herding,whereoneor morerobots
mustherdanotherobotinto a confinedspace.

1 Introduction

Many mobilerobottaskscanbe moreefficiently solvedwhen
a group of robotsis utilized. Sometaskscannotbe solved
at all without multiple robots. Thetype of organizationand
thelevel of coordinatiorandcommunicatiorwithin ateamof
robotsaffectsthetypeof tasksthatcanbesolved.

In swarm approachegusuallylarge)groupsof robotsexe-
cutethe samesimplestratgieswith no explicit communica-
tion. Comple groupbehaiors emege from the simplein-
teractionsamongthe robots. Examplesof this includeflock-
ing behaviors. In cooperative approaches(usually smaller)
groupsof robotscanhave differentstratgies,allowing some
of the robotsto becomespecialistsin solving parts of the
task—thais, robotscanassumeoles.Recentlythetermcol-
laborative hasbeenusedto indicatecooperatie approaches
wherethe robotsexplicitly communicateheir intentto one
another Oneimportantissuein multi-agentroboticsis to un-

derstandvhenaparticularapproachs appropriatdor agiven
task,thatis to understantherelative powerof eachapproach.

This paperwill examinethe tradeof of homogeneityer-
susheterogeneityn the control systemsy allowing a team
of robotsto coevolvetheir high-level controllersgivendiffer-
entlevelsof difficulty of thetask. In thehomogeneousase,
wewill restricttherobotsto usingthe samecontrolstructure,
i.e. only onehigh-level controlleris evolved,which all robots
will use. In the heterogeneousase,robotswill be allowed
to coevolve separatdigh-level controllers thusenablingthe
emegenceof specialists. Our hypothesids that simply in-
creasinghedifficulty of ataskis notenoughto induceateam
of robotsto createspecialistsThekey factoris not difficulty
per se,but the numberof skill setsnecessaryo successfully
solve thetask. As the numberof skills neededncreasesthe
morebeneficialandnecessarheterogeneitypecomes.

Experimentsvereconductedvithin a simulationmodelof
the task domain. The task chosenfor theseexperimentsis
herding, wherea group of robotsmustforce anotherrobot
into a confinedspace. The robotsare Nomad 200swhich
aremodeledusingthe TeamBotssystem[Balch,1998H4. We
shav that simply increasingthe difficulty of the taskalone
doesnot necessarilyequireheterogeneousontrol systems,
but thatintroducinga predatorinto the ervironmentinduces
theevolutionof specialist§or defendingagainsthepredator

In the next sectionwe will describerelatedwork. In Sec-
tion 3, we will describethe taskdomainand how the com-
plexity of thetaskcanaffectcoevolvedbehaiors. The useof
aneuralnetwork asahigh-level controller, andtheevolution-
ary algorithmusedfor learningwill be describedn Section
4. We will thendescribethe experimentaimethodologyand
the resultsin Section5, followed by our conclusionsand a
descriptionof futurework.

2 Reated Work

Evolution of robotic shepherdingbehaiors was first de-
scribedin [Schultzet al., 1994, althoughonly oneshepherd
wasinvolved,andthereforemulti-robotcoordinationrwasnot
required. Much hasbeenwritten aboutevolution (and co-



evolution) of robot behaviors (see[Mataric and Cliff, 1996;
Meetlenand Kumar 1999 for an overview). Several arti-
cleshave attemptedo lay out taxonomiesandgeneralissues
in mﬂulti—robot coordination[Dudeket al., 1993;Caoet al.,
1997.

A numberof researcherbave explored heterogeneityat
the hardware level by equippingmembersof a robot team
with differentsetsof sensorr effectors[Caoet al., 1997;
Parker, 1999. Otherresearchersave utilized teamsof simi-
lar agentsandhave insteadexploredheterogeneitat the be-
havior level [Balch,1998a;Bongard 2000;Good,200d. Our
researchiakesthe latter approacthin thateachherdingagent
hasthe samephysical capabilities,but can develop unique
controlstratgjiesthroughcoevolution.

It remainsanopenquestionasto whatkinds of taskswar-
rant a heterogeneouapproach. Homogeneouseamshave
oneclearadvantage—therés built-in redundang. If ateam
memberfails for ary reasontherestof theteamcanstill go
on and be successful. However, asa taskincreasesn diffi-
culty, division of labor or specializatiormay becomeessen-
tial for success.

In doing reinforcementearningstudies,Balch found that
diversitywithin ateamis notalwaysdesirabldBalch,19984.
Certainkinds of tasks,suchasforaging, were solved more
easilywith a homogeneouapproach.Balch speculatedhat
ary domainin which an individual agentcould reasonably
performthe taskalone,is well suitedfor ahomogeneouap-
proach. Otherdomains,suchas soccerwhich seemsto re-
quireavarietyof agenttypes,weremoreeasilysolvedwith a
heterogeneouspproach.

One resultwhich is somavhat inconsistentwith Balch’s
conclusionsis Luke’s experienceslevelopinga geneticpro-
grammingbasedsoftbotsoccerteamfor RoboCup97Luke,
1994. The main goal of his work wasto producethe best
teampossiblein a limited amountof time. Luke developed
both homogeneouandheterogeneousams. However, the
heterogeneougamshada largersearchspaceandthuscon-
vergedmuchmoreslowly. By competitiontime, the homo-
geneougeamshad the advantageand were entered. Luke
predictsthatgivenenoughevolution time though,the hetero-
geneougeamsmight ultimatelywin out.

Balch hassuggestedhat tasksthat cannotbe reasonably
solved by a singleagentshouldleadto heterogeneityBon-
gardfocusesmore on the domainratherthanthe agentand
arguesthat decomposablelomainsshouldlend themseles
morereadily to heterogeneityBongard,200d. Like Balch,
he found that a homogeneouseamwas more successfuht
foragingthanaheterogeneousne. Yet, it is notclearthatthis
supportshis hypothesis Foragingcanbe easilydecomposed
asBalchdid in his hand-codedontrol cases.For example,
thedomaincanbedecomposeahto separateerritoriesor the
targetscanbedecomposeithto particulartypes.

Our hypothesids thatthe needfor heterogeneitglepends
onthenumberof skill setsrequiredby thedomain.Theherd-
ing domainis a goodenvironmentfor testingthis hypothesis
aswell asthoseof BalchandBongard.We canincreasehe
difficulty of the taskalonga numberof dimensionswithout
requiringnew skill sets.We canalsoincreasehe numberof
skill setsrequiredby addinga predatotto the environment.
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Figurel: Herdingdomain

3 Task Domain and Complexity

The herding ervironmentshavn in Figure 1 consistsof a
37 x 37 foot pasturethat is fencedon three sides, with a
smallerenclosectorralontheright. Theherdingtaskrequires
thata groupof robots(the shepherds) forceanotherobot(the
sheep) into the corral. The sheepdoesnot wantto enterthe
corral,but insteadwantsto escapehroughthe unfencedside
of the pasture.To furthercomplicatemattersjn someexper
imentsthereis a predatorobot (the fox) thatattemptgo kill
thesheepby approachingvithin a certaindistance.

The sheeps behaior is a fixed stratgy that causesthe
sheepto avoid the approachor contactof otherrobotsand
obstacleswith additionaldrivesto avoid the corral and to
seekescapehroughthe unfencedside of the pasture. The
fox’s behaior is alsofixed, and causest to attemptto ap-
proachthe sheepwhile avoiding the shepherdsindotherob-
stacleslf thefox is ableto getwithin a certaindistanceof the
sheepthe sheepdiesandthetrial is over. The stratgjiesof
theshepherdareimplementediia high-level neuralnetwork
controllerswhich areevolvedasdescribedn Sectiord.

Thecompleity of thisdomaincanbecontrolledalongser-
eraldimensionsFor example thedegreeto which the sheep
avoidsthe corralandseeksainescapdrom thefencedpasture
canbeincreasedthepredatoryfox canbeincluded theradius
aroundthe sheepn which the fox kills the sheepcanbe in-
creasedandwe canincreasehe numberof sheep Giventhe
speedandturning ratesof the sheepandshepherdsa single
shepheralonecanforcethesheepnto thecorralif thesheep
only avoids obstaclegincludingthe shepherds)However, if
thesheemggressiely avoidsthecorralandseekescapehen
aminimumof two shepherdsarerequiredto accomplishthis
task. By introducinga fox into the environment,a minimum
of threeshepherdss required.

As a performanceask,successs measuredy the ability
of theshepherdto getthesheepnto thecorral. Thetaskhas
failedif the sheepescape$rom the pasturejs killed by the
fox, orif atime limit is exceeded.The learningtaskis for
the shepherd$o evolve neuralcontrollersthatallow themto
succeedn theperformancédask. Thefithessmeasurasused
by theevolutionarylearningmethodis givenin Section4.
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4 Evolution of Neural Controllers

Thehigh-level controlleris implementedvith afeed-forward
neuralnetwork with one hiddenlayer The weightsof the
neuralnetwork areevolvedusingaparticularevolutionaryal-
gorithmknown asan Evolution Strategy [Rechenbaey, 1964.
As will beseenin amomentthe stratgy beingevolvedrep-
resents high-level behaior, specifically the neuralnetwork
generateagoalpointateachtime stepto whichtherobotwill

navigate. The lowerlevel behaiors suchascollision avoid-
anceandlocal navigationarebuilt into the behaior andare
notlearned.

41 Sensorsand Actions

Eachshepherds controlledby a neuralnetwork that maps
its currentsensorgo a new positionto be obtainedby the
shepherd.This mappingoccursat a 10 Hz rate. Eachshep-
herdhasvisionsensorshatrepresentherangeandbearingo
otheragentsn theervironment.In particulayr ashepheratan
detectthe sheepthe closestother shepherdassuminghere
is atleastoneadditionalshepherdn theervironment,andthe
fox, if present.

These shepherd-basedensor values are translatedto
rangesand bearingegocentricto the sheepasillustratedin
Figure2. The bearingsare relative to the sheeps angleto
the corral. Specifically a polar coordinatesystemis usedin
which the pole is centeredon the sheepand the polar axis
passeshrougha pointatthe centerof theopeningof the cor
ral. All angularmeasurementarerelative to this polaraxis.
An agents positionis thendefinedas (r, 7 — ), thatis, the
rangeis thelengthof theradiusvectorfrom the sheepo the
agentandthebearingis the supplemenof the polarangleof
theradiusvector The supplementf the polarangleis used
sothatif anagentis directly behindthe sheepwith respecto
thecorral,its bearingwill beO degrees.

Theinputto the neuralcontrollerincludesthefollowing:

1. shepherd_b: Thebearingfrom thesheepo theshepherd
undercontrol. Presentn all experiments.

2. shepherd_r: Therangefrom sheepo theshepherdinder
control. Presentn all experiments.

3. othershep_b: Thebearingfrom thethesheepo theclos-
estothershepherdPresentn all experimentswith two
or moreshepherds.

4. othershep_r: The rangefrom the sheepto the closest
othershepherd.Presenin all experimentswith two or
moreshepherds.

5. fox_b: Thebearingfrom thesheepo thefox. Presentn
experimentswith a predator

6. fox_r: Therangefrom the sheepto the fox. Presenin
experimentswith a predator

In additionto the vision sensorausedby the neuralcon-
troller, the shepherdalso hassonarsensorsvhich are used
by the fixed, lowerlevel behaiors to avoid collisions with
other objects, althoughthe distancein which the shepherd
will avoid the sheepis lessthan the distanceat which the
sheepwill avoid the shepherdallowing the shepherdo be
ableto herdthe sheep.

Theoutputof theneuralcontrolleris therangeandbearing
to the new positionto which the robot is to navigatein the
samecoordinatesystemasdescribedibove. Thesevaluesare
translatedo a coordinatesystemegocentricto the shepherd
under control, and input into a motor schema(see[Arkin,
1989) to producea linear attractionto the target position.
Thismotorschemas combinedwith motorschemdor obsta-
cle avoidanceandstochasticoiseinto anassemblagerhich
controlstherobotvia turn andtranslatiorratecommands.

4.2 Neural Network Controller

We use a simple two-layer feed-forward neural network
topologyasshawvnin Figure3. Nodesareimplementedising
astandardgigmoidcenteredat 0 asfollows:

1

Fz) = 1+ exp(—2;)

-0.5 (1)

Ri = Zwij0j7 (2)
J

whereo; is the outputof node j, andw;; is the weighton

the connectionfrom nodej to nodei. All input nodeshave
weighted connectionsto all hidden nodes,and all hidden
nodeshave weightedconnectiongdo all outputnodes. The
network shavn is the mostcomplex case,which is usedin

the experimentswith two or moreshepherdanda predator
In the experimentswith two shepherdandno predator the
numberof input nodess reducedo 5, andin the experiment
with oneshepherdndno predatoythe network is furtherre-
ducedto 3 inputnodesand3 hiddennodes.

The network acceptsreal-valuedinputs correspondingo
the sensorglescribedn the previous section. An additional
inputis clampedto thevalue1.0in orderto provide a learn-
ablebiasfor eachnodein the hiddenandoutputlayers. The
target rangeoutputis corvertedto a value between0.0 and
10.0unitsin simulation,which correspondso thefull 37 foot
width of the pasturein therealworld, andthe targetbearing
outputis corvertedto avaluein therange(—m, 7).



Figure3: Neuralnetwork usedashigh-level controller

4.3 Evolution of Controllers

The evolutionaryalgorithmwe useto evolve the connection
weightsfor theneuralcontrollersis a (i + A) evolutionstrat-
egy (ES) as describedby Back and Schwefel[1993, with
# = 10 and A = 100. Eachindividual consistsof a real-
valuedvector of connectionweightsanda companionvec-
tor of standarddeviations usedby the mutationoperatoras
describedbelon. This classof evolutionary algorithmwas
introducedin Germary by Rechenbeay[1964 for numerical
optimization,andvariantssuchasthe (1 + A)—-ES,originally
developedby Schwefel[1981], area good choicewhenthe
problemsolutionis naturallyrepresentedsa vectorof real-
valuednumbersasis the casewhenevolving neuralnetwork
connectionweights.

A (10 + 100)-ESbeginswith a populationof 10 individ-
uals,andgenerate400childrenby selectinguniformly from
thispopulatiorandmutatingeachchild. The100childrenand
their 10 parentsarethenevaluatedby applyingeachof them
in turn to thetarget problem,andthe 10 individualswith the
highestfitnessbecomethe next generatiorof parents. Mu-
tation of anindividual # with ¥ genesanda companiornvec-
tor of standarddeviations&' consistsof tweakingeachgene

x;, fori = 1,... k, accordingto a normaldistribution with
meanzeroandstandardieviation o; asfollows:
z; = z; + N(0, 0;). )

Furthermore, the standard deviations & are themseles
adaptedhsfollows:

o'g = 0; eXp(TIN(O, ]-)7 TN’i (07 1))7 (4)
where

()

2k
L
T = o (6)

The elementof & areinitialized to 1.0 andarerestrictedto
therange(0.01, 1.0). In practice the standardieviationsap-
proachthe lower limit of this rangeover time, which hasan
effectmuchlik e thatof simulatedannealing.

In the experimentswhere heterogeneousontrol systems
are evolved, we usethe architecturefor coevolution devel-
opedby PotterandDe Jong[200d. This architecturenodels
anecosysteneonsistingof two or morespeciesAs in nature,
the speciesare geneticallyisolated—meaninghat individu-
als only matewith othermembersof their species.Mating
restrictionsare enforcedsimply by evolving the speciesin
separat@opulations.The speciesnteractwithin the herding
domainasdescribedbelonv andhave a cooperatie relation-
ship.

To evaluate an individual from one of the coevolving
speciegyiven heterogeneousontrol systemswe constructa
neuralcontrolsystemusingtheindividual'sgenesasconnec-
tion weights,and assignthe resultingcontrol systemto one
of the shepherdsWe thenselectthe currentbestindividual
from eachof the otherspeciesandsimilarly constructneural
control systemdrom themfor assignmento the othershep-
herds. The shepherdsare thensetto work on the herding
task.Alternatively, we couldorganizethe bestshepherdgto
multiagentsquadsandassigneachsquado a differentneural
control system. In the experimentswhere purely homoge-
neouscontrol systemsareevolved,the ecosystentonsistsof
only onespeciesTo evaluateoneof thesendividuals,aneu-
ral controlsystemis constructedrom thatindividual’'sgenes
andassignedo all theshepherdshatis, eachshepheradvill
be controlledby anidenticalneuralnetwork.

In this currentstudy evaluationsare donein simulation.
Eachevaluationconsistsof 10 trials in which the shepherds
herdthe sheepuntil it is corralled,killed by thefox, escapes
from the pasturepr 2.5 simulatedninuteshave expired. The
cumulative distanceof the sheegfrom the corralis measured
at the rate of 10 Hz throughoutthe trial. If the trial ends
early dueto the sheepescapingr beingkilled, we continue
to accumulatehe full pasture-widthdistanceuntil the clock
expires.Thefitnessof anindividualis takento bethefinal cu-
mulative distanceaveragecoverthe 10trials. Theworstpos-
siblefitnessis 14,768 whichwould resultif thesheegmme-
diatelyinitiatedaturntowardstheleft sideof the pastureand
escapedvithout ary interferencefrom the shepherds.The
bestpossiblefitnessis 976, which would resultif the sheep
seta coursedirectly towardsthe corral at maximumspeed.
TheESwill seekto minimizethis measure.

5 Results

In orderto testour hypothesiswe vary the compleity of
thetaskin severaldimensionausingboth homogeneouand
heterogeneousulti-agentapproaches.

We bagin with the simplestcaseof one shepherdcerding
one passie sheepthat just avoids obstacles.This is essen-
tially areimplementatioiin simulation)of earlierwork done
by Schultzet al. [1996. We repeatthis earlierexperimentto
validatethe designof our neuralcontrollerandevolutionary
learningmethod. The resultsare shavn in Figure 4 along
with resultsfrom a secondexperimentin which the sheep
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Figure4: Oneshepherdherdingonesheep

actively seeksescapefrom the pastureand avoids the cor-
ral. Thecurvesin thegraphrepresenthe meanfitnessof the
bestindividual seenso far averagedover 10 separateuns.
Overlaid on the curvesat incrementsof 5 generationg550
evaluations)are95-percentonfidencentervalsonthemean.
Althoughthesecontrol systemsvereevolvedfor 50 genera-
tions (5,500evaluations),a controllerwith nearoptimal be-
havior on this simpletaskwaseasilyevolvedin aslittle as2
generationsWe alsoobsered simulatedrobotssolving this
taskusingthe bestneuralcontrol systemfrom the final gen-
erationof evolution, andit is clearthat they are exhibiting
behaior very muchlike the behaior evolvedin the earlier
work by Schultzet al.. Specifically the robot positionsit-
self directly behindthe sheepwith respecto the corral,and
herdsthesheepy moving towardsit andtriggeringits obsta-
cle avoidancebehaior. The shepherdnakessubtleswings
from left to right to counterirregularitiesin the movement
of the sheep.In contrast,the more complex caseinvolving
the sheepseekingfreedom(herebyreferredto asthe active
sheep)doesnot appearsolvable with a single shepherdas
indicatedby the learningcurve flatteningout at a very poor
level of fithess.

Theresultof addingasecondshepherdo the moredifficult
taskof herdingan active is shavn in Figure5. We compare
boththeevolution of two shepherdsisinghomogeneouson-
trol systemsandtwo shepherdsisingheterogeneousontrol
systemsAlthoughit tookslightly fewer evaluationgo evolve
good homogeneousontrol systemsadequatdehaior was
also evolved in the caseof heterogeneousontrol. Due to
the significantly smallersearchspaceof homogeneouson-
trollers, it is not surprisingthatwhengoodhomogeneouso-
lutionsexist it is easierto find them. Whenobservingrobots
solving this task usingthe bestneuralcontrol systemsrom
the final generationof evolution, we seethatin both cases
(heterogeneousndhomogeneoughe pair of robotsassume
positionsbehindthe sheep put slightly to the left andright.
This counterghe strongtendenyg of the sheepto slip by the
shepherdsindescapdrom the pasture.This is clearly a co-
operatve approacton the partof the shepherdsandit shows
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theneedfor cooperatioris notalonesuficientto warrantthe
useof heterogeneousontrol.

Finally, we adda predatorto the ervironment,in theform
of afox thatseekgo kill the sheep.Now the shepherdse-
quire two skills—the ability to herdthe sheepandthe abil-
ity to keepthe fox a safedistanceaway from the sheep.To
encouragepecializationyve initially positiontwo shepherds
behindthe sheepandathird shepherds positionecbetween
thesheemndthefox. As before we compareheevolution of
shepherdsisinghomogeneousontrol systemswith the evo-
lution of shepherdsisingheterogeneousontrol systems.In
the caseof heterogeneousontrol, the two shepherdposi-
tionedbehindthe sheeparecontrolledby oneneuralnetwork
andtheshephergositionedcloserto thefox is controlledby
aseconcheuralnetwork. Theresultsfrom thisexperimentare
shavn in Figure6. This taskis muchmoredifficult thanthe
previous ones,so we evolved thesecontrol systemsor 200
generationg22,000evaluations). The graphclearly shovs
thesuperiorityof heterogeneousontrolon thistask.



Control Shepherds | Sheep | Fox Fitness Success Ratio
Mean Minimum  Maximum
homogeneousg 1 passie | no | 1273.9£2.7 1205.3 1356.0 1.000
homogeneous 1 actve | no | 7592.5+£127.3 5865.9  14548.7 0.000
homogeneous 2 actve | no | 1808.9+60.4 1636.8 14621.8 0.996
heterogeneous 2 actve | no | 1865.5+81.4 1645.7  14573.0 0.992
homogeneousg 3 actve | yes| 4336.0+£372.8 1669.9 13966.6 0.758
heterogeneous 3 actve | yes | 3149.2+305.5 1579.8  14153.8 0.874

Table 1: Comparisonof the meanfitnessand successate of the bestindividual from eachexperiment,evaluatedover an

additional500trials

Whenwe obsenre the heterogeneousontrol systemsper
formingthistask,we seethattheshepherdhatis initially po-
sitionedbetweenthe sheepandfox doesindeedexhibit spe-
cializedblocking behaior, while learningto herdaswell. It
begins by moving towardsthe sheep,keepingits body be-
tweenthe sheepandfox. Whenit nearsthe sheepjt some-
timesturnsto facethe fox and performsa quick deflection
maneuerbeforeit joinstheothertwo shepherdbeginsherd-
ing. However, mostof thetime its blockingbehaior is more
subtle. Closeobsenationrevealsthatthe blocking shepherd
maintainsslightly moredistancebetweeritself andthe sheep
thanthe othertwo shepherdsyhich enablest to keepthefox
at a safedistancefrom the sheepwhile still providing some
help in herding. Without having to concernthemseles as
muchwith the fox, the othertwo shepherdareableto herd
thesheepmoredirectlytowardsthecorral. Thehomogeneous
control systemgely muchmore on herdingthe sheepaway
from thefox, whichis not aseffective asblockingbecauset
givesthesheepnoreopportunitieso escapdéromthepasture.

It shouldbe notedthat thereis a differencein comple-
ity betweertheheterogeneousndhomogeneousontrolsys-
tems. Sincethe heterogeneousontrol systemutilizes two
separateeuralnetworks—onefor the pair of shepherdni-
tially positionedbehindthe sheepandonefor the shepherd
positionedbetweenthe sheepand fox—a total of 94 con-
nectionweights are being evolved, while only 47 connec-
tion weightsareevolvedfor thesingle-netvark homogeneous
controlsystem.To verify thatthe obsereddifferencein per
formanceis not simply dueto this differencein complexity,
we evolvedahomogeneousontrolsystermwith acompleity
on the orderof the heterogeneousystemby increasingthe
numberof hiddenunitsto 10, which produceda neuralnet-
work with 92 connectionweights. As expected,this homo-
geneouscontrol systemperformedmuch more poorly than
the homogeneousontrol systemwith only 5 hiddenunits.
Specifically averagedver 10 runsto 200generationsthefi-
nal meanfitnessof the more complex homogeneousontrol
systemwas7,918,comparedvith anaveragefitnessof 4,614
for the simplerhomogeneousontrolsystem.

Theresultsfrom the previousthreegraphsaresummarized
andfurthersupportedy Tablel. Herewetakethesinglebest
individual from the 10 runsof eachexperimentandapply it
to theherdingtaskfor anadditional500trials. We reportthe

meanfitness,alongwith 95-percentonfidencentervals on

this mean the maximumandminimumfitnessachieved,and

thesuccessatio, thatis, the percentagef trialsin whichthe

sheepwasactuallycorralled. Thetablereinforcesour earlier
obsenationthat a single shepherds not capableof herding
an active sheepinto the corral. However, two cooperating
shepherdsire sufiicient to accomplishthis mission. Hetero-
geneougontrol systemsare not an advantagehere,in fact,

they performslightly worse,althougha t-teston the means
of the two-shephercdhomogeneouand heterogeneousials

produceda p-value of 0.2729,indicatinga lack of statisti-

cal significancein their difference. Only whenthe taskre-

quiresmultiple skills (e.qg., herdingthe sheepand blocking

the predatordoesheterogeneousontrol performbetterthan

homogeneousontrol, as indicatedby the trials with three
shepherdsA t-teston the meansof the three-shepherttials

produceda p-valueof 0.0000, clearly shaving a statistically
significantadvantageto usingheterogeneousontrol.

6 Conclusion

In this paper we have tried to demonstrateéhat simply in-
creasinghedifficulty of ataskis notenougho induceateam
of robotsto createspecialistsThekey factoris not difficulty
per se,but the numberof skill setsnecessaryo successfully
solve the task. As the numberof skills neededncreases—
in this studyby addingtheresponséo a predator—themore
beneficialandnecessarpeterogeneitpecomes.

Althoughheterogeneousontrol systemsanpromotebet-
tersolutionsfor mary tasksthereis atradeoff. Learning(co-
evolving) ateamof homogeneouagentscantake muchless
time, sinceeachevaluationof anindividualin the population
goestowardsall individuals’ progressaandthe searchspaces
smaller In a heterogeneougroup, the available CPU time
during evolution must be divided amongthe different skill
sets.

Ongoingexperimentsareattemptingo moregenerallyde-
terminethe propertiesthat dictatethe type of approactthat
is appropriate.In addition,resultswill be duplicatedon the
physicalNomad200 robotsto shav that the simulationre-
sultshold ontheactualrobots.
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