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Abstract
Traditional models of planning have adopted a top-down perspective by focusingon the deliberative, conscious qualities of planning at the expense of having a systemthat is connected to the world through its perceptions. My thesis takes the opposing,bottom-up perspective that being �rmly situated in the world is the crucial startingpoint to understanding planning. The central hypothesis of this thesis is that theability to plan developed from the more primitive capacity of reactive control.Neural networks o�er the most promising mechanism for investigating robot con-trol and planning because connectionist methodology allows the task demands ratherthan the designer's biases to be the primary force in shaping a system's develop-ment. Input can come directly from the sensors and output can feed directly intothe actuators creating a close coupling of perception and action. This interplay be-tween sensing and acting fosters a dynamic interaction between the controller andits environment that is crucial to producing reactive behavior. Because adaptation isfundamental to the connectionist paradigm, the designer need not posit what formthe internal knowledge will take or what speci�c function it will serve. Instead, basedon the training task, the system will construct its own internal representations builtdirectly from the sensor readings to achieve the desired control behavior. Once thesystem has reached an adequate level of performance at the task, its method can bedissected and a high-level understanding of its control principles can be determined.This thesis takes an incremental approach towards understanding planning. Inthe initial phase, several ways of representing goals are explored using a simulatedrobot in a one-dimensional environment. Next the model is extended to accommo-date an actual physical robot and two reinforcement learning methods for adaptingthe network controllers are compared: a gradient descent algorithm and a geneticalgorithm. Finally, the model's behavior and representations are analyzed to revealthat it contains the potential building blocks necessary for planning. By actively re-stricting the extent of our presuppositions about planning, we may be able to developtruly autonomous robots with radically di�erent forms of control and planning.vi
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1Reconsidering planning
As I began working on this thesis I did an informal survey on people's de�nitionsof plans. Although everyone seemed to have strong intuitions about what constitutesa plan, they were frequently unwilling to actually commit to a particular answer. Theresponses were similar to what a famous judge once said about obscenity, \I can'tde�ne it, but I know it when I see it." When pressed further, people would describeplans as methods, procedures, programs of action, or sets of explicit instructions.These de�nitions suggest that we believe plans to be static, self-contained entities.To see plans as static leads one to view the world as relatively stationary as well. Tosee plans as self-contained implies that they are independent of any particular domainor actor, like a fortran program that can be run on any computer. The actual processof planning is seen as the ability to contemplate future outcomes prior to acting.These intuitions about the characteristics of planning have profoundly in
uencedthe course of planning research. If the world is basically predictable, if plans are trulyself-contained, and if the process of planning is like deliberation, then perception andaction should be peripheral issues and the core of the matter is in discovering howsuch �xed, independent plans are reasoned out.But if these intuitions are wrong, then the traditional approach to planning mustbe completely reconsidered. I have a very di�erent set of intuitions about planning. Ibelieve that plans are context-dependent, dynamic entities, which are a�ected by themoment-to-moment changes in the environment. I view the act of planning more asinformed improvisation than as deliberation. Because our environment is continuallyin 
ux, an explicit program of action produced with careful forethought will quicklybecome obsolete. Instead, the process of planning should be brief and the resultssketchy|any detailed predictions will most likely be wrong.The reconsideration of traditional planning has already begun under the new1



1. Reconsidering planning 2research approach termed situated activity or reactive planning (Agre, 1988; Chapman,1991; Firby, 1989). The adjectives situated and reactive are illustrative of the tenetsof this new view. Instead of building a disembodied planner, an autonomous agentis constructed and situated in realistic environments. The agent must constantlyreact to the dynamic world while still pursuing its long-term goals. Clearly an agentinhabiting an unpredictable world is quite dependent on perceptual and motor skillsfor success.This chapter begins with a review of the larger set of assumptions, or worldview,that encompasses the deliberative intuitions about plans. I will apply this worldview'sconception of planning to the problem of controlling physical robots to illustrate aserious 
aw in its fundamental assumptions. I will argue, as other proponents ofreactive planning have done, that it is more fruitful for the purpose of robot controlto work within an alternative worldview where perception and action are the centralconcerns.The alternative worldview to which I subscribe encompasses the concerns of re-active planning as well as those of connectionism. Like connectionists, I believe thatlearning should be fundamental to the process of cognition. Within this alternativeworldview that combines situatedness and learning, plans can be seen as dynamic,context-dependent entities and the adaptation of planning behavior can be consid-ered. Based on this alternative view, I will o�er an incremental approach to thedevelopment of plans in robots.1.1 The deliberative processing worldviewA worldview is a largely unarticulated system of vocabulary, methods, andvalues shared by a research community. (Agre, 1993, p 62)A worldview helps its owner interpret observations and guide further stud-ies. It is neither right or wrong. Instead, it has to be judged on how usefulit is to the pursuit of science and to a shared understanding of the phe-nomena. (Norman, 1993b, p 5)As Agre and Norman suggest, a worldview provides a �lter through which ob-servations are made. This �lter enhances the signi�cance of some phenomena whilediminishing the importance of others, narrowing the sphere of inquiry to a particularfocus. Deliberative processing has been the dominant worldview for both CognitiveScience and Arti�cial Intelligence. Others have referred to this view as rationalism



1. Reconsidering planning 3to indicate that cognition is explained in terms of logical structures (Pfeifer and Ver-schure, 1992a). The deliberative or rationalist view has led researchers to concentrateon abstract tasks that more easily lend themselves to a high-level, symbolic formu-lation, especially problems related to what have been been considered the uniquelyhuman aspects of intelligence|consciousness, language, and planning. Therefore,the deliberative processing view tends to emphasize the crucial di�erences betweenhumans and other animals while placing much less importance on their common evo-lutionary paths.The deliberative processing view assumes that reasoning has largely supplantedreactive behavior commonly found in animals. Yet no explanation is o�ered for howthis conversion from reaction to reasoning might have occurred. Typically modelscolored by this worldview begin their inquiry from the top, positing highly structuredsymbolic representations of knowledge that are manipulated according to rules oflogic to produce behavior.One instantiation of the deliberative processing view is Soar|a suggested archi-tecture for general intelligence (Laird et al., 1987). I will focus on Soar because itis representative of the deliberative style of processing and it has been successfullyapplied to the widest range of problems to date.Soar embodies two hypotheses fundamental to the deliberative processing world-view. First and foremost is the belief that a general intelligence must be realized witha symbolic system. This is called the physical symbol system hypothesis (Newell andSimon, 1972). A second assumption is that problem spaces are the basic organiza-tional unit of all goal-directed behavior. A problem space consists of a set of possiblestates in a particular domain and a set of primitive operators that transform one stateinto another. Figure 1.1, adapted from (Laird et al., 1987, p 6), depicts the problemspace for a particular problem called the eight puzzle.Planning for a task in Soar is seen as searching through a problem space for anappropriate sequence of operators that will transform the initial state to a desiredgoal state. Only then is the plan executed. Elaine Rich notes that \for problemssuch as the eight-puzzle, the distinction between planning and doing is unimportant"(Rich, 1983, p 249). This is because the world of the eight-puzzle is stationary. Thecomputer does not physically push any of the tiles around or interact with the realworld in any way.For the deliberative view, as illustrated by Soar, processing is functionally decom-posed into three main modules: perception, reasoning, and execution (see Figure 1.2).First, the task is perceived according to the initial and goal states, then a solution isfully reasoned out using a search through the appropriate problem space, and �nallythe computed actions are executed. The emphasis in the deliberative view is �rmly
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1. Reconsidering planning 5
Functional Decomposition

Perception Execution Reasoning

Figure 1.2: The deliberative worldview's decomposition of behavior. Typically, de-liberative systems are not connected to any external environment, but operate oninternal models. Therefore no input from sensors into Perception or output fromExecution to actuators is shown. The Reasoning module encompasses the primarycomputational e�ort.on the reasoning phase of this process. Perception and action are seen as auxiliaryfunctions.Soar has impressively mimicked human problem solving abilities for numeroustasks, including the eight puzzle, tic-tac-toe, towers of Hanoi, missionaries and can-nibals, algebraic equations, logical syllogisms, and blocks world problems (Norman,1993a). What do these diverse problem domains have in common?Because deliberative processing models like Soar plan by searching through prob-lem spaces, they have been quite successful when applied to problems with the fol-lowing features:� The domain can be described with discrete states.� Tasks in the domain can be de�ned by an initial state and a goal state.� Given the current state and an operator, the next state can be uniquely deter-mined.Consider the eight puzzle again according to these features. Each state is a boardcon�guration and each tile must be at a discrete location on the board; puzzle tasksare naturally described in terms of beginning and ending states; and eight puzzle op-erators produce completely predictable results. The eight puzzle domain does indeed�t the stated criteria, thus making it a perfect candidate for deliberative processingmodels.



1. Reconsidering planning 6However, the usefulness of a worldview depends on the extent to which it cannaturally encompass the majority of important phenomena. Given a clearer pictureof where the deliberative processing view succeeds, we can now see where it fallsshort. The deliberative view emphasizes reasoning over perception and action. Ifwe take perceptual and motor skills seriously, by building an autonomous robot thatis situated in the real world, how will Soar and the deliberative worldview fare? Insummarizing Soar's accomplishments, even Soar's proponents have noted that this isone area which has received little attention:... all of these demonstrations are essentially internal|both planning andexecution occur completely within the scope of the system. Thus theydo not involve direct execution in a real external environment and theysafely ignore many of the issues inherent to such environments. (Lairdand Rosenbloom, 1993)Let's posit a very simple robot and consider in detail how a model based on thedeliberative processing worldview would be applied to the problem of controlling thisrobot. Suppose this robot is limited to moving within a small, empty room which hasa light in one corner. The robot is equipped with two light sensors, on its left andright sides, and two short-range sonar sensors at its front and back. Each light sensorreturns continuous values between 0.0 and 1.0, where higher values indicate more light.The sonar sensors return the discrete values zero and one. A zero indicates that thereis no obstacle detected within sonar range, and a one indicates the robot is withinrange of an obstacle. The robot can execute four actions: forward, forward-left,forward-right, and backward.Let's choose a very simple navigation task for our robot: from any initial positionin the room it must go to the light without contacting any of the walls. We will de�nesuccess at reaching the light when the sum of the light readings are greater than someminimum value. To attempt a solution within the deliberative worldview we mustconvert this robot domain and task into a problem space.First we need to de�ne the states of the problem space. The deliberative worldviewde�nes the state of a system from a global perspective, which for the simple robotunder consideration would include its current position and heading. However, anautonomous robot has only its local sensor readings and must deduce from thesethe global situation. Thus from the robot's perspective, a state for this domainconsists only of a four-item list of the sensor readings. It could take the form: (left�light; right� light; front� sonar; back� sonar) with one instantiation being: (0.34,0.26, 0, 1). This state indicates that there is slightly more light coming from the leftlight sensor than the right and that some obstacle is sensed behind the robot.



1. Reconsidering planning 7There's a problem though: these sensor states contain continuous values. Toperform search-based planning we will need a limited set of states. So there mustbe some way to classify these continuous states into a discrete set. This can beaccomplished by determining ranges in the continuous values. For the navigate-to-light task, we might want to monitor light readings L where L <= 0:1, 0:1 <L <= 0:8, and L > 0:8. But by designating such ranges for the light readings someinformation will be lost. In other words, with this set of ranges a robot controllercould not make a decision based on whether L < 0:5. The designer must ensure thatthe system has access to the essential distinctions in the continuous parameters.Next we must de�ne the task in terms of an initial state and a goal state. Theinitial state will simply be the discretized sensor readings obtained at the initialposition of the robot, such as (left� light < 0:1; right� light < 0:1; 0; 1). The goalstate should describe the desired results. Suppose that the sum of the light readingsmust be greater than 1.6 for success. Then the goal state would be: (left� light >0:8; right � light > 0:8; 0; 0). But it would also be possible to accomplish the goalwith one light reading in the top of the middle range and the other light reading in thetop of the highest range. Interestingly there isn't necessarily a single goal state for thetask. These additional goal states will certainly complicate the state space search,but let's assume that we can modify the search algorithm to accomodate multiplegoal states.The �nal hurdle to describing the problem space for our robot is to de�ne afunction that maps a current state and action into the next state. Here we face amajor hurdle. Because we are using a real robot with actual sensors and motors,there will be noise. The sonar sensors will mis�re, indicating an upcoming obstaclewhere there is none, or failing to indicate a wall in the near vicinity. The light sensorreadings will also contain signi�cant noise as a result of picking up ambient lightin the room. Even more problematic though, the results of actions will be noisyas well. Performing the same movement will produce di�erent results based on thefriction encountered in the environment and other mechanical factors. Neither thenew heading nor distance traveled can be accurately predicted. The subsequent lightreadings depend on the robot's heading and position relative to the light. Similarly,the subsequent sonar readings depend on the robot's position relative to the walls.Due to the large amounts of noise in both the perception and action processes, thenext state cannot be uniquely determined given only the current state and the actionto be taken. The inability to determine how the state of a system will change afterexecuting an action is referred to as the frame problem. An action planning systembased on the deliberative worldview must be able to precisely establish the resultsof actions without actually executing them. Suppose the robot's current state is(left� light > 0:8; 0:1 < right� light <= 0:8; 0; 0) and that it takes a forward-left



1. Reconsidering planning 8action, how will these values change? We can guess that moving in the left directionmay decrease the left light reading and increase the right reading, but by how much?Will the changes in the light be enough to drop the left light reading to the lowerrange and push the right light reading to the higher range? Will the robot be withinsonar range of a wall? In the real world the outcome of an action cannot be reliablypredicted prior to executing it.This di�culty cannot be side-stepped because perfect sensors and perfect per-formance will never be obtained. If the global state of the robot (its position andheading) could somehow be provided to the system then the noisiness inherent inperceiving and acting could be safely ignored. However, it is unreasonable to assumethat an autonomous agent could ever have exact knowledge of its global state. Forhuman beings this might equate to constantly knowing our precise location on theearth in terms of longitude and latitude. The only viable method for discovering therobot's next global state is to actually execute the action in the real world, determinethe local state by re-reading the sensors, and make inferences based on these values.Soar and other deliberative systems depend on internal models of the problemspace on which to perform their planning search. As we've just seen, when the problemspace is extended to the real world, managing this internal model's accuracy becomesextremely di�cult. If we have to execute each action to determine its outcome, wecannot use extended search to plan because we can no longer determine a completeand reliable path before acting. The outcome of each projected action is noisy, and along series of actions based on noisy predictions will be inaccurate. However, searchmay still be a viable method if its depth is very limited.Despite these fundamental problems with the deliberative processing approachto planning in the real world, Soar has been successfully applied to two real robottasks (Laird et al., 1989; Laird and Rosenbloom, 1993). Soar's solution to this internaltruth-maintenance problem has been to abstract away from the primitive actions,operating the search at a much higher level where accurate predictions about outcomesare possible.Hero-Soar controls a mobile robot equipped with an arm and sonar sensors. Hero-Soar has the task of collecting cups and depositing them in the trash. As discussedpreviously, extended search at the level of the basic motor commands|to position thearm, manipulate the gripper, and move the robot|would be useless due to the varioustypes of noise inherent in the interaction between the system and the environment.Instead, Hero-Soar is given a higher level of operators, such as search-for-object,orient-toward-object, approach-object, pickup-cup, and drop-cup on which todo extended search. Executing each of these abstract operators involves a combinationof many basic motor commands. Ensuring that the appropriate primitive commands



1. Reconsidering planning 9are actually invoked is handled at run-time.On the surface this is another impressive achievement for the deliberative world-view, but in evaluating this result we should be concerned with how easily it wasobtained. Do the extensions needed to accommodate real environments �t naturallyinto the existing framework? To a certain extent, this is a question of aesthetics, yetthere is a deeper practical issue as well. How has the fundamental problem of noisebeen dealt with?Let's examine the implementation of Soar's robotics solution a little more closely.Hero-Soar was programmed to pick up cylindrical cups. When it encounters a cone-shaped cup for the �rst time, it tries to use the original technique, but the new cupsslip from its gripper. When something unexpected happens during run-time, such asdropping a cup, the system must have some way to avoid in�nitely retrying the sameincorrect actions. It must recognize that it needs to learn something new. In thiscase it needs to learn to distinguish cone-shaped cups from cylindrical cups via itssensor readings and it must also learn a new pick-up technique for cone-shaped cups.Adaptation in Soar is based on a simple experience-based learning method calledchunking. Chunking combines existing knowledge with results from a given problemexperience and converts it through generalization into new more e�cient knowledgeavailable for future problem solving. Soar's knowledge is encoded as a productionsystem and each chunk is a new if-then rule that is added to the production memory.When an error arises, as when Hero-Soar is unable to pick up the cup, Soar'sgeneral strategy is to assume that the internal knowledge could be faulty and toforce the system to reconsider each decision. This reconsideration is implemented by\creating a dummy operator and making preferences that make it both better andworse than the other operators" (Laird et al., 1989, p 421). This dummy operatorwill now be valid in every situation, and because it is better and worse than all otherdecisions an impasse is created. At this point, human intervention is employed toguide Soar to attend to the features of the problem space causing the error. So ratherthan allowing the system to experiment in the environment and discover the relevantcharacteristics on its own, the human advisor directs the learning. Laird acknowledgesthat this is a \brute-force technique to learn new features" and \although it may notbe considered the most elegant or complex machine learning technique, it allows thehuman to easily correct the system" (Laird et al., 1989, p 422).A system that depends on human intervention cannot be truly autonomous, butLaird argues that the human element could easily be eliminated by allowing thesystem to engage in experimentation. No speci�cs are o�ered for how this experi-mentation would take place except that the system could guess at relevant features.The problem though is that Soar's core ability to generalize is dependent on having



1. Reconsidering planning 10well-de�ned, clear-cut features to manipulate:
If the representation is organized so that aspects that are relevant arefactored cleanly from the parts that are not (i.e. are noise) then chunkingcan learn highly general concepts. Factoring implies both that the aspectsare encoded as distinct attributes and that the operators are sensitive onlyto the relevant attributes and not to the irrelevant attributes. (Laird et al.,1987, p 56)

Chunking is a powerful method for e�ciently recombining consistent and existingknowledge. Allowing Soar to actually extend its sphere of knowledge beyond theboundary of the original relevant features is a major new step. Experimentation willinfuse Soar's memory with noisy, irrelevant data, and it is not clear that Soar willremain e�ective in these conditions. Thus, I do not believe it will be a simple matterto remove the human element.One of the most di�cult aspects of the real world is the prevalence of noise. Bya close interaction with the environment this noise can be �ltered out and importantregularities can be discovered. But the planning in Hero-Soar operates at an abstractlevel, separate from either perception or action. Thus it is always shielded from thereal world. How can a system designed to operate as though there were no noisebe simply adjusted so that it can now discover the relevant features amid the noise?Hero-Soar misses the mark on both aesthetic and practical levels.As the Hero-Soar example shows, even when the deliberative worldview is appliedto physical robots in real environments, perception and action are still being side-stepped in deference to high-level guidance. There are fundamental problems withaccommodating realistic perception and action within deliberative processing modelslike Soar. As one would expect from the underlying assumptions of the deliberativeview, its models are best suited for producing behavior at the symbolic level. Themost impressive achievements encompassed by the deliberative view have been onreasoning tasks where perception and motor control are ignored.In the next section, I will describe an alternative to the deliberative processingview that addresses the concerns raised here and which borrows aspects from boththe situated action and connectionist worldviews.



1. Reconsidering planning 111.2 An alternative worldview: Adaptation fromlimited designer biasA deep-seated criticism of the deliberative worldview, made by proponents ofconnectionism, is that to assume that reasoning is a modular process essentially sep-arate from perception and action as previously shown in Figure 1.2 leads to thesymbol grounding problem (Harnad, 1990; Gasser, 1993; Pfeifer and Verschure, 1992a;Smolensky, 1988). The expectation of the deliberative view has been that the out-put from some perceptual module can easily be funneled into a reasoning module toproduce the right sort of symbol structures to perform search-based reasoning. Yetas AI has begun to move from toy domains to implementing actual physical robots,this modular formulation no longer seems practically feasible. How can meaning everget appropriately attached to the internal symbols? Harnad describes the problem asfollows:How can the semantic interpretation of a formal symbol system be madeintrinsic to the system rather than parasitic on the meanings in our heads?How can the meaning of the meaningless symbol tokens, manipulatedsolely on the bases of their (arbitrary) shape, be grounded in anythingbut other meaningless symbols? (Harnad, 1990, p 335)One solution to this problem is to construct symbols from the ground up, basingthem directly on nonsymbolic, perceptual features. In this view it is nonsensical toposit a reasoning level where free-
oating symbols are disconnected from the percep-tual level because ungrounded symbols are by de�nition meaningless.Another criticism of the deliberative processing approach, made by the proponentsof the situated action worldview, is that perception and action are more central topeople and animal's daily activities than in-the-head problem solving, and thereforereasoning should not be the primary focus of cognitive study (Brooks, 1991; Suchman,1987)). Instead they suggest that much of the structured behavior we assume mustbe the result of high-level planning may in fact emerge naturally from an agent'simprovisational interaction with the environment.Agre's quote in the opening of the chapter noted that the assumptions that de�nea worldview are often not clearly articulated. One far-reaching yet implicit beliefwithin the deliberative view is that the organized nature of behavior is directly dueto planning. This belief biases our observations of other agents' behavior:Anticipation and planning are of course impossible to observe directlyin another person or animal, but indications of their likelihood are often



1. Reconsidering planning 12observable. (Gri�n, 1984, p 37)Gri�n argues that complex, structured behavior suggests that planning is takingplace. As an example of what he means by structured behavior, he o�ers a descriptionof the behavior of an assassin bug that lives in the tropical rain forests. This bug usesa very e�ective strategy for capturing termites. The assassin bug glues small bits ofthe outer layers of a termite nest to its body. Apparently these bits of nest providecamou
age. Then the bug reaches into the nest opening and captures a termite andkills it by sucking out all the internal organs, leaving only an exoskeleton. The assassinbug then pushes the empty exoskeleton back into the opening and jiggles it gently.Another termite seizes the corpse as part of a normal behavior pattern of devouringdead siblings. The assassin bug pulls this second termite out and eats it as well. Inone case an assassin bug was observed to eat 31 termites in this manner (Gri�n,1984, p 123).A key contribution of the situated action view is that it questions this implicitbelief in the centrality of planning. If insects like the assassin bug can produce highlystructured behavior, then structured behavior may be the result of much simplermechanisms than planning. One possibility, to which I subscribe, is that planning isin fact an important factor in determining behavior, but it is actually instantiated ina much simpler, nonsymbolic fashion than is usually assumed. Only by attemptingto limit our preconceived ideas about the basis of behavior will we be free to explorea full range of possibilities.To this end, the neural networks o�er the most promising means for investigatingrobot control and planning because connectionist methodology allows the task de-mands rather than the designer's biases to be the primary force in shaping a system'sdevelopment. At the initial design phase, connectionist methodology provides usefulconstraints by encouraging bottom-up construction. Input can come directly fromthe sensors and output can feed directly into the actuators creating a close couplingof perception and action. This interplay between sensing and acting, as opposed toa sense-REASON-act cycle, fosters a dynamic interaction between the controller andits environment that is crucial to producing reactive behavior which I believe is theessential precursor to planning.Because adaptation is fundamental to the connectionist paradigm, the designerneed not posit what form the internal knowledge will take or what speci�c functionit will serve. Instead, based on the training task, the system constructs its owninternal representations built directly from the sensor readings to achieve the desiredcontrol behavior. Thus the system's representations are automatically grounded inthe environment.



1. Reconsidering planning 13Once the system has reached an adequate level of performance at the task, itsmethod can be dissected and a high-level understanding of its control principles canbe described. As Clark has noted, connectionism \inverts the o�cial classical order-ing, in which a high-level understanding comes �rst and closely guides the search foralgorithms" (Clark, 1993). Through adaptation, the system's solution to the taskemerges as it discovers the key features of the problem space rather than simplybeing the product of the designer's understanding of the domain. By actively re-stricting the extent of our presuppositions about planning, we may be able to developtruly autonomous robots with radically di�erent forms of control and planning thanpreviously conceived of1.1.3 An incremental approach to planningTraditional models of planning, based on the deliberative worldview, have adopteda top-down perspective on the problem. They focus on the contemplative, internalqualities of planning at the expense of having a system that is grounded and con-nected to the world through its perceptions. My thesis takes the opposing, bottom-upperspective that being �rmly situated in the world is the crucial starting point to un-derstanding planning. The central hypothesis of this thesis is that the ability to plandeveloped from and was based on the more primitive capacity of reactive control.I will present a model that shows how the ability to plan could incrementally beadapted from an agent's immediate need to react.In recent years there have been a number of di�erent proposals for incrementallyconstructing intelligent agents (Brooks, 1986; Braitenberg, 1984; Ram and Santa-maria, 1993; Schnepf, 1991; Waltz, 1991; Wilson, 1991). I will focus on Waltz'ssuggestions. Waltz notes that it will be some time before neuroscience can o�erdetailed wiring diagrams of the nervous system, and in the interim we need someplausible architecture for studying intelligence. He o�ers eight guiding principles tosuch an architecture. The �rst �ve of these principles lead up to planning, and the�nal three go beyond it. I have adopted the �ve principles relevant to planning andmodi�ed them to �t my own intuitions about the appropriate increments towardsplanning.1. Use associative memory as the overall mechanism.state! action1I am not suggesting that the ultimate goal is a tabula rosa learner. Bias can never be completelyeliminated, and it can often enhance learning. I am instead suggesting that bias should be explicitlynoted so that its e�ect can be properly evaluated.



1. Reconsidering planning 142. Populate the associative memory system with sequenced rote experiences.3. Include mechanisms to automatically generalize across rote memories.4. Include innate drive and evaluations systems to provide the robot with moment-to-moment guidance for its actions.state + goal! action + evaluation5. Include control structures to allow planning.state + goal + plan! action + evaluationThese principles provide a foundation for a model of planning, but key issuesremain unresolved. With respect to the �rst, second, and third principles, what sortof associative memory should be employed to ensure recognition of sequences and easeof generalization? With respect to the fourth principle, how should goals be speci�edto produce the appropriate type of motivation and what kind of evaluation should begiven to best direct learning? Finally, and most importantly, with respect to the �fthprinciple, what will constitute a plan and how will plans develop?The model to be presented here supplies one possible set of answers to these ques-tions. The model is implemented as a connectionist network, which is fundamentallyan associative engine. Chapter 2 addresses the �rst three principles with a discussionof connectionist architectures and mechanisms, describing how sensor states are asso-ciated with actions, how recurrent networks elegantly allow sequences to be learned,and how networks naturally perform generalization. Chapter 2 also describes otherrelated proposals for constructing intelligent agents. Chapter 3 addresses the goalaspect of the fourth principle. The initial phase of the model is presented and severalways of providing goals are explored using a simulated robot in a restricted one-dimensional environment. Chapter 4 addresses the evaluation aspect of the fourthprinciple. Here, the model is extended to accommodate a real physical robot and twomethods of providing evaluation are compared: a gradient descent algorithm and agenetic algorithm. Finally, Chapter 5 addresses the �fth principle related to planning.The robot's capabilities are extended to include sonar and the development and useof dynamic, context-dependent protoplans is examined. Chapter 6 concludes by tyingthe entire model together and discussing its signi�cance.



2Adaptation methods for learningcontrol
2.1 Considerations for applying connectionism tocontrolAndrew Barto, in a review of connectionist approaches to the control of dynam-ical systems, argues that \because adaptive connectionist networks �t in the rangebetween structureless lookup tables and highly constrained model-based parameterestimation, they seem well-suited for the acquisition and storage of control informa-tion. These methods suggest how new techniques for adaptive control can be devel-oped which take full advantage of the possibilities for fabricating associative memorysystems having high capacity, high speed, and the ability to usefully interpolate andextrapolate in real time" (Barto, 1989, p 31). Barto's review was based on appli-cations such as controlling the production of a plant, but the problem is analogousto controlling a robot. In both problems the abstract goal of using resources in themost e�cient way|to increase production in one case or to perform a set of tasksin the other|is not directly relevant to the moment-to-moment decisions that mustbe made. In addition, to react appropriately in a dynamic environment, a robot canobviously bene�t from the type of memory he describes: one that is vast, quick, andfrom which generalizations are easily made.The connectionist framework has a number of attractive properties, as suggestedby Barto; however, there are some serious disadvantages as well. These strengthsand weaknesses should be carefully considered before applying this framework to aparticular problem. On the positive side, adaptive mechanisms are fundamental tothe connectionist paradigm. The solutions learned by connectionist networks are an15



2. Adaptation methods for learning control 16extremely accurate re
ection of the statistical regularities that are present in thetraining environment. Not only do networks recognize and respond accurately to thetrained examples, but as a side e�ect of the training, they can typically respond ap-propriately to novel instances which are similar to the trained examples. This abilityto generalize from the training set is one of most attractive features of connectionistlearning. Networks can also integrate top-down information (such as abstract goals)and bottom-up information (such as concrete sensory data) well. Finally, computa-tion occurs in parallel, so it can be extremely fast.On the negative side, in general, there is no guarantee that a network will �ndany solution, let alone an optimal one; and when there is convergence it can takea considerable amount of training, especially for large networks1. In addition, thetype of generalization produced may not be what is needed for a given problem. Thegeneralization exhibited is dependent on the training environment used. The morerich and realistic the training environment, the better the generalizations tend to be.Because connectionism has only recently experienced a resurgence of popularity,there is currently a lack of strong theoretical principles to guide its application. De-spite this, successful learning algorithms have sparked enthusiasm for this paradigmby producing good results in a wide variety of problem domains. The most commonlearning mechanism used in connectionism is a gradient descent procedure called back-propagation. Rumelhart, Hinton, and Williams, who popularized this algorithm, notethat \although our learning results do not guarantee that we can �nd a solution forall solvable problems, our analyses and results show that as a practical matter, theerror propagation scheme leads to solutions in virtually every case (Rumelhart et al.,1986, page 361, emphasis in the original).Barto explains why he considers connectionism to be a valid paradigm for studyingcontrol even though its theoretical foundation still needs development:I have argued that the most distinctive character of connectionist learningsystems lies not so much in their technical speci�cations as in the method-ology with which they are applied... This experimental, heuristic approachis characterized by what I termed representational freedom and a willing-ness to plunge ahead when theoretical guarantees are lacking. It is easy tocriticize this free-wheeling nature of much connectionist research, but the-oretical guarantees are often obtained at the cost of extremely restrictiveassumptions about tasks, which are almost always violated in practice.1For some restricted circumstances|constant input/output mappings and periodic weightadjustment|convergence can be guaranteed.



2. Adaptation methods for learning control 17Certainly rigorous theory is important, and a valid criticism of any re-search is that it proceeds in ignorance of relevant theoretical frameworksand previous research, but an experimental methodology seems necessaryfor developing control applications involving complex nonlinear systems.(Barto, 1989, p 30)Provably complete planners have been constructed that abide by classical plan-ning's restrictive assumptions; David Chapman's TWEAK program is one exam-ple (Chapman, 1987). However, Chapman discovered that these restrictions madeTWEAK almost useless as a real-world planner. TWEAK can generate completeplans because every possible action has a set of preconditions and postconditionsassociated with it. An action can only be applied when all of its preconditions aretrue; when an action is applied its postconditions are guaranteed to be true. But inthis scheme, the e�ects of actions cannot depend on the situation in which they wereapplied, because then the postconditions could be di�erent for every separate appli-cation. Thus relaxing these restrictions would again lead to the frame problem wheree�ects of actions cannot be determined. With respect to robotics and planning, thetheoretical gains obtained within the deliberative worldview have been made at theexpense of realistic results. Adapting a grounded connectionist controller may proveto be a better foundation for the study of planning.2.2 Connectionist architecturesThe most common connectionist architecture is a three-layer feedforward networkof processing units (see Figure 2.1). Each unit in any given layer (except the outputlayer) is linked by weighted connections to each unit in the layer above it. Variousamounts of activation are applied to each of the units in the bottom layer, representingsome particular pattern being presented as input to the network. This activation then
ows across the connections to higher layers of the network, with the weights on theconnections mediating the amount of activation that is passed on to successive units.The �nal pattern of activation present on the topmost layer is considered to be theoutput pattern produced by the network from the given input pattern.A learning algorithm such as back-propagation can be repeatedly applied to thenetwork, enabling it to learn to associate arbitrary pairs of input and output patternsby gradually adjusting the weights on the connections between units. The inputpattern can be interpreted as representing perceptual information received from theenvironment and the output pattern can be interpreted as an action to be taken inresponse to that sensation. As a result of the training process, the network learns to
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Figure 2.1: Standard Three-layer feedforward network architecture: This schematicdiagram of a simple network depicts layers as rectangles, units as shaded circles, andweights as arrows. Instead of including all of the actual weights, bold arrows indicatethat the the layers are fully connected (these conventions are followed throughout thethesis). For this particular network, there are actually 6 � 3 weighted connectionsfrom the input to the hidden layer and 3 � 6 from the hidden to the output layer,for a total of 36 weights. In addition, each unit in the hidden and output layers hasan associated bias. The activation begins at the bottom in the Input Layer, proceedsupwards through the Hidden Layer, and ends in the Output Layer. Learning isaccomplished by propagating errors from the Output Layer back through the networkto the Input Layer.



2. Adaptation methods for learning control 19recode each perception into di�erent patterns of activation at the intermediate layer ofunits so that the appropriate action may be successfully generated at the output layer.The intermediate layer is termed hidden because it does not have direct access to theenvironment from either direction. This process of learning to recode input patternsinto intermediate patterns of activation spread across the hidden layer amounts to thedevelopment of distributed internal representations of the input information by thenetwork itself. The ability of connectionist networks to develop their own internalrepresentations|or hidden representations|is an extremely important property ofthese mechanisms. See (Blank et al., 1992) for a thorough discussion of the uniqueaspects of connectionist representations.One di�culty with the standard feedforward architecture is that when time isan important aspect of the problem to be modeled, it is not clear how to representtime in an e�cient and useful way. Certainly for planning, timing information iscrucial since plans involve temporal sequences of actions. A common method foraccommodating time has been to represent time as space. In language processing,this entails giving an entire sentence to the input layer as a vector, where the �rstelement in the vector occurred �rst in time and the �nal element occurred last intime. Elman contends that \a better approach would be to represent time implicitlyrather than explicitly. That is, we represent time by the e�ect it has on processingand not as an additional dimension of the input" (Elman, 1990, p 180). To thisend, a number of researchers have suggested recurrent architectures and new learningalgorithms for them (Mozer, 1989; Pearlmutter, 1989; Williams and Zipser, 1989).Two simple recurrent architectures are due to Elman and Jordan and are shown inFigure 2.2 (Elman, 1990; Jordan, 1989). These are called recurrent architecturesbecause processing loops are created by the backward connections.In Jordan's version, the previous states of the output layer are made available toan additional bank of input units which he calls the state or plan layer. This givesthe network a memory of its past output decisions. In Elman's version, the previousstates of the hidden layer are made available to an additional bank of input unitswhich he calls the context layer. This gives the network a memory of its own internalrecodings of past inputs. The Elman-style temporal memory is more general than theJordan-style because it stores past hidden unit activations which are not taught toassume speci�c values. The contents of a Jordan-style network's memory is restrictedto the outputs of the speci�c training task. Both of these recurrent forms have o�eredelegant means of representing the temporal component inherent in many tasks.The initial step towards a planning system will be an Elman-style network thatmaps the perceived sensor readings, the current goal, and the current context memorythrough the hidden layer to the next action as shown in Figure 2.3. A robot controlledby this network should be able to develop simple reactions in response to changes in
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Jordan Network Elman NetworkFigure 2.2: Simple recurrent network architectures: The bold arrow connections haveadjustable weights. The dashed arrows indicate one-to-one connections between units.These one-to-one connections have a �xed weight of 1.0 and simply copy activationsfrom the previous time step down for the next time step. The copy may be combinedwith a decayed version of the previous contents.
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Figure 2.3: The initial architecture for the robot controller.



2. Adaptation methods for learning control 21its sensor values. The next section describes how the weights for this control networkwill be learned.
2.3 Reinforcement learningStandard back-propagation is an error correction method. Learning by error cor-rection is one type of supervised learning procedure, because for each input patternthere must be an associated teacher or target pattern. Back-propagation comparesthe actual output produced by the network to the known target pattern to determinethe error that is then used to adjust the weights. However, when the task to belearned does not have speci�c targets, but only more abstract measures of goodness(as is the case for robotics problems), a standard error correction method cannot beused.Consider again the simple robot described in the �rst chapter. Its task was toreach a light while avoiding the boundaries of the environment. Suppose that duringits initial learning it bumps into one of the walls. Any action that moves it awayfrom the wall should be rewarded, while any action that persists in causing it tocontact the wall should be punished. There is not necessarily one right or wrongaction for a given situation, and even if there were, it is probably not known a priori.For these types of domains, reinforcement learning, another supervised method oflearning, works well. During reinforcement learning the kind of supervision givenis much less speci�c than for error-correction learning. A reinforcement proceduredetermines whether the output should receive positive, negative, or no reinforcement.Essentially this is equivalent to teaching by telling the learner whether its output wasgood, bad, or indi�erent. The magnitude of the reinforcement value can also re
ectits degree of goodness.In this thesis, two very di�erent kinds of reinforcement procedures have been usedto adapt the weights of the control networks|one is a local method while the otheris a global method. The local method is a special back-propagation algorithm thatupdates the weights immediately upon receiving reinforcement from the environment.The global method is a genetic algorithm which tests out a given network in theenvironment for an extended period of time. From this test it obtains a global �tnessmeasure that is then used to bias the subsequent adaptation. Each of these methodsis described in the following sections.



2. Adaptation methods for learning control 222.3.1 Local method: Complementary Reinforcement Back-PropagationThe local method is a modi�ed version of the complementary reinforcement back-propagation (CRBP) learning algorithm (Ackley and Littman, 1990). Back-propagationlearning requires precise error measures for each output produced by a network sothat gradient descent on the error can be performed. CRBP provides these exacterror measures from the abstract reward and punishment signals as described below.A forward propagation of the input values produces a real-valued search vector Son the output layer. Each of these activations is interpreted as the probability that anassociated random bit takes on the value 1. From these probabilities a binary outputvector O is stochastically produced. If O is rewarded, then learning should push thenetwork towards this vector, so the error measure (O � S) is back-propagated. IfO is punished, then learning should push the network away from this vector, butthe appropriate direction is not clear. Punishment only provides negative evidence,it does not o�er any other guidance. CRBP chooses to push the network directlytoward the complement of O, using the error measure ((1� O)� S). In this way, insimilar situations rewarded outputs will be more likely to occur again and punishedoutputs will tend to produce the opposite e�ect.Another feature of CRBP is that there are di�erent learning rates for reward andpunishment. When the network is rewarded, we can be con�dent that we have goodinformation to learn from because the current state led to positive reinforcement.Therefore, we should use a high learning rate. In contrast, when the network ispunished, we know that the current state is not desirable, but we can only arbitrarilypick the complement state as our target. There is no guarantee that the complementis a good choice, so our learning rate should be lower.The original version of CRBP was applied to static problems and was designed forfeedforward networks. I modi�ed CRBP to work with dynamic problems and simplerecurrent networks. To my knowledge, this research is the �rst application of CRBPto time-dependent domains and networks. In the original static version of CRBP, areward learning rate ten times larger than the punishment learning rate works well.In testing the viability of applying CRBP to dynamic problems, this high ratio ofthe learning rates proved to be problematic. In dynamic robot domains, the rewardto punishment ratio tends to be higher than for static domains, making such a largedisparity in the learning rates infeasible. Therefore, in the experiments reported inthis thesis (unless otherwise noted), the reward learning rate was only three timeslarger than the punishment learning rate.



2. Adaptation methods for learning control 23Implementation detailsTraining begins by initializing all the weights in the network to small random values.The following set of steps is considered one cycle of processing and is iterated untilsome limit is reached. The limit ranged from 100; 000 to 500; 000 cycles dependingon the particular experiment.1. Get input from the sensors.2. Forward propagate input to produce real-valued vector S.3. Stochastically determine binary-valued vector O from vector S.4. Execute action vector O on robot.5. Determine reinforcement.6. Determine error vector E.If rewarded then E = O � SIf punished then E = ((1� O)� S)If no feedback then E = 07. If E 6= 0 then back-propagate E.Use higher learning rate for reward than punishment.2.3.2 Global method: Genetic AlgorithmAlthough genetic algorithms (GAs) have been applied to machine learning problems,they are not generally seen as reinforcement procedures. Instead they are primarilyviewed as search-based function optimizers. Goldberg provides a good introductionto both types of applications (Goldberg, 1989).Genetic algorithms are based on the theory of natural selection in evolution. GAswork on a population of individuals, where each individual represents a possible so-lution to the given problem. After the initial population is randomly generated, thealgorithm evolves the population by creating new individuals through the recombina-tion of information from parents in the current population; this is called reproduction.The key to the success of this process is in the selection of parents from the currentpopulation. Individuals with above average �tness are more likely to be chosen forreproduction than individuals with below average �tness. Fitness is some measure ofthe goodness of an individual that the GA is trying to maximize. Through selection,



2. Adaptation methods for learning control 24GAs allocate more trials to regions in the problem space that contain above averagesolutions. According to Whitely, \genetic algorithms are capable of performing aglobal search of a space because they can rely on hyperplane sampling to guide thesearch instead of searching along the gradient of a function" as back-propagation does(Whitley et al., 1993).Combining genetic algorithms and connectionist networksThere are many interesting possibilities for applying genetic algorithms to connec-tionist networks. GAs have been used to �nd good initial network weights, to tunenetwork learning parameters, to determine network structure, to evolve network learn-ing algorithms, and to learn network weights (Belew et al., 1992; Harp et al., 1989;Harvey, 1993b; Chalmers, 1990; Whitley et al., 1993). It is the last option thatwill be used here: the network architecture is �xed and the GA works to adapt anappropriate set of weights.Applying genetic algorithms to networks has not been as straightforward as othertypes of GA applications. Traditionally individuals in GA populations have been rep-resented as bit strings, but weights in networks are typically real-valued. By workingat the level of bits, the GA has no knowledge about the semantics of a problem.This is considered an advantage because the GA's success cannot be linked to anybuilt-in knowledge about a particular domain (Belew et al., 1992). Although thereare methods for translating real values into bit strings appropriate for GA processing,for the robot domains studied here, individuals are represented as real-coded vectorsof weights. Real numbers are certainly more abstract than bits, but there is still verylittle semantics about the robot revealed in this real-coded representation. Thus thisreal encoding still limits the e�ect that designer bias can have on the outcome of thelearning.Another tradition in GAs is that the primary form of recombination is crossoverand the secondary form is mutation. In crossover, parents contribute complementaryportions of their bit strings to an o�spring. In mutation, with some small probability,randomly chosen bits in the o�spring are 
ipped.When evolving networks, crossover would create a new set of weights by tak-ing some weights from one successful network and the rest from another successfulnetwork. However, these two networks could be using very di�erent strategies forsolving the problem. Creating an o�spring by recombining portions of their weightsmay result in an extremely poor alternative solution. In fact even if the two networksare employing the same strategy, it is probably instantiated in the weights in verydi�erent ways. So again, recombination may be quite unsuccessful. Networks tend to



2. Adaptation methods for learning control 25solve problems in a distributed, holistic fashion and thus may not have useful build-ing blocks to contribute to a recombined solution. Due to the problematic natureof crossover for network representations, this form of recombination is not used here(although crossover has been used in other GA applications to neural networks|fora good discussion of the potential problems and solutions see (Belew et al., 1992;Whitley et al., 1993)).Instead, new individuals are created solely by mutation. Harvey notes that therehas been \surprising success (in some circumstances) of what has come to be callednaive evolution; i.e. mutation only, contrary to normal GA folklore which emphasizesthe signi�cance of crossover" (Harvey, 1993a). Further, he found that the optimalmutation rates were between one and two mutations per individual and this wasnearly invariant over the length of the individual's representation.Implementation detailsEach individual in the GA's population is a possible control network for a robot.Therefore the �tness function should measure the e�ectiveness of a network for con-trolling the robot in its particular task. The �tness is determined as follows. Arandom situation is selected for the robot. The particular network then controls therobot for 50 actions starting from that point. Each action receives either a reward orpunishment and the sum of the feedback over all 50 actions is calculated. Anotherrandom situation is chosen and the same process is done again. The �tness is theaverage feedback received over these two random starts. Allocating only 100 actionsto evaluate each network results in a fairly noisy measure. However it is better toobtain quick, rough estimates of �tness and to allow the GA to consider many can-didate solutions than it is to attempt to obtain highly accurate evaluations with asmaller population size (Fitzpatrick and Grefenstette, 1988). GAs have proved to bequite adept at �nding good solutions in very noisy environments.Processing in GAs is measured in terms of generations. A generation is com-pleted when a new population has been created through reproduction within the oldpopulation. The number of reproductions needed to replace every individual in theold population equals the size of the population. To choose parents for the nextgeneration, a technique called tournament selection was used (described below). It-erating the following set of steps 250 times (the standard population size) constitutesa generation. Each GA run typically consisted of 1000 generations.1. Randomly choose two individuals from the population to compete in a tourna-ment.



2. Adaptation methods for learning control 262. Declare the individual with the higher �tness as the winner.3. Replace the loser by a mutation of the winner.Create mutation by randomly picking two weights in the winner and updatingthem by random values between �5 and +5.4. Determine �tness of the new individual.2.3.3 Comparison of methodsGAs tend to be a very robust method because they operate on a population of pos-sible solutions rather than just a single solution as is done in CRBP. Using CRBP,there is much more potential for getting stuck in local minima. For example, if CRBPbegins with a poor set of initial weights it may never be able to converge on a solu-tion. Whereas a GA, given enough processing time, can more reliably �nd at least areasonable solution.In terms of robot actions executed, however, this processing price can be verysteep. For the GA, the total number of actions performed in a single run is:actions = popsize� generations� starts� steps = 2:5� 107where the population size is 250, the maximum number of generations is 1000, thenumber of random starts is 2, and the number of steps per start is 50. In contrast,the CRBP runs performed at most 5� 105 actions (50 times fewer actions).Perhaps the most signi�cant di�erence between these two methods is in the imme-diacy of the reinforcement used. CRBP was designed to learn from direct feedback|an action is executed and an evaluation of its goodness is immediately required. GAslearn from indirect feedback|a sequence of actions is executed and some overallmeasure of �tness is returned upon completion. Thus GAs are an inherently delayedreinforcement procedure. Experiments in Chapter 4 will examine this di�erence inthe adaptation methods and test whether CRBP is able to learn from delayed rein-forcement.2.4 Related workThe �rst chapter illustrated the di�culties with accommodating real perceptionand action within the deliberative worldview. We have just de�ned an initial neuralnetwork model for tackling the problem of robotics control from the alternative view ofadaptation from limited designer bias. There have been several other neural network



2. Adaptation methods for learning control 27models proposed in response to problems with the deliberative worldview that canalso be seen as lying within this alternative view.2.4.1 Adapting pure reactivityOne approach has been to eschew memory-based control entirely. Pfeifer and Ver-schure have discussed several reasons why reactivity should be the sole basis forautonomous agent design (Pfeifer and Verschure, 1992b). In their view, memory useis linked to goal directedness and plan following, which they suggest may be unnec-essary for producing structured behavior. Traditionally, goal-directed systems resortto plans, which in turn have required symbolic world models. These world modelsare based on static designer-de�ned ontologies that must be determined in advanceand are di�cult to adapt. To use systems of this sort, task descriptions must �rst betranslated into symbolic goal structures. Yet there is no principled way to performthis translation and the end result is ad hoc systems.They propose a model based on distributed adaptive control (DAC) that can per-form tasks without resorting to goals, plans, or internal world models. The DACmodel, shown in Figure 2.4, is a neural network based on classical conditioning prin-ciples that learns to integrate pre-wired re
exes with sophisticated sensors (Verschureet al., 1992). This network has no recurrent connections and is essentially feedforwardexcept for the lateral connection between the collision and target detection groups.Prior to learning, the system's pre-wired re
exes encode how to respond to col-lisions and how to approach a target while avoiding obstacles in the near vicinity.For instance, if contact is detected to the left, the model will automatically triggera reverse-right-turn action. These basic re
exes are just one part of what theyterm a value scheme that is seen as a representation of the type of information passedon through evolution which constrains and directs the process of development. Thisvalue scheme includes information about appropriate parameter settings, the proper-ties of the sensors, and the operation of the actuators.Robots controlled by the DAC model have learned to navigate amongst obstaclesto locate a target. Initially these robots depend on the pre-wired re
exes, but asassociations are made between the range �nder and the primitive sensors, the robotdevelops more sophisticated strategies such as wall following.The designer's role in this framework is clearly demarcated: to de�ne the valuescheme to enable the agent to establish an interaction with the environment so thatthe desired behavior can emerge. Starting from an initial set of biases the system isfree to develop its own associations. However, the designer plays a larger role in the
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Figure 2.4: Schematic drawing of the distributed adaptive control architecture. Smallrectangles depict groups of neurons. The solid lines represent prewired connections,while the dashed lines represent modi�able connections via Hebbian learning. Thereis an inhibitory unit (shown as I) between the collision detection and target detectiongroups to create a built-in preference for avoidance over approach.



2. Adaptation methods for learning control 29DAC model than in the model to be presented here. In my model, the only initialassociations are determined by the random starting weights2. My system must essen-tially begin learning from scratch. Although most organisms do begin developmentwith many built-in constraints, I wanted to explore how even very primitive asso-ciations might form. Consider for example the DAC model's target detection. Therobot is equipped with two sensors placed at -90 and +90 degrees from the robot'scenter that can calculate their distance to a target. The di�erence between these twosensor readings is used to determine whether a target is to the left or the right. Insome organisms, this level of orientation ability might not be built-in, but might haveto be learned.A second and more signi�cant di�erence of the DAC model is that it can only acton its immediate sensory states while my model maintains a short-term memory ofthe recent past. The DAC model was designed to be purely reactive with no potentialfor planned action. In contrast the ultimate aim of my model is to understand howplanning ability might have evolved so the building blocks of plan-based action, suchas short-term memory, are provided.I concur with Pfeifer's and Verschure's criticisms of traditional deliberative models.However, I take exception with their overarching assumption that goals and plansmust be represented symbolically. This thesis proposes instantiations of both goalsand plans that are essentially non-symbolic. It further suggests how planning couldbe grounded in the environment without recourse to symbolic world models. Thequestion of whether goals and plans play a role in determining behavior should beindependent from one's stance in relation to the deliberative worldview.2.4.2 Evolving dynamic stateRather than eliminating internal state as an input to the system, a second responsehas been to design network architectures that will develop their own dynamic state.The Elman and Jordan networks already described are examples of this approach.Below, Beer and Gallagher discuss why it is advantageous for controllers to maintainstate.A signi�cant problem with some of the other control mechanisms currentlybeing explored is that they are purely functional in nature. The response2In both the DAC model and my model, bias is also re
ected in the chosen architecture. Bothmodels strive to create a close coupling of perception and action, while my model further emphasizescontextual memory.



2. Adaptation methods for learning control 30of the agent at each instant is determined solely by the environmentalstimuli it encounters at that instant. This is undesirable because suchagents are constantly pushed around by their environment. They can-not take any initiative in their interactions and therefore exhibit no trueautonomy. This problem is intrinsic to some of the architectures (e.g.feedforward neural networks), but is merely a frequently taken optionwith the others. In contrast, because dynamical neural networks main-tain state, their response to identical environmental stimuli can di�er atdi�erent times. Their activity exhibits a certain \inertia" independentof their immediate environmental context. (Beer and Gallagher, 1992, p115)Beer's dynamical neural network model shown in Figure 2.5 is quite similar tothe Elman-style architecture being used as the basis for this research. Beer's modelcontains only two layers where the second layer is fully recurrent (i.e. every unitis connected to every other unit, including itself). An Elman-style network alsocontains a fully recurrent second layer, although it is not always depicted in thisfashion. In Beer's model there is an additional parameter, called a time constant,that is associated with each second layer unit to create the dynamic state. Whenthis time constant is high, the previous activation of a unit will strongly in
uenceits current activation. Symmetrically, when this time constant is low, the currentactivation will depend almost solely on the immediate incoming activations. Theprimary di�erence between these two models is that in an Elman-style network allthe units are updated synchronously, while the time constants of Beer's model alloweach unit to integrate information at its own continuous rate. This 
uid approach totime may enable Beer's model to become more �nely tuned to the intricate dynamicsof an environment. However, his experiments to date have explored environmentswith fairly simple dynamics, so the advantage of time constants over an Elman-stylearchitecture has not yet been demonstrated.Another di�erence between this work and my own, is that Beer has only usedgenetic algorithms to adapt his networks, while I have also explored gradient descentlearning. Starting with a �xed architecture, Beer and his students used genetic al-gorithms to evolve the weights, biases, and time constants for dynamical networkcontrollers that perform a wide range of behaviors including chemotaxis (orientationalong a gradient), insect-like locomotion, landmark recognition, reactive navigation,predator avoidance, sequence learning, and sequence generation (Beer and Gallagher,1992; Beer, 1990; Yamauchi, 1993; Yamauchi and Beer, 1994a; Yamauchi and Beer,1994b). Much of this work was done concurrently with my own and is quite similarin 
avor. The primary di�erence is in my emphasis on planning.
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My modelBeer’s modelFigure 2.5: Comparing Beer's and my network architecture as applied to roboticscontrol. Both versions contain a fully recurrent second layer of units. Beer's versiondoes not contain an output layer per se. Instead certain units are designated foroutput (shaded here). In some of Beer's work, the second layer also receives inputfrom a binary reinforcement signal.2.4.3 Evolving dynamic structureIn all of the network models presented to this point, the architecture has remained�xed while the parameters, such as weights, have been modi�ed to improve perfor-mance. Yet by �xing on a particular architecture we have bounded the set of possiblesolutions. Harvey, Husbands, and Cli� take the stance of limiting designer bias onestep further by suggesting that the architecture itself should be allowed to evolveover time (Harvey, 1993b). They argue that determining an appropriate networkarchitecture for a particular task is not always easy. For instance, one must deter-mine what hidden layer size will be large enough to allow the task to be learned butsmall enough to produce successful generalization. In addition, there may be taskswhere we don't even have enough information to use reinforcement learning. Thus,they conclude that the automatic development of noise-tolerant, dynamical, neuralnetwork structures through evolution is the most promising route towards creatingcontrol systems.Their networks have a �xed number of input units, one for each sensor, and a �xednumber of output units, two for each motor, but the number of hidden units and thepattern of connections is not prespeci�ed; the topology is completely unrestricted.There are two types of connections between units: inhibitory and excitatory. An



2. Adaptation methods for learning control 32inhibitory link is considered to be in�nitely negative and so has veto power over theunits it is connected to (Cli� et al., 1993). In�nitely negative connections may seemto be too strong a constraint, but the designers of this model claim that there is asimilar phenomena found in invertebrate nervous systems.Their ultimate goal is to develop visually guided robots and they have begun toexplore this using ray tracing techniques, but much of their preliminary investigationsused robots and environments similar to those examined here. One robot was circularand was equipped with front and back bumpers for sensing collisions and severalwhiskers for anticipating collisions. The environment was a circular enclosure wherethe only obstacles were the boundaries. In the genetic algorithm the robot's �tnesswas a function of its proximity to the center of the enclosure. The evaluation functionwas chosen to see how well their evolved networks could keep the robot away fromthe walls. The resulting control networks produced circular paths which frequentlyentered the high �tness area at the center of the environment. However, determininghow this behavior was produced was not a straightforward matter.One disadvantage of allowing network controllers to evolve unconstrained struc-tures is that the resulting architecture may be extremely di�cult to analyze. Toelucidate the essential characteristics of the controllers, they developed a techniquefor reducing the networks to a simpler though functionally equivalent form. Firstunits with no outgoing links were removed. Then time series plots of sensor, neuron,and motor activities were used to further eliminate units that were deemed to playno role in the behavior. In this way a network with 13 units and 34 connectionswas reduced to 8 units and 21 connections (Husbands et al., 1993). Despite theirinitial success, as the size and complexity of these amorphous structures grows it willbecome increasingly di�cult to analyze their mechanisms. In response to this, theyclaim that \with an evolutionary approach it may not be necessary to analyze howit works, but rather one should assess how good is the behavior it elicits" (Harvey,1993b).Ultimately I agree with Harvey, Husbands, and Cli� that the neural structureitself must be evolved. Yet, I believe that there is still much to be learned aboutpotential control mechanisms from simple recurrent network architectures that mightbe obscured within unconstrained architectures.



3Experimenting with goals
A general intelligent system must somehow embody aspects of what is tobe attained prior to attainment of it, i.e. it must have goals. Symbols thatdesignate the situations to be attained (including that it is to be attained,under what conditions, etc.) appear to be the only candidate for doingthis. (Newell, 1980)A rede�nition of plans as dynamic, context-dependent entities should in turn leadto a rede�nition of goals, since the two are so inextricably linked. This chapterexplores the use of goals with connectionist controllers and will provide some insightsinto the further development of the planning model.As Newell's quote above suggests, traditionally in AI, goals have been representedas complete state descriptions that de�ne the desired results in detail. In the blocksworld, the goal to create a stack of blocks A, B and C, might be represented as follows:(and (on A B) (on B C) (on C table) (clear-top A))Research in reactive planning has demonstrated that symbolically represented goalscan be more 
exible than pure state descriptions. For example, consider the typeof goal Friby employed in his reactive action packages (Firby, 1989). His systemcontrolled a delivery truck that could be attacked by roving enemies. To determinewhether the truck was prepared for battle the following goal was used:(and (location ?weapon weapon-bay)(class ?weapon weapon true)(quantity-held ?weapon ?amount)(> ?amount 0))This type of goal contains variables (indicated by the question marks) and can berepeatedly applied to varying circumstances in the world.33



3. Experimenting with goals 34Both symbolic goal forms|the traditional state description and Firby's more 
exi-ble reactive style|encode much of the relevant information needed to tackle the givenproblem. In the blocks world case, the desired location of each block is noted. Inthe delivery truck case, to be ready for battle means that the truck needs to have aweapon and ammunition on board. Both representations provide possible sub-goalstowards achieving the primary goal and thus re
ect designer bias. What sort of goalcould be employed to limit designer bias more?I propose the opposite tack: Rather than attempting to concretely describe thegoal as a state, provide the system with only an abstract cue and allow it discoverthe true goal through learning. This form of goal is essentially a trigger|it can beused to initiate a process or reaction. Thus instead of imposing highly constrainedexternal goals, this proposal supports my focus on adaptation from limited designerbias by giving the system the power to determine its own internal goals.It may be the case that a connectionist controller will not be able to bene�t fromsuch abstract goals. To investigate the e�ect of triggering goals on behavior, a numberof experiments were performed where the availability of an abstract goal in the inputwas varied. The results reveal that the addition of abstract goals profoundly a�ectsevery aspect of the control networks|the �nal behavior, the pattern of the learnedweights, the use of recurrent memory, and the course of learning. Furthermore incertain cases, abstract goals do enhance a connectionist controller's ability to performa task.3.1 Starting small: A one-dimensional worldThese initial experiments were performed with the intent to gain insight notonly into goal use, but also into the inner workings of connectionist robot con-trollers. To this end, a minimalist robot, environment, and network architecturewere constructed1.The robot and environment are depicted in Figure 3.1. The environment is one-dimensional and ten units in length with a light centered at the origin. The robotcan perform three actions: left, right, or not-moving and is equipped with threesensors: two to detect collisions with the left and right boundaries and a single lightsensor. Each left or right action moves the robot 0:7+random(0:3) units in distance(in the positive direction for right and in the negative direction for left). The light1The use of the word robot may be a bit misleading at this point|the experiments described inthis chapter were performed solely on a simulator. However, the experiments discussed in Chapter4 were done on an actual robot.



3. Experimenting with goals 35falls o� linearly as the distance from the origin increases:light = 1� (abs(position)=5)where abs is the absolute value. For instance, the light readings are 1.0 at position 0,0.8 at position +1 or -1, and 0.0 at position +5 or -5.
0−5 (left) (right) +5Figure 3.1: Simple one-dimensional robot and environment. The robot moves left toreach the negative side and right to reach the positive side.Note that the robot is not given any information about its current position. Sincethe light readings are identical for the corresponding positions on each side of theorigin, the only way for the controller to determine on which side the robot has beenplaced is to touch a boundary or to correlate the robot's movements with changes inthe light gradient.Although the robot and environment are quite simple, a task was de�ned withboth a reactive level and a goal-based level. At the reactive level, the robot waspunished any time it contacted one of the boundaries or was not moving. This isrudimentary navigation: the robot must learn to continually explore the environmentwhile avoiding the boundaries. There are no goals provided for the reactive aspect ofthe task.At the goal level, the robot must either seek or avoid the light depending on thecurrent goal. A positive value for the goal indicated that the robot should seek outthe light until the light > 0:9 which means it must be within one-half of a unit fromthe origin. Once this is accomplished, the goal automatically switched to a negativevalue, indicating that the robot should avoid the light until the light < 0:2 whichmeans it must be within one unit from a boundary. Successful avoidance switched thegoal back to seek-mode again. The goal varied in this periodic manner throughout thetask, seeking was always followed by avoiding and so on. For the goal-based portionof the task, the robot was punished any time it failed to follow the light gradientappropriately for its current goal. For example, if the goal was to seek the light and



3. Experimenting with goals 36the robot moved away from the light, it was punished, but if it moved towards thelight it was rewarded.
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Figure 3.2: Control network used for one-dimensional environment.The robot is controlled by the simple recurrent network shown in Figure 3.2. Thisnetwork gathers input data from the robot's sensors and combines this informationwith the abstract goal and recurrent memory to determine an appropriate next action.It has the additional task of trying to predict the sensor readings and goal that willresult from its chosen action. This prediction training facilitates the network's use ofthe recurrent memory. The size of this memory was deliberately limited to two unitsso that its contents could be easily traced over time in two-dimensional graphs.A sophisticated solution to this one-dimensional task would require the controllerto attend to the changing goals, contacts with the boundaries, and the light gradient.The �rst two features (goals and walls) are directly available on the input, but thelight gradient depends on memory of the previous light reading. With only two hiddenunits, it is not possible to monitor all of these parameters. As will be seen below,the adapted controllers focus on reacting to the goals and walls and ignore the lightgradient in their solutions.At the input layer, the �rst set of units holds the sensor values. The touch sensorsare digital, responding with a one if the robot is in contact with a boundary and azero otherwise. The light sensor is analog, as already described, varying from 0.0 to1.0 depending on the robot's position relative to the light. The next set of one unitencodes the abstract goals of the robot: +1 for seeking the light and -1 for avoidingthe light. The last set of units, the context, provides a short-term memory of thenetwork's past states. Activations from the hidden layer on the previous time stepare copied into the context units directly. At the output layer, there is a set of twoaction units: the �rst designates a left action and the second a nright action. Ifneither unit or both units are on then the robot does not move.



3. Experimenting with goals 373.2 Varying the presence of abstract goalsThree goal variations were examined:1. Constant|the goal is constantly present as input.2. One-step|the goal is present as input for the single time step after the previousgoal has been accomplished to indicate the new goal.3. Implicit|the goal is never present; the goal unit remains in the network but itsactivation is always zero.To determine the baseline behavior of the network architecture under the threevariations, a set of non-learning experiments were performed. For each variation,ten networks with di�erent initial random weights were used to control the robot for1,000 actions. The average percent of the actions punished, across the ten trials, wasused as the performance measure for comparison. The results are shown in Table 3.1.Note that prior to learning all the network controllers are being punished a majorityof the time. Variation Avg %pun SDConstant 78.8 4.0One-step 78.0 4.1Implicit 83.7 5.3Table 3.1: Baselines: Summary of performance results for goal variations prior tolearningFor each variation in the learning experiments, twenty networks with di�erentinitial random weights were trained for 30,000 actions using the CRBP algorithmpreviously described. Again the average number of actions punished was used tocompare their performance.Variation Avg %pun Best %pun Worst %pun SDConstant 37.2 6.6 96.5 27.6One-step 11.3 1.7 64.7 11.3Implicit 15.6 11.6 26.2 3.4Table 3.2: Summary of performance results for goal variations after learningTable 3.2 summarizes the learning performance results. Learning has signi�cantlyimproved performance, relative to the baselines, in all three variations. Perhaps sur-prisingly though, having a constant goal is not always bene�cial|on average the



3. Experimenting with goals 38network performs better with no goal at all than with a constantly present goal. Themost successful way to provide a goal seems to be intermittently as the goal changes.Despite high variance in the performance levels, these goal variations produced statis-tically signi�cant results in a three-way comparison using analysis of variance testing(p < 0:01). The cause of this high variance will be discussed below as the results foreach goal type are described in detail.3.2.1 Constant goals
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Figure 3.3: Constant goal: behavior. The one-dimensional world is shown in two-dimensions with time. The positive end of the environment is reached by going rightand the negative end by going left. Avoid paths are dashed lines and seek paths aresolid lines. Each letter indicates the start of a new goal|a for avoid and s for seek.Recall that the light is located at the origin.When a constant goal is present, the most prevalent strategy learned by the networkswas to remain on one side of the environment and associate one action direction withavoiding and the other with seeking. For example in Figure 3.3, to avoid the lightthe constant goal controller moves the robot to the right and to seek the light to theleft. Sometimes the constant goal controller does not immediately switch directionswhen the goal switches, as in the �rst two seek instances. Instead, contact with theboundary triggers the change in direction in these cases.This strategy is quite successful most of the time. A problem arises however,



3. Experimenting with goals 39when the robot oversteps the light during a seek goal as can be seen at the end ofFigure 3.3. Recall that the robot cannot control its speed. It always moves at least 0.7units plus some random noise of at most 0.3 units. Suppose the robot is at position+0.6 which creates a light reading of 0.88 (under the limit of the seek goal of 0.9).So the constant goal controller continues to move the robot to the left to increasethe light reading. If this step is close to the maximum size of 1.0 units then therobot will be on the other side of the light at position -0.6, but still only have a lightreading of 0.88. So it continues to move left. The light reading will now fall, butsince these circumstances occur relatively infrequently, the constant goal controllerdoes not learn to adapt to them and continues to move left entering into an in�niteloop next to the left boundary.These situations of overstepping the light during the seek goal are the primarysource of the high variance in the performance metric. Controllers of any goal typethat happen to overstep the goal during the testing will receive much more frequentpunishment than other controllers using the same basic strategy. The constant goalnetworks are the most susceptible to falling into ine�ective behavior of this sort andan examination of the weights that produced the behavior shown above will revealwhy this is so. From hiddenTo output H0 H1Go leftGo rightFigure 3.4: Constant goal: hidden to output weights. To simplify the presentation,the weights associated with prediction have been excluded in this and later �gures.To understand a control network's weights it is often best to begin at the out-put layer and discover how the hidden units are associated with the robot's actions.Figure 3.4 depicts the weights from the hidden units to the action units, where thethe size of each square re
ects the magnitude of the weight and the color re
ects thesign (black for inhibitory, white for excitatory). We can see that when H0 is activeit causes the robot to move right (which is the avoid strategy for this network), andH1 has the opposite e�ect. Now we can go on to examine how the inputs connect upwith these two hidden units in Figure 3.5.H0 creates right motion and as we would logically expect, the left sensor activates
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From inputTo hidden Left Right Light Goal H0 H1H0H1Figure 3.5: Constant goal: input to hidden weights. The context layer weights areshown here as weights from H0 and H1 to H0 and H1.H0 and the right sensor deactivates H0. Furthermore, because this network haslearned to respond to the avoid goal by going right, a positive goal value deactivatesH0 while a negative value activates it. The pattern ofH1's weights are approximatelycomplementary to H2's (except in two cases: for the right sensor and the light).Looking only at the weights, it appears that the light serves an inhibitory functionfor both hidden units. However, each hidden unit also has a positive bias (not shown)that cancels out the negative e�ect of these weights. Essentially then, the light playsno role in this constant goal controller's action decisions.How does the constant goal controller end up in an in�nite loop when it overstepsthe light? The positive goal value activates H1 causing the robot to move left. Ifthe seek goal isn't satis�ed the robot will continue to move left and contact the leftboundary triggering the left sensor. This in turn will activate H0 causing the robotto move right. Notice that H0 sends positive feedback to itself through the contextlayer so it can sometimes sustain its activation for a few steps. But since the seekgoal is constantly present on the input, it is still exciting H1. Inevitably H1 willbecome active again and then send inhibitory feedback through the context layerto H0. Sometimes both hidden units will be on for a few steps causing the robot toremain stationary (seen as a 
at section in its path in Figure 3.3). Eventually H1 willbecome solely active causing the robot to move left into the boundary thus restartingthe cycle again.We've seen how the network has implemented a control strategy in its weights;let's now consider how the context memory is being used. Figure 3.6 shows theactivations of the two hidden units during the successful portion of the behaviorshown in Figure 3.3 above. As was predicted from examining the weights, H0'sactivation is strongly correlated with the avoid phase of the task and H1's activationis correlated (though less strongly) with the seek phase. The two seek paths in thehidden space that contain a loop were created during the two physical paths in the
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Figure 3.6: Constant goal: hidden activations through time. Avoid paths are dashedlines and seek paths are solid bold lines. The dotted lines with arrows were added toshow the direction of movement through the hidden space over time.environment where the right boundary was contacted before a switch in direction wasmade.In Figure 3.7 we can see what happens to the context memory during the inap-propriate cyclic behavior that occurred after the robot overstepped the light. Initiallythe hidden activations mark out a similar path to the previously shown seek phases,moving toward the origin, but then they begin cycling in the opposite direction neverreturning to the learned dynamics.One �nal means of dissecting the network's processing is to examine the weightchanges over the course of the training as shown in Figure 3.8. In the �rst 5,000 stepsof training, the error drops fairly steadily as the weights from the hidden layer tothe output layer experience the largest change. By looking at the behavior producedduring this portion of the training we can deduce what the network is learning. Beforethe network has even managed to keep the robot consistently moving or to move therobot away from the boundaries after contact, it has strongly associated each goal witha direction of movement. This occurs within the �rst 1,000 steps of training. By the5,000 step mark, the network has learned the reactive aspects of the task: the robotis rarely stationary and typically responds to boundary contacts immediately. Mostof the subsequent training is ine�ective|an upswing in weight changes (dominatedby the context layer) is closely followed by a rise in error and a then drop in weight
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H0 (right)Figure 3.7: Constant goal: cyclical hidden activations during seek behavior whenlight was oversteppedchanges.The root of the problem seems to be that when a constant goal is available tothe network during adaptation, the constant goal controller becomes dependent onthis goal quite early in the training and then either ignores or is unable to attend toother available environmental cues for guiding behavior. For instance, in the constantgoal network just examined, the light readings did not appear to be playing any rolein producing the �nal behavior, yet success in this task depends on these readings.Clearly any controller that fails to take into account a key environmental characteristicis liable to experience brittle performance and even failure in unusual conditions asevidenced by the poor cyclic behavior that occurred when the light was overstepped.Employing a more intermittent goal may alleviate these problems.3.2.2 One-step goalsThe most common strategy developed by one-step goal networks is much like theconstant goal behavior except that the one-step goal controller consistently switchesdirection as soon as the goal changes and a more reasonable response to oversteppingthe light is used. Figure 3.9 shows some typical one-step goal behavior. Notice in theinstance that the robot overstepped the light, the robot was able to return directlyto the light after contacting the boundary. A quick look at the one-step weights will
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Figure 3.8: Constant goal: weight changes during learning. The topmost curve rep-resents the error during reinforcement learning. The next two curves represent theaverage magnitude of the weight changes occurring in the weights emanating fromthe context and hidden layers.reveal why.Figures 3.10 and 3.11 show the network's weights. Once again, the one-step goalnetwork uses H0 to indicate right motion which is associated with avoiding the lightand H1 for the opposite. The primary di�erences between the one-step goal weightsand the constant goal weights are in the weights from the light sensor and fromthe context layer. Let's examine how these di�erences a�ect the processing in thenetwork. On the initial step of a seek goal, the goal unit will activate H1 causing therobot to move left. From that point on, however, the goal unit will be completelyinactive (until the light is reached and a new goal is in e�ect). However, H1 is ableto sustain high activation, even though it sends itself inhibitory feedback through thecontext layer, through the positive weight coming from the light sensor. Notice thatthere is also positive weight from the light sensor to H0, but it is not large enoughto fully activate H0 on its own.
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Figure 3.9: One-step goal: behaviorFrom hiddenTo output H0 H1Go LeftGo RightFigure 3.10: One-step goal: hidden to output weightsIf the light is overstepped during a seek goal, the one-step controller will continueto move the robot to the left until the boundary is contacted. Then the left sensor willbe triggered activatingH0, but H1 will remain active for at least one step causing therobot to not move and leaving it in contact with the boundary. Eventually inhibitionfrom H0 will deactivate H1 causing the robot to move right towards the light again.Without a constant goal to reactivate H1, H0 will maintain the rightward motionuntil the light is reached and thus avoid the ine�ective cycling of before.The graph of the hidden activations for this one-step network, shown in Fig-ure 3.12, reveals that for the typical seek and avoid behaviors the activation of eachhidden unit is again correlated with one goal: H0 with avoid and H1 with seek. Onlythe instance where the light was overstepped does H0 become active for a seek phase



3. Experimenting with goals 45
From inputTo hidden Left Right Light Goal H0 H1H0H1 Figure 3.11: One-step goal: input to hidden weights
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actions x 10Figure 3.13: One-step goal: weight changes during learningenvironmental cues|the light and the sensors|rather than one linked almost solelyto the goals.3.2.3 Implicit goalsThe trend in these experiments has been that limiting the presence of goals hasimproved performance by creating solutions more �ne-tuned to the environment; sowe might expect that in the absence of goals the controllers would develop the mostintricate strategies. Yet, gradient descent learning algorithms like CRBP will tend tosettle on the simplest solution that is reasonably successful. And in this implicit goalenvironment there is very straight-forward strategy that is fairly successful. The robotbehaves like a bumper car: it moves one direction until it contacts a boundary andthen moves back in the other direction until it contacts the opposite boundary (seeFigure 3.14). This behavior will also be adequate whenever the light is oversteppedbecause the robot will eventually head back towards the light.From Figure 3.15, we can see that once again H0 creates right motion and H1
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Figure 3.14: Implicit goal: behavior. In these tests the controller is not given anyinformation about the current task goal.left motion, and based on the outward behavior of the implicit goal controller, wewould probably predict that the network has implemented its behavior based onlyon the contact sensors and not the light sensor. However, in Figure 3.16, it is clearthat though H1 is initially triggered by the sensors and then sustained by positivefeedback through the context layer, H0's activation is dependent on the light. WhenH1 is active it inhibits H0 through the context layer, but when H1 is turned o�by contact with the left boundary, H0's positive bias (not shown) coupled with itsexcitatory weight from the light sensor turn it on and sustain its activation. Whenthe right boundary is eventually contacted, H1 is activated and will then inhibit H0again causing motion in the opposite direction. Thus, the external behavior producedFrom hiddenTo output H0 H1Go leftGo rightFigure 3.15: Implicit goal: hidden to output weights



3. Experimenting with goals 48
From inputTo hidden Left Right Light Goal H0 H1H0H1Figure 3.16: Implicit goal: input to hidden weights. Because the activation of thegoal unit is always zero, the weights from the goal unit are never modi�ed and remainat their initial small random values.by a connectionist controller is not always indicative of the internal mechanisms beingemployed by the network.
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actions x 10Figure 3.18: Implicit goal: weight changes during learningfurther signi�cant learning occurs after this point of convergence. Without explicitgoals the network is not driven to improve on its initial strategy.To summarize the �ndings to this point, in the simple one-dimensional environ-ment, the most bene�cial way to provide goals was intermittently at the initial stepof a new task. Networks with access to constant goals failed to learn about importantaspects of the environment, instead depending almost solely on the goal. Finally,networks without goals were surprisingly successful despite the lack of guiding infor-mation.3.3 Discontinuous version of the taskNetwork learning algorithms develop solutions to tasks based on the statisticalregularities inherent in the environment. By studying a periodic task in the previoussection, where the goals always occurred in sequence (i.e. seek, avoid, seek, avoid,etc.), we may have inadvertently simpli�ed the network's problem of discovering the



3. Experimenting with goals 50signi�cance of the goals. How would the results change if the task was modi�edso that the goals were no longer periodic (and predictable) but were presented ina discontinuous fashion? For example under the discontinuous version, a controllermight be faced with the following sequence of goals: seek, seek, seek, avoid, avoid,seek, avoid. To ensure that the robot must move to accomplish these unpredictablegoals, its initial position for each new goal will be selected randomly so that it isplaced between one and three units from the origin. In addition, the activationvalues of its short-term memory will be re-initialized to 0.5 prior to attempting a newgoal. Thus in the discontinuous form of the task, the goals, the robot's position, andthe controller's memory are all discontinuous.In an attempt to alleviate some of the cyclic behavior seen in the previous set ofexperiments, a few other modi�cations to the training process were made. First, theproportion of seek goals to avoid goals was increased. In the previous experiments,the majority of the punishment was received during the seek goal. To improve thenetwork's chances of learning good seek strategies, seek goals were given more fre-quently (2=3 rather than 1=2 of the time). Second, a limit was placed on the numberof actions a controller could spend on one particular goal. If a controller was notable to achieve the given goal within 50 actions then a new goal and position wererandomly chosen. Variation Avg %pun SDConstant 77.6 0.7One-step 77.0 1.1Implicit 76.3 1.3Table 3.3: Baselines: Summary of performance results for the discontinuous versionof the task prior to learningThe baseline behavior of the network architecture was tested under the new dis-continuous task conditions. Once again, for each variation, ten networks with di�erentinitial random weights were used to control the robot for 1,000 actions. The resultsare shown in Table 3.3. Although learning the discontinuous version of the seekand-avoidlight task is much more di�cult, the baseline punishment values don't re
ectthis. Each of the average punishment values in the discontinuous task baselines isslightly lower than its counterpart in the periodic task baselines (refer back to Ta-ble 3.1). This is because in the periodic case, prior to learning, the initial randomweights will rarely (if ever) take advantage of the predictable sequence of the goals bychance. But once learning begins, the controllers operating under the periodic taskquickly discover this goal regularity and use it to their advantage.Because the discontinuous version of the task is more di�cult than the periodic



3. Experimenting with goals 51Variation Avg %pun Best %pun Worst %pun SDConstant 50.7 28.7 59.1 10.3One-step 38.1 28.3 59.7 10.4Implicit 45.7 28.9 63.7 12.9Table 3.4: Summary of performance results for the discontinuous version of the taskafter learningversion, for the discontinuous set of experiments the training time was extended andthe number of trials was halved. For each of the three variations, ten networks withdi�erent initial random weights were trained for 100,000 actions using the CRBPalgorithm (as opposed to twenty networks and 30,000 actions in the periodic exper-iments). After training, each network was again tested for 1,000 actions and theaverage percent of the actions punished, across the ten trials, was used as the perfor-mance measure for comparison.
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Figure 3.19: Constant goal: discontinuous task behavior still exhibiting cyclingThe results for the discontinuous version of the task are shown in Table 3.4. Al-though the punishments levels are much higher, qualitatively the performance mea-sures for the discontinuous training are quite similar to the previous periodic training:one-step goals are the most e�ective and constant goals are the least e�ective withimplicit goals falling in between. However in the discontinuous case, a three-way com-parison across goal type did not produce signi�cant results. In two-way comparisons,



3. Experimenting with goals 52only the constant versus one-step comparison was signi�cant (p < 0:05). Note in Ta-ble 3.4 that the standard deviations across the goal types for discontinuous trainingare within 3 units of each other whereas for the periodic training there was a muchwider spread of 24 units. By limiting the time allowed to attempt a goal to 50 steps,the e�ect of poor cycling on the �nal performance score was diminished.Despite the qualitative similarities between the results for each type of training,in some cases the behavior produced under discontinuous conditions exhibited someinteresting di�erences from the periodic conditions.3.3.1 Constant goals
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Figure 3.20: Constant goal: discontinuous task behavior with solution to cyclingproblemIn the constant goal variation, as before most networks ignored the light and focusedon the goal, associating one direction with avoiding and the opposite direction withseeking. In Figure 3.19, we see one constant goal controller that produces right actionsfor avoiding and left actions for seeking regardless of the initial position. During avoidgoals, this strategy will initially lead to some punishment if the robot starts on thenegative side of the environment, but it will ultimately be a successful strategy. Incontrast, for seek goals, this simple strategy is guaranteed to fail half of the time. Theine�ective cyclical behavior that in the previous set of experiments occurred relativelyinfrequently, when the goal was overstepped, is quite prevalent here.
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Figure 3.21: Constant goal: hidden activations through time that correspond with theseek behavior from above where a cycle was broken. Points are numbered sequentiallyand the action taken is indicated. If no action is given, as on points 1, 17, and 19then the robot was not moving. Contacts with the boundary are noted as hits.However, there were a few constant goal networks that discovered ways to breakout of these cycles and produced successful solutions. For example, see Figure 3.20.For this constant goal controller the tendency was to initially move to the right forany goal, but when the seek goal was in e�ect the controller could attend to the lightgradient and switch directions if necessary to move towards the light.More importantly, if during a seek goal the robot entered a cycle at one of theboundaries it eventually broke the cycle and achieved the goal within the �fty-steplimit. The method for breaking the cycle can be seen through the changes in the hid-den activations over time as shown in Figure 3.21. H0 is associated with left actionsand H1 with right actions. At the beginning of this seek sequence, H0 is dominantcausing the constant goal controller to move the robot left into the boundary. Eachtime the boundary is contacted, H1 becomes momentarily activated, creating severalrightward steps. Then H0 takes over again and the cycle is created. Notice, however,that each successive time H1 becomes activated its residual activation increases. Sothat by the third contact with the boundary at step 12, it is able to maintain itsactivation and produce a long enough sequence of right movements to succeed at theseek goal. This result is encouraging, yet only one-�fth of the constant goal networkstested were able to override the ever-present goal and squelch cyclic behavior in this
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Figure 3.22: One-step goal: discontinuous task behaviorIn the one-step goal case, the behavior produced by discontinuous training is the sameas for periodic training. The avoid goal is associated with right movements and theseek goal with left movements (see Figure 3.22). If a seek goal is not achieved byleft movements, then when the left boundary is contacted the implicit goal controllermoves the robot right, directly back to the light without any cycling.3.3.3 Implicit goalsFor the implicit goal case, there is an interesting di�erence in the learned behaviorbetween training types. Under discontinuous training the most common strategy usedby the implicit goal controllers was to head for the light in every new situation. InFigure 3.23, we see that the implicit goal controller initially guesses that the light is tothe right. If this is not the case, then the implicit goal controller switches the robot'sdirection before contacting the nearest boundary. Using this method, the boundarieswill almost never be contacted (unless the light is overstepped) and the harder seekgoal is achieved quite e�ciently.
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Figure 3.23: Implicit goal: discontinuous task behaviorFor implicit goal controllers, the primary source of punishment is following thelight gradient incorrectly during avoid goals. This experimental variation was theonly case where more punishment was received during avoid goals than during seekgoals. Recall though, that the implicit goal controller is not given any informationabout which goal is currently in e�ect and this information is not predictable fromthe context. Lacking goal information, the implicit goal controllers trained underdiscontinuous conditions become �nely tuned to the changes in the light readings. InFigure 3.24, we can see that one of the hidden units has learned to closely mimic theactual light readings. In this way, the output layer has direct access to informationabout the light gradient and can use it to determine appropriate actions.3.4 DiscussionIn this chapter, the e�ect of abstract goals on the development of network con-trollers for a simple one-dimensional robot has been examined. Varying the per-sistence of goals from continuous, to intermittent, to absent, has revealed that theinclusion of goals does signi�cantly change the performance of the controller, as well asthe pattern of the weights, the use of the context memory, and the course of learning.The experiments presented in this chapter have demonstrated that the connectionistapproach to control truly allows the task demands to be the primary force in shaping
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Figure 3.24: Implicit goal: activations of one hidden unit closely tracks the actuallight readings over time for the behavior shown in the previous �gure.behavior.When constant goals are present, the control networks learn to depend almostsolely on them to guide behavior, leading to early convergence and poor general-ization. When the goals are implicit, the control networks develop a single globalstrategy that is successful for both aspects of the task, but further learning is limitedby the lack of task information. The most successful control networks employed one-step goals. This intermittent presentation of goal information allowed the networksto form crucial associations about the environmental features and still incorporatethe external guidance when it was available.Two opposing styles of training were also compared. During periodic training,the seek and avoid goals always occurred in sequence. To ensure that this predictablepattern of goals was not a key factor in the results, an additional set of experimentswas performed using a discontinuous goal presentation. Although the results werequalitatively the same in many respects, the harder discontinuous task led to the de-velopment of more complex strategies for the constant and implicit goal variations. In



3. Experimenting with goals 57a few constant goal controllers, a method for breaking cyclic behavior was discoveredand in many implicit goal controllers the light gradient was used to avoid contactingthe boundaries.Certainly these experiments are only a start in reconsidering the concept of goalsfor AI; however, the type of abstract goals examined here are more similar to the sortof real-world goals we typically encounter as learners than symbolic state descrip-tions. Initially a teacher's instructions may be largely uninterpretable, but throughobservation of the context in which they occur, their relevance gradually emerges.Eventually an understanding of the goals is gained and appropriate action can betaken in response to them.As demonstrated in this chapter, applying connectionism to robotics problemso�ers a good testbed for exploring other possible goal forms. For instance anotherpossibility that could be examined here is that goals could decay over time, eventuallydisappearing. Controllers trained in this way might develop self-regulating strategies.Perhaps the most interesting lesson of these goal experiments is that goals need not besymbolic descriptions of a desired state to be e�ective. Instead, a goal can be viewedmore as a trigger whose e�ect must be properly blended with the other sensationsduring learning to produce robust behavior.



4Comparing local and globalreinforcement methods

Figure 4.1: A digitized photograph of carbot.In this chapter, the two reinforcement methods used for adapting connectionistrobot controllers, CRBP and GAs, are contrasted. These methods are applied to areal robot, called carbot, shown in Figure 4.1. A number of experiments are describedwhere the presence of goals and the immediacy of the reinforcement are varied.Although the task used here is essentially an expansion to more dimensions of thetask used earlier in the one-dimensional world, it is worth investigating the e�ectsof goals again now that a more realistic environment is being employed. Previouslywe saw that constantly present goals caused developing networks to prematurelyconverge on strategies that depended on the goals, and to ignore key environmentalfeatures. However, if the expanded environment is su�ciently complex, then we58
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sensorFigure 4.2: Positioning of sensors, motors, and control board on carbot.would expect that the constant goals may no longer be the most easily associablefeature of the environment, allowing the networks to initially attend to the perceptualcharacteristics.These experiments are not meant to determine which adaptation method is thebest for learning to control robots. Rather the intent is to examine the controlbehaviors produced by each method and to discover how the algorithms' strengthsand weaknesses are revealed by varying the presence of the goal and the immediacyof feedback.

4.1 Carbot|an autonomous robot4.1.1 The vehicleCarbot is a modi�ed toy car (6 inches wide, 9 inches long, and 4 inches high) controlledby a programmable mini-board (designed at MIT by Fred Martin (Martin, 1992)).This board allows remote or on-board control, although the on-board memory is quitesmall. Because of this carbot was tethered to a PC during execution. Carbot wasinexpensive to build, primarily because it makes use of primitive sensors|no lasers,video, or sonar. The robot has just two types of sensors: digital touch sensors on thefront and back bumpers, and analog light sensors on stalks near the back which aredirected 30 degrees to each side. It has two servo-motors; one controls forward andbackward motion and the other steering. See Figure 4.2 for a schematic drawing ofcarbot that more clearly shows the position of the sensors and motors.
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Figure 4.3: Carbot's control network.4.1.2 The taskThe environment, called the playpen, is a rectangular box (2 feet by 4 feet) with alight in one corner. Carbot's task within this environment is just as before. At thereactive level it must perform rudimentary navigation by avoiding walls and continu-ally moving. See (Meeden et al., 1993) for a detailed description of factors that a�ecta network's performance when learning this type of simple reactive task.At the goal level, carbot must again either seek or avoid the light depending onthe current goal. The goal varied in the periodic fashion|seek always followed avoid.Discontinuous training will not be examined here.4.1.3 The control networkCarbot is controlled by a remote connectionist network that communicates with themini-board. The network gathers input data from the sensors and determines how toset the motors for the next time step. Figure 4.3 shows the standard network usedto control carbot for the experiments described in this chapter.There are four sets of input units; two sets are for sensors, one is for goals, andthe last is for context memory. The �rst set of units in the input layer representsthe state of the digital touch sensors. There are four digital sensors|three in frontand one in back. Two of the front sensors are out to either side so that carbot cansense side collisions when moving forward. When the digital sensors are triggeredby contact they take on the value one, otherwise they are zero. The next set of twounits represent the state of the analog light sensors, whose values can range from 0.0to 1.0 (due to ambient light, their values rarely fall below 0.25). The next set of one



4. Comparing local and global reinforcement methods 61unit encodes the network's goals. Again only two goals are used: +1 for seeking thelight and -1 for avoiding the light. Recall that the last set of units, called the context,provides a limited short-term memory of the network's past states. Activations fromthe hidden layer on the previous time step are copied into the context units directly.For this set of experiments the size of this short-term memory has been increased to�ve units.The four output units of the network determine what the activity of the motorswill be for the next time step. Carbot is propelled by two motors each requiring twounits to specify its state. The �rst output unit represents the spin direction of therear motor (this determines direction of motion|forward or backward). The secondunit designates the state of the motor as on or o�. The third unit represents the spindirection of the front motor (this determines the direction of turning|left or right).The fourth unit designates the state of the front motor as on or o�. In order to turn,carbot must have both motors running|the back motor provides movement whilethe front motor steers.4.1.4 Real-world versus simulation trainingSince carbot has to physically move in the world, bumping into things, it takes along time to train and test a particular controller network. Each real-world actionis executed for one second, so 5,000 actions require approximately 2.5 hours to becompleted. To alleviate this time limitation, a software simulation was implemented.Although simulators are often too perfect and not very realistic, when the sim-ulator is based on an actual robot, the simulator's behavior can be programmed toclosely correspond with the real-world behavior. Harvey suggests some ways to ensurethat a simulator stays in close step with reality:1. Simulations of the inputs to sensors and the outputs to actuators should bebased on carefully collected empirical data.2. Noise must be taken into account at all levels.3. The simulation can be calibrated by testing adapted architectures in the realrobot.4. A range of unstructured, dynamic environments should be used to ensure ro-bustness.(Harvey, 1993b)



4. Comparing local and global reinforcement methods 62In constructing carbot's simulator, Harvey's �rst three suggestions were followed(with respect to the fourth suggestion of employing a range of environments, onlythe playpen was used although a number of di�erent con�gurations were tried). Asper the �rst suggestion, carbot's sensor readings, average turning radius and distancetraveled for each action in the real world were empirically determined and used asthe basis for the simulator. On average, each straight motion propels carbot seveninches and each turning motion results in a linear change in position of four and ahalf inches. Each turn typically changes carbot's heading by twenty-four degrees.With respect to the second suggestion, small amounts of random noise were added tocarbot's heading, position, and light sensor readings after each action taken withinthe simulator.For the third suggestion, a number of experiments were done to verify that thesorts of controllers that worked well in the simulator would also work well in the realrobot. Controller networks trained in the simulator were transplanted to the actualrobot and tested without further training. The behaviors produced by the samenetwork on the simulator and on the robot were compared in terms of percent timepunished. These transplant tests provided a surprising result: the robot's performancewas always superior to the simulator's performance. This result is probably due tothe additional noise provided in the simulator. The actual robot's movements areonly occasionally noisy while the simulator's movements are systematically noisy andthis added noise apparently enhances learning by exposing the controller to a widerrange of environmental conditions. I hope to quantify the bene�ts of added noise infuture experiments.Thus the simulated robot's behavior was determined to be close enough to theactual behavior of carbot to warrant use of the simulator for research. The simulatoris used to test hypotheses and to develop useful architectures that are then appliedback to the real robot. This saves a signi�cant amount of time since 5,000 simulatedactions can be executed in less than a minute (a speedup factor of 150).4.2 Determining carbot's �tness in the genetic al-gorithmIn the CRBP algorithm all types of punishment are treated equally. Regardless ofwhether the punishment came from not moving, bumping into a wall, or not followingthe light gradient correctly, the consequences are the same. Similarly all types ofreward are treated equally. Recall though, that rewarded actions are reinforced witha higher learning rate than punished actions. It would be possible to di�erentiate



4. Comparing local and global reinforcement methods 63between types of punishment or types of reward by further varying the learning rateby type. For example, following the light gradient correctly could result in a lowerlearning rate than actually achieving the �nal light goal. This type of variation hasbeen tried, but the results were not signi�cantly di�erent than those obtained usingthe standard (and simpler) method.Unlike the case for CRBP, it is more straightforward to di�erentiate betweenvarious types of reward and punishment in the GA because each type of reinforcementcan be assigned a unique feedback value. Here's how carbot's actions were reinforcedduring GA processing:� Accomplished a light goal: +50� Any touch sensor triggered: �7� Not moving: �2� Not following light gradient correctly for goal: �1� Following light gradient correctly for goal: +5Each action received only one of these possible values and the evaluation of anaction was checked in the order given above. So if a goal was accomplished by anaction that also caused carbot to hit a wall, the reinforcement for that action wouldbe +50 and not �7 or the combination of the two, +43.Note that these feedback values represent my bias about the task. By making thepunishment for hitting a wall more than three times greater than the punishment fornot moving, the GA will tend to focus e�ort on avoiding walls �rst. However, the GAis not highly sensitive to the ratios of these values and only a limited amount of trialand error was needed to choose this set of values.Based on these feedback values we can determine the range of possible �tness val-ues. Recall that the average reinforcement received over two sequences of 50 actionsis used to determine a network's �tness. To calculate the minimum �tness value, as-sume that every action results in the minimum feedback value (-7 for hitting a wall).min(fitness) = actions��7 = �350To calculate the maximum �tness value, assume that an optimal strategy for seekingor avoiding the light requires only �ve actions and is never punished. In my observa-tions of carbot, the light goals can occasionally be accomplished in only four actions,but �ve seems to be the best average. So a �fth of the actions will receive the accom-plished goal feedback of +50 while the remaining actions will receive a reward of +1



4. Comparing local and global reinforcement methods 64for correctly following the light gradient.max(fitness) = (0:2actions� 50) + (0:8actions� 1) = 700In the experiments described below, the genetic algorithm works with a populationof 250 networks. Each network is initialized with small random weights and then its�tness is measured as just described. Typically this initial population has an average�tness of approximately �100 where the worst individual has a �tness of about �230and the best a �tness of about +50. After training, these measures have improved toapproximately +185 for the average �tness, �45 for the worst individual, and +400for the best individual.Individual genes in the GA for this carbot domain have a length of 89|the net-works each have 80 weights and 9 biases. Referring back to Figure 4.3, recall that thelayers are fully connected. There are 12 � 5 = 60 weights from the input to hiddenlayer and 5 � 4 = 20 weights from the hidden to output layer. Only units in thehidden and output layers have biases: 5 + 4 = 9.4.3 Varying goals and the immediacy of feedbackFor each type of experiment described below, three trials were done with a GAand �ve trials were done with CRBP. Fewer trials were done using the GA methodbecause of the amount of processing time needed. All the experiments were performedin the simulator.Four types of experiments were performed: three varied the goals from constant,to one-step, to implicit while using immediate feedback (as done in the previouschapter), and one used constant goals with delayed feedback. Each GA run consistedof 1000 generations. The number of cycles performed for each CRBP run dependedon the type of experiment: 200,000 cycles for the constant goals; 300,000 cycles forone-step and implicit goals; and 500,000 cycles for the constant goals with delayedfeedback.In the �rst set of experiments, the adaptation methods had access to the mostinformation|both constantly present goals and immediate feedback about the lightgradient were provided. On the input layer an explicit goal was given: the signof the activation value determined which mode the controller should be in (eitherseek or avoid). This goal is explicit in the sense that it is unambiguous, howeverthe controller must learn what this goal means and how to react based on its value.The light gradient feedback was given through the reinforcement procedure. Whenin seek-mode, a controller was rewarded if the sum of carbot's light sensor readingsincreased relative to the previous time step; in avoid-mode, a controller was rewarded



4. Comparing local and global reinforcement methods 65if the sum of the readings decreased relative to the previous time step.In the second set of experiments, the one-step case, the goal was present for thesingle time step after the previous goal had been accomplished (to indicate the newgoal). After that point no goal information was given, but immediate feedback aboutthe light gradient was always provided.In the third set of experiments, the implicit goal case, the goal unit remained inthe input layer but its activation was always zero. Feedback about the light gradientwas still provided. By varying the presence of a trigger-like goal we can investigatewhether one-step goals are still the most advantageous in carbot's more complexdomain.In the �nal set of experiments, a constant goal was returned and the light gradientfeedback was removed. Under this variation, CRBP receives delayed informationabout the light, but still receives immediate reinforcement about contacting wallsand not moving. Although the GA is already considered a delayed reinforcementprocedure, for this set of experiments all feedback about the light was removed exceptfor the +50 feedback when a goal was achieved. By varying the immediacy of thereinforcement we can investigate whether the CRBP can adequately learn the taskwith only delayed feedback and whether the GA can learn the task without thegradient information.4.3.1 Evaluating behaviorTo evaluate and compare each control network's performance, 100 random situationswere set aside for generalization testing. A situation consists of a goal, an (x; y)position, and a heading. There are approximately 8 � 105 possible situations if theenvironment is discretized into one-inch units and the heading into one-degree units(2 goals, 48 x positions, 24 y positions, and 360 headings).After training, each controller network was tested for 50 actions over each of thesesame 100 randomly selected situations. The average percent of actions punished overall these situations was used as the performance measure for each controller network.All of the statistical analyses reported below make use of analysis of variance(ANOVA) testing. Several types of comparisons were done: across an adaptationtype: (constant goal versus one-step goal, constant goal versus implicit goal, imme-diate versus delayed feedback) and between adaptation types (CRBP versus GA).Unless speci�cally noted, di�erences were not signi�cant.Some signi�cant results may have been obscured by the small number of trials
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Generations x 103Figure 4.4: Di�erent speeds of convergence in three trials of a GA.performed and the high variance across the performance metric. For CRBP, thisvariance is largely a result of the goodness of the initial random weights, whereas forthe GA, it is due to di�ering speeds of convergence. Figure 4.4 shows the �tness ofthe best individual in the population by generation for the three di�erent trials of theGA constant goal experiments. None of these trials has converged on a �nal solutionsince the �tness is still climbing, and one trial is signi�cantly slower than other two.Both types of variability can be reduced if tough performance criteria are imposedto determine when to stop the learning (Whitley et al., 1993). In these experiments,learning time was based on the number of actions performed rather than a particularperformance standard. Despite the fact that the performance levels were often notsigni�cantly di�erent statistically, as will be seen below, the learned strategies acrossvariations are clearly quite di�erent in character.Variation Avg %pun SDConstant 85.0 5.9One-step 82.8 5.1Implicit 77.8 5.3Table 4.1: Carbot baselines: Summary of performance results for experimental vari-ations prior to learningAs a baseline for measuring the e�ect of the adaptation methods, the performance



4. Comparing local and global reinforcement methods 67of the networks prior to any learning was examined. Five networks with the archi-tecture of Figure 4.3 were initialized with random weights. Then they were used tocontrol the simulated carbot for 50 actions from the 100 random situations. Theresults are shown in Table 4.1. The baseline behavior for the delayed feedback exper-iments is not shown because it is the same as for the constant goal experiments. Theonly change between these two variations occurs in how the learning is executed andnot in the input values provided. CRBP GAVariation Avg %pun SD Avg %pun SDConstant 41.2 8.7 48.0 7.8One-step 62.6 5.9 46.3 2.1Implicit 56.2 4.1 48.7 4.2Delay 69.2 1.6 52.0 5.3Table 4.2: Summary of generalization performance by adaptation type.Table 4.2 summarizes the performance results after learning. Once again learninghas signi�cantly improved performance, relative to the baselines, in all the experi-mental variations. Perhaps the most noticeable feature of these results is that theperformance of the GA-trained controllers is quite stable across the variations whilethe performance of the CRBP-trained controllers is not. More importantly, the CRBPresults for the goal variations using carbot contradict the �ndings from the experi-ments in the one-dimensional simulated world. In carbot's more realistic environment,constant goals are the most bene�cial while one-step goals are the least bene�cial|the complement of the previous results. There appears to be an interaction betweenthe complexity of the environment and appropriate availability of goals.How much more complex is carbot's world when compared to the one-dimensionalworld? Carbot can execute seven di�erent actions (forward, forward left, forwardright, backward, backward left, backward right, and not moving) while the one-dimensional robot had only three options (left, right, and not moving). Carbothas four touch sensors and two light sensors where the one-dimensional robot hadtwo touch sensors and one light sensor. In addition, the extent of carbot's domain issigni�cantly larger. The increased number of sensors coupled with the much largerdomain leads to a steep increase in the number of possible states that carbot can face.The developing controller network must learn a mapping from states to actions, and incarbot's world this will be a much more di�cult assignment. The interaction betweenthe complexity of carbot's environment and the appropriate availability of goals willbe discussed further in the detailed descriptions of the experiments to follow.
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Figure 4.5: CRBP constant goal: Forward semi-circles for seeking the light; backwardsemi-circles for avoiding the light.4.3.2 Constant goals with immediate feedbackFor CRBP-trained constant goal controllers, the most frequently developed strategyfor solving the seek and avoid the light task was to use a forward semi-circle to movetoward the light and a backward semi-circle to move away from the light. Figure 4.5shows one example of this strategy. The playpen is depicted from a birdseye viewwhere the light is positioned at the lower-left corner. Carbot's path is shown as adashed curve with the starting and ending locations indicated. Carbot's position overtime along this path is indicated by a bold bar whose angle represents the currentheading. Next to each bar is a short-hand description of the action taken to reachthat position (where FL means forward-left, BL means backward-left, etc). As can beseen in Figure 4.5, the semi-circle strategy e�ectively follows the light gradient. Whenseeking the light, successive forward-left actions gradually adjust carbot's headingtoward the light. Similarly when avoiding the light, successive backward-left actionshave the opposite e�ect.Rather than employing alternating semi-circles, the GA networks trained underthe same constant goal conditions developed a single full-circle strategy for both goals.
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Figure 4.6: GA constant goal: Forward-left circles for both goals. Uses backward-right to move away from walls.Figure 4.6 shows one complete circle; notice that in this strategy the avoid behaviorrequires many fewer actions than the seek behavior. Also, because carbot's turningradius is quite large, using a full-circle strategy results in more contacts with thewalls of the playpen than does a semi-circle strategy. On average for the constantgoal experiments, the GA-trained networks were punished 48.0% of the time whilethe CRBP-trained networks were punished 44.4%.One problem with the GA-trained controllers is that they occasionally fall intoine�ective cyclical behavior. Figure 4.7 shows one seek case using the full-circlestrategy that required 65 actions to achieve the goal. This type of cyclical behavioris rarely seen in the CRBP-trained controllers, probably because their training iscontinuous rather than being evaluated in relatively short courses of actions as isdone in the GA.For instance, suppose a particular individual in the GA population is an instanti-ation of the full-circle strategy. If the two random situations picked for determiningthe �tness are in the front half of the playpen (near the light), then this individual'sstrategy will be quite successful, yielding a high �tness. However if the two random
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Figure 4.7: GA constant goal: Poor performance using full-circle strategy to seek thelight. Carbot's heading and the action descriptions have been omitted to make thecyclical behavior more evident.situations are in the back half of the playpen this individual's strategy may turn outto be quite poor. But as long as this strategy is sometimes very good it will continueto be explored by the GA. This problem could probably be alleviated by basing the�tness on more experience in the environment. For CRBP's periodic training, car-bot's behavior is part of one long connected course of action and thus will have to bemore consistently e�ective.In contrast to the �ndings from the one-dimensional simulations where constantlypresent goals often led to ine�ective cyclic behavior, in carbot's domain, constant goalsactually enhance CRBP-based learning. Recall that the one-dimensional controllersdeveloped strategies that relied too much on the goals. Carbot controllers are able touse the constant goals without completely depending on them. An interesting aspectof the kinds of strategies developed by the two adaptation methods is that CRBP-trained constant goal controllers pay more attention to the goal than GA-trainedconstant goal controllers. In every case, CRBP's solutions use di�erent strategiesfor the two goals while the GA's solutions use the same global strategy throughoutthe task. To investigate this observation further the magnitude of the weights fromthe goal unit to the hidden layer were compared to the magnitude of the rest of theweights for each method's solutions. For the CRBP-trained constant goal networks,the ratio of the average goal weight magnitude to the average of the other weightmagnitudes was 0.99, indicating that the goal weights are approximately equal inmagnitude to the rest of the weights. For the GA-trained constant goal networks thisratio was 0.70, providing some evidence that the goal may not be as integral to theGA solutions. From this result we should expect that the GA's performance in thenext set of experiments, where the goal's presence is reduced to a single step will notdiminish as much as CRBP's performance.
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Figure 4.8: GA one-step goal: Alternating series of backward-right and forward-leftactions actions.4.3.3 One-step goals with immediate feedbackFor CRBP-trained carbot networks, one-step goals are the least successful form ofgoal, even worse than no goal at all (as will be seen in the next section). Additionaltraining did not improve the performance level. Although the learning had converged,the networks had not developed a discernible strategy, receiving punishment 62.6%of the time, signi�cantly worse than the 41.2% for the constant goals (p < 0:01).For CRBP-trained carbot networks, the one-step goal occurs so infrequently thatit is not informative. In carbot's environment (as opposed to the one-dimensionalworld), it is much more di�cult to fortuitously happen upon the light goals. In theinitial stages of learning it may take hundreds of actions to achieve the light goals.When an input goal is only present at the onset of such a long series of actions, itwill be quite di�cult, if not impossible, to associate its presence with any perceptualregularities. Indeed, the one-step goal inhibits the learning process by creating noise,since the performance improves when the goal is completely removed in the implicitcase.
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Figure 4.9: CRBP implicit goal (same strategy also found by GA): Alternating seriesof forward-right and backward-left actions. Executes a two-point turn for both goals.As predicted, the GA-trained networks are not a�ected by diminishing the pres-ence of the goal. In fact the average performance is slightly better for the one-stepgoal versus the constant goal case. Figure 4.8 shows the typical one-step goal strategydeveloped by the GA. This behavior is quite similar to the two-point turn strategythat the GA developed for the implicit goal case (see Figure 4.9 in the next sec-tion). For this experimental variation, the GA's performance of 46.3% punishmentwas signi�cantly better than CRBP's performance of 62.6% punishment (p < 0:01).4.3.4 Implicit goals with immediate feedbackFor this set of implicit goal experiments, CRBP and the GA actually did producesimilar behavioral strategies in some instances. The most prevalent CRBP implicitgoal solution, which was also found by the GA, was to employ a two-point turnfor both seeking and avoiding the light. This was implemented as a short series offorward-right actions, followed by a longer series of backward-left actions, and thenanother short series of forward-right actions (see Figure 4.9). The switch between
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Figure 4.10: GA implicit goal: Alternating backward-right and forward-left actionsfor both goals. The resulting pattern sometimes looks like a star.turning directions was usually triggered by a wall, since the playpen is so small, butin some cases the switch occurred without this environmental cue, as is seen at thestart of the seek phase in Figure 4.9. Notice that in the initial steps of this strategy thelight gradient is actually ignored|to seek the light the controllers begin by movingcarbot further away from the light, decreasing the light sensor readings|but oncethe backward-left portion of the strategy is entered, the sum of light readings steadilyincreases as carbot's heading gradually turns more towards the light.The GA-trained controllers discovered another implicit goal strategy as well|astar pattern or a six-point turn|which is shown in Figure 4.10. This behavior isimplemented by alternating between single backward-right and forward-left actionsrather than a series of turns as was used for the two-point behavior described above.As was the case with the GA's full-circle strategy, the GA's star strategy can be quiteine�ective if carbot's initial position is far from the light. For example, in Figure 4.11,300 actions were executed and the seek goal was still not achieved.On average for the implicit goal experiments, the CRBP-trained networks werepunished 56.2% of the time which is signi�cantly worse than the performance of the
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Figure 4.11: GA implicit goal: Poor performance using the star strategy. Carbot'sheading and the action descriptions have been omitted to make the cyclical behaviormore evident.CRBP-trained constant goal networks at 41.2% (p < 0:05). Clearly the CRBP-trainednetworks can learn a more e�ective behavioral strategy when provided with explicitgoals which are consistently available. The GA-trained networks were punished only48.7% of the time which is not signi�cantly worse than the 48.0% for the GA-trainedconstant goal networks. Thus the GA-trained networks do not need or bene�t fromexplicit task goals.Recall that in these implicit goal experiments the goal unit remained in the net-work but its activation was always zero. If we examine the ratio of the magnitudeof the goal weights to all other weights again, we see that in the CRBP-trained im-plicit goal networks this ratio has dropped dramatically from 0.99 in the constantgoal experiments to 0.11 here. Indeed, in the CRBP algorithm, weights coming froma completely inactive unit will never be changed and thus will remain at their initialrandom values. However, in the GA algorithm the weights to be mutated are simplyselected randomly so the goal-related weights can still be modi�ed. Thus, in the GA-trained implicit goal networks this ratio has actually risen from 0.70 in the constantgoal experiments to 0.80 here. Once again we see that the GA is insensitive to thepresence (or absence) of the goal.The most telling evidence that the CRBP-trained networks bene�t from explicitgoals is that in two out of the �ve CRBP implicit goal runs, the learning actuallyproduced hidden units that served a goal-like function. Figure 4.12 shows the activa-tion of one such hidden unit (during the course of 300 actions) along with the sum ofcarbot's light readings. To achieve the seek goal the sum of the light readings mustexceed 1.7, and to achieve the avoid goal the sum must fall below 0.6. Notice thatthe strongest peaks of activation for this hidden unit correlate with the achievement



4. Comparing local and global reinforcement methods 75of the seek goal. In the constant goal experiments, the goal unit's activation in theinput layer automatically switched sign to mark the achievement of a goal. In theseimplicit goal experiments, this external cue was removed, and in response, two of theCRBP-trained implicit goal networks developed their own internal cue for markingthe achievement of seek goals.
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Figure 4.12: CRBP implicit goal: Development of a goal-like hidden unit when noexplicit goal was present. An s indicates when a seek goal was accomplished and ana indicates when an avoid goal was accomplished.4.3.5 Constant goals with delayed feedbackOne small change in the CRBP learning procedure was made for this set of experi-ments. Because reward was obtained much less frequently (less than 1% of the timeeven after 500,000 cycles of training), the reward learning rate was increased from 0.3to 1.0. Despite this change, when the immediate feedback about the light gradientwas removed, the CRBP-trained networks were unable to converge on a successfulstrategy, receiving punishment on average 69.2% of the time. This performance wassigni�cantly worse than for the constant goal experiments where feedback was imme-diate (p < 0:01).In contrast, the GA-trained delayed feedback networks were able to converge onseveral good solutions already discussed (such as the full-circle strategy). This wasthe second case where the GA's performance at 52.0% punishment was signi�cantly



4. Comparing local and global reinforcement methods 76better than CRBP's (p < 0:05). And once again, the GA's delayed performance didnot signi�cantly degrade from the constant goal case.4.4 DiscussionTable 4.3 ranks the performance generalization scores for the experimental vari-ations. For the one-step goals and the delayed feedback variations the performancelevels for CRBP were signi�cantly worse than for the GA. However in the other vari-ations, even when the performance levels were similar, the two methods developedsolutions quite di�erent in character. Being a local method, CRBP is much moresensitive to the moment-to-moment changes in the environment and can thus usethe constant goals to develop unique strategies tuned to each goal. In fact whenno explicit goal is present, CRBP-trained networks will sometimes create their owngoal-like units in the hidden layer. However this sensitivity to the environment canalso be limiting. We saw that in each successive experimental variation, CRBP'sperformance signi�cantly degraded to the point that it could not succeed with onlydelayed feedback about the light.Rank Method Variation Avg %pun Strategy1 CRBP constant 41.2 semi-circles2 GA one-step 46.3 series of turns3 GA constant 48.0 full-circles4 GA implicit 48.7 two-point turns, stars5 GA delay 52.0 full-circles6 CRBP implicit 56.2 two-point turns7 CRBP one-step 62.6 none8 CRBP delay 69.2 noneTable 4.3: Overall ranking of generalization performance.In comparison the GA, as a global method, tends to develop a single overall strat-egy that is applicable to both goals. More importantly, the GA's performance wasquite robust across the experimental variations. But this insensitivity to environ-mental conditions can have a price. The GA's strategies were more likely to fall intoine�ective cyclical behavior when carbot's position strayed from the vicinity of thelight. However by lengthening the time spent on evaluating the �tness of individualsin the population this cyclic behavior could be lessened.The respective strengths and weaknesses of these two adaptation methods areclearly complementary, suggesting that some hybrid of the two could be the most



4. Comparing local and global reinforcement methods 77e�ective method. Because the GA globally samples the entire space of alternativesolutions while CRBP locally searches the immediate neighborhood of a particularsolution, the most straightforward form of hybrid would be to allow the GA to �nda good starting point in the weight space and then use CRBP to do the �ne tuning.Belew, McInerney, and Schraudolph did a number of experiments to test the feasibilityof using a GA as a source of initial weights for gradient descent learning and foundthat this technique is quite e�ective (Belew et al., 1992).Combining global and local adaptation methods such as the GA and CRBP is apromising avenue for further research into developing robotics controllers. But thereis a caveat: the computational complexity of these hybrids can be extremely high.However, if such hybrid models can produce controllers that are both robust acrossgross environmental changes and yet sensitive to subtle features then the additionalcomputational e�ort may be well worth it.



5Towards planning
This chapter describes the �nal increment of the robotics control model. Recallthat the primary hypothesis of this research is that the ability to plan develops fromthe more primitive capacity of reactive control. I will now o�er a more concreteversion of this hypothesis as it applies to the model investigated throughout thisthesis.Consider again the model's basic control architecture shown in Figure 5.1. As aside e�ect of learning how to react to the environment and the goals, this networkmay build up a record of its past states in the context layer. Note that there isno guarantee that this will be the case, but the capacity to do so is available inthe recurrent connections. Thus immediately after a goal has been achieved, thecontents of the hidden layer could conceivably re
ect a generalized history of theenvironmental context encountered while achieving the goal. I will argue that themost successful controllers do indeed retain this sort of history and that this historycan be the building block to emergent plans.The speci�c hypothesis with respect to the model has now become: Given a robotcontroller based on the recurrent network shown in Figure 5.1, if it is provided withtrigger-like goals, and trained with reinforcement learning, then upon achievement ofa goal the hidden layer will contain information that could be used to plan for thatgoal. To prove this hypothesis I must show that these patterns of hidden activationcan be used to guide behavior. First some changes will be made to carbot to betterequip it for the task of planning.
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Figure 5.1: The robot controller architecture.5.1 Enhancing carbot's sensorsSuccess in planning depends on the ability to anticipate future outcomes. Carbot'scurrent sensors are quite primitive and provide little opportunity for easily anticipat-ing the result of its actions. For instance, there are many positions in the playpenthat produce roughly the same light readings. Some of these positions are close to awall while others are not, and carbot's touch sensors are only triggered upon contactwith a wall. Thus in these situations carbot will be unable to reliably avoid hittingthe walls.This has been called the perceptual aliasing problem and occurs when states inthe world with important di�erences appear the same to the system (Whitehead andBallard, 1991). There are two standard approaches to alleviating this problem. The�rst is to improve the sensors themselves. The second, as Kaelbling describes, is\to extend the system's inputs to include the last k percepts for some value of k"(Kaelbling, 1993). She further points out though, that as k gets large, the inputspace grows and dramatically increases the complexity of the overall control task.The recurrent memory of carbot's controller is a potentially more elegant solution toproviding context for distinguishing between similar perceptual states because it is a�xed size and learning (rather than the designer) determines what will be retained inthe memory. However, the information currently being supplied by the touch sensorsis too sparse to e�ectively contribute to useful contextual memory development. Toimprove the potential for anticipation, the touch sensors will be replaced by sonarsensors.Currently the sonar sensors have only been implemented in simulation, but I
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Figure 5.2: Method for obtaining simulated sonar readings.
eventually plan to equip the physical robot with them as well. The simulated carbothas four sonar sensors on its left, front, right, and back. Figure 5.2 summarizes theprocess used to obtain simulated sonar readings. First carbot's position and headingare determined. Second, the 
oor of the real-valued position is taken, converting it tointegers, and the heading is converted to a compass direction. In the particular caseshown, carbot is determined to be facing west because its heading is between 135 and225 degrees. Third, the distance from the integer position to any obstacle along thecompass directions is found. Finally the direction relative distances (north, south,east, west) are converted into body relative distances (left, front, right, back) and thesonar readings are calculated. If the distance to an obstacle is greater than the sonarrange of 8 units, then the sonar reading will be 0. Otherwise the sonar reading is:1� (distance=range). In this way close obstacles will result in higher sonar readingsthan far obstacles. When the distance is 0, the sonar reading will be at its maximumvalue of 1 indicating contact with a wall. In the case shown, the west distance of 4will become the front sonar reading of 1� 4=8, the north distance of 23 will becomethe right sonar reading of 0, and so on. With sonar capabilities carbot should be ableto anticipate walls and more easily avoid hitting them.



5. Towards planning 815.2 Analyzing the controller's hidden representa-tionsI have claimed that the hidden layer activations in the controller networks aftera goal has been achieved will re
ect the history of the states encountered during thetask. Now it is time to analyze what these controller networks are actually encodingin their hidden layer. To do this we will use a technique called cluster analysis.First, a controller network must be trained to a high level of performance. Thenetwork will have access to the light and sonar sensors, to periodic seek and avoidgoals, and will use a hidden layer of size �ve. A network of this type was trained withCRBP for 200,000 actions, receiving punishment only 16.9% of the time by the endof training. This network was then tested for 1,000 actions and each time a goal wasachieved the activations of the �ve units in the hidden layer were saved. This processresulted in 67 saved patterns. As an example, one pattern associated with seekinghad the following values: (0.057256 0.341356 0.000200 0.525126 0.000034)Cluster analysis constructed a hierarchy of partitions based on these 67 uniquepatterns of activation. This hierarchy was built by pairing a pattern with its closestneighbor in Euclidean space. This neighbor may be another pattern or an already con-structed partition which is identi�ed by the average pro�le of the patterns it contains.This process continued until every pattern was connected to a single hierarchical treestructure. Figure 5.3 shows the gross structure (into nine partitions) produced by thecluster analysis of the 67 saved patterns.First let's consider the large trends depicted in this clustering. The networkdeveloped unique strategies for seeking and avoiding the light. Typically for avoidingthe light, the network used one-point turns created by a series of BL turns followedby a series of FR turns. For seeking the light, the network used combinations of BRand FL turns. The clustering re
ects this di�erence in strategies|most of the avoidpatterns are grouped in the top half of the tree (in clusters 1, 2, 4 and 5) while mostof the seek patterns are grouped in the bottom half of the tree (in clusters 6, 7, 8, and9). Figures 5.4 and 5.5 depict representative behavior from each of the nine clusters.The exceptions to the separation of avoid and seek patterns are illustrative. Clus-ter 3 is one of these exceptions; it consists of �ve seek patterns, but has been clusteredin the avoid half of the tree. These �ve seek patterns were created when the networkused, in succession, a BL and then a FR move at the end of the task to reach thelight. Neither of these actions is typically chosen during a seek task, and except forthese �ve seek instances these two actions only occur in succession during avoid tasks.The resulting patterns of activation were thus closer to avoid patterns created from



5. Towards planning 82
1

2
3

4

5

6

7

8

9

avoid: BL semicircle

seek: many turns
using BL, FR at end

avoid: 2pt turn
using BL, FR, BL

avoid: 1pt turn
using BL, FR

seek: many pt
turns using
BR, FL

seek & avoid:
repeated wall
contacts

seek: FL semi−
circles, uses
BR near walls

avoid: 1pt turn
using BL, FR
near west wall

(5)
(1)

(5)

(11)

(11)

(3)

(13)

(9)

(9)

Distance scale: 0.5

seek: zigzag path

Figure 5.3: Annotated cluster diagram of the hidden layer activations after goalachievement in a controller with sonar capabilities. Numbers in parentheses indicatethe size of the cluster. The substructure of each cluster is not shown.



5. Towards planning 83this same series of actions.Cluster 8 is the other exception; it contains of mixture of seek and avoid patternsand is grouped in the seek half of the tree. The avoid patterns of this cluster were allcreated after carbot was stuck in the lower-left corner. During this time the controllertried using FL and BR actions to extricate carbot and since these actions are typicallyassociated with seeking the light the patterns were closer to other seek cases. Thebehavior that led to the seek patterns of this cluster were also related to problemswith navigating in corners.Both of these exceptions provide evidence that these hidden activations do re
ectsome history of the states preceding goal accomplishment. If the clustering wasbased solely on the the �nal perceptual state then avoid behaviors and seek behaviorswould not be clustered together since their �nal perceptual states are quite di�erent.Successful seek behaviors will place carbot near the lower-left corner facing the lightwhile successful avoid behaviors may place carbot almost anywhere in the environmentas long as it is facing away from the light.Now let's look more closely at the relationships between the avoid clusters. Clus-ters 4 and 5 contain the majority of the avoid cases and there is only a subtle di�erencebetween the two. In cluster 4, the representative behaviors have a longer BL phasethan FR phase to the one-point turn, and in cluster 5, the opposite is the case. Forexample, the hidden pattern associated with the sequence of actions BL-BL-BL-FRis attached to cluster 4 while the hidden pattern associated with the actions BL-BL-FR-FR-FR is attached to cluster 5. The behaviors in cluster 1 are much like thosein cluster 4 except that the FR phase brought carbot too close to the north wall andan additional BL action was needed. Cluster 2 is a bit of an anomaly containing onlyone instance of a BL semi-circle.The representative behaviors from the seek clusters exhibit even more variety. Incluster 6, the �nal approach to the light was achieved by alternating between FLand FR actions creating a zigzag path. In cluster 7, frequent switching of directioncreated star-like patterns, while in cluster 9 smoother one-point turns were used.In the previous chapter we saw that, as a group, the control networks exhibiteda wide range of behaviors (full circles, semi-circles, one-point turns, two-point turns,star patterns etc), but each particular network tended to exhibit a single behavioralstyle. With the addition of sonar capabilities, a single controller can develop a muchlarger repertoire of behavior. Furthermore, the cluster analysis reveals that the hiddenactivations at the time of goal achievement re
ect these behavioral nuances. Becausethese hidden representations encode, to some degree, the structure of the behavioralstrategies produced by the control networks they hold promise as a �rst step towardsplanning. For this reason I will refer to them as protoplans. The next section describes
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1AVOID

2AVOID

4AVOID

5AVOID

3SEEK

Figure 5.4: Representative behavior from clusters primarily associated with avoidingthe light which is located in the lower-left corner. Closed circles indicate where thebehavior began and open circles indicate where the goal was achieved.



5. Towards planning 85
6SEEK
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Figure 5.5: Representative behavior from clusters primarily associated with seekingthe light which is located in the lower-left corner. Closed circles indicate where thebehavior began and open circles indicate where the goal was achieved.



5. Towards planning 86a method used to examine whether these protoplans can be put to practical use toguide action decisions.5.3 Method for applying protoplansTo investigate the e�cacy of protoplans, a transfer-of-learning task will be ex-plored: can the protoplans learned in one controller be transferred to a second con-troller to provide guidance as it learns from scratch on the same task? To answer thisquestion, a control network will be trained with goals to produce a set of protoplans.As a means to transfer the protoplans to the new network, a memory will be cre-ated that associates the input states that immediately preceded the achievement of agoal with their protoplan. Finally a new control network will begin learning withoutgoals, but with access to this protoplan memory. Using its own input state, this newcontrol network can retrieve an appropriate protoplan out of the memory based onthe original network. A careful examination of the performance of this second controlnetwork, which was given protoplans, will elucidate what role, if any, protoplans playin its behavior. Figure 5.6 summarizes this experimental method. A more detailedexplanation follows.For step 1 in Figure 5.6 a carbot controller with sonar sensors, light sensors, andperiodic goals was trained for 300,000 actions using CRBP. The hidden layer onceagain contained �ve units. Next for step 2 of Figure 5.6, the controller was testedfor 1,000 actions. During this testing phase, the hidden layer activations at the timeof goal achievement|the protoplans|were saved. In addition, the �ve input statesthat preceded the achievement of the goal were saved. An input state consists of thecurrent sonar readings, light readings, and goal value. Table 5.1 shows a trace of aconsecutive set of input states during the test phase.At time step 30 of this trace a seek goal was initiated and at time step 35 it wasaccomplished. Thus at time step 35 the activations in the hidden layer are consideredto be a protoplan and are saved. We will refer to this particular protoplan as pp35.The input states from time steps 31 through 35 are also saved since these statesimmediately preceded the goal achievement. Because these precursor states includethe sensor readings and the goal values we will refer to them as s + g31, s + g32, ...,s+g35. After 1,000 time steps had been processed in this manner, 134 protoplans and654 input states were obtained (the average number of actions needed to accomplisha goal was actually less than 5 at 4.88). This concludes step 2 of Figure 5.6.Next, the memory was constructed that provided the means of transferring theexpertise obtained during the training of the original control network to a new control
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5. Towards planning 88Action Sonar LightTime taken Left Front Right Back Left Right Goal29 BL .20 .29 .22 -130 FL .14 .23 .26 +131 FL .17 .43 .25 +132 BR .17 .63 .27 +133 FL .14 .72 .27 +134 FL .14 .93 .52 +135 FL .14 .20 .93 .91 +136 BL .12 .12 .87 .60 -1Table 5.1: Trace of a controller's input states after training. Empty locations indicatezero values.network. This protoplan memory was implemented as a feedforward neural network.The input layer contained seven units (one for each sensor reading and one for thegoal), the hidden layer had 20 units, and the output layer had �ve units (one for eachvalue of the protoplan). When given a precursor state as input the protoplan mem-ory was trained with standard back-propagation to return the subsequent protoplanas output. Returning to the trace of Table 5.1, this means that for pp35 all of thefollowing associations were trained:s+ g31 ! pp35s+ g32 ! pp35s+ g33 ! pp35s+ g34 ! pp35s+ g35 ! pp35The protoplan memory network was trained with a learning rate of 0.05 for 80epochs. An epoch constitutes one pass through the entire training set. Since thetraining set consisted of 654 pairs, this equated to 52,320 training steps. After train-ing, the average sum-squared error for each input-output pair was 0.17. Note thatthis particular association task cannot be performed perfectly because the same in-put state is often associated with numerous protoplans. To obtain a reasonable levelof performance this memory network learned to produce generalized versions of theprotoplans as output. This concludes step 3 of Figure 5.6.The �nal step of the method to investigate protoplan applicability was to traina new controller with access to the protoplan memory. We have seen in Chapters3 and 4 that goals can have a powerful in
uence on the �nal behavior of a controlnetwork. To better pinpoint the role protoplans might play in guiding behavior, goals



5. Towards planning 89were omitted from this second controller's input. However, this creates a problem: toretrieve protoplans from the memory we need both the current sensor readings andthe current goal. The simulator maintains an internal variable that tracks the currentgoal and this was used to complete the input state needed for retrieving protoplansfrom the memory. The steps of this training process are enumerated below:1. Query the sensors2. Use the sensor readings plus the simulator's internal record of the current goalto query the protoplan memory3. Place the sensor readings and the retrieved protoplan on the input layer of thecontrol network4. Forward propagate these values and continue with the CRBP algorithmThe control network with protoplans was also trained for 300,000 actions to fa-cilitate comparisons between it and the original control network. This concludes theexplanation of the transfer-of-learning method. In the next section the experimentsbased on this method will be described.5.4 Accessibility of protoplan informationPreviously, the cluster analysis showed that the protoplans encoded informationthat closely correlated with variations in the controller's behavior. But how accessibleis this information in the protoplan? Can newly developing networks use the proto-plans to improve performance? There are basically three possible answers to thesequestions. First, the information in the protoplan may be completely inaccessible. Inthis case we would expect the performance of controllers with protoplans to be nobetter than controllers trained with only sensors as input. The second possibility isthat just the goal information in the protoplan is accessible. In this case we wouldexpect the performance of controllers with protoplans to be equivalent to controllerswith goals. The �nal possibility is that both the goal and further information maybe accessible in the protoplan. In this case we would expect the performance ofcontrollers with protoplans to be better than controllers trained with goals.To determine which of these scenarios is correct, three variations on the inputgiven to control networks were tested: sensors only, sensors and goals, and sensorsand protoplans. For each variation �ve trials were done starting from random weightsand training with CRBP for 300,000 cycles. From the �ve networks that were trained



5. Towards planning 90with sensors and goals, the most successful network was chosen as the source of theprotoplans. During testing this controller was punished only 11% of the time.Avg %punishmentVariation Training SD Testing SDS 58.1 0.4 57.0 7.1S+G 29.3 2.8 12.9 5.3S+PP 26.3 4.4 13.9 5.9Table 5.2: Punishment performance in protoplan experiments. The variations di�erwith respect to what was available as input (S = sensors, G = goals, and PP =protoplans). The training value re
ects the average punishment received over all300,000 cycles of learning. The testing value re
ects the average punishment receivedduring 1,000 actions after training.Table 5.2 summarizes the performance of the three variations. Both controllerstrained with goals and controllers trained with protoplans were signi�cantly betterthan controllers trained with only sensors (p < 0:01). From this result it is clear thatthe �rst scenario, where the protoplans provide no information, is incorrect becausecontrollers with protoplans out-performed controllers with only sensory information.To resolve the issue of the accessibility of protoplan information we need to con-sider the di�erences between networks trained with goals and networks trained withprotoplans. The results show that there were no signi�cant di�erences in the �nalperformance of these two variations. Thus, it appears that the second scenario, whereonly goal information is accessible in the protoplans, is correct. Notice, though, thatthe overall punishment received during training is slightly less for controllers withprotoplans. Although both variations are ultimately equivalent in performance, per-haps the controllers with protoplans reach a high level of performance earlier in thelearning.To investigate this hypothesis, the average amount of punishment was re-calculatedevery 1,000 actions of training. By plotting these values a pro�le of the course oflearning was obtained. Figure 5.7 shows the speed of convergence for a network withprotoplans versus a network with goals. In this particular case the controller withprotoplans converged more quickly than the controller with goals. To quantify thisdi�erence across the networks, a convergence point was designated at 35% punish-ment. For each network, the cycle of training where this point was reached and neverexceeded again was noted. Table 5.3 shows the average number of actions needed toreach this level of performance for controllers with goals and controllers with proto-plans. The protoplan controllers were consistently faster to converge.However this di�erence in learning speeds was not signi�cant due to one protoplan
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Figure 5.7: Comparison of learning speeds in a controller with goals versus a controllerwith protoplans. Avg training cycleVariation when pun < 35% SDS+G 114,600 24,745S+PP 80,800 27,087Table 5.3: Speed of convergence in protoplan experiments.
network which was quite slow to converge relative to the others. If this outlier isremoved from the set, then the average time to convergence for protoplan networksdrops to 69,000 and the standard deviation drops to 7,070. If the comparison isredone with the outlier removed, then the di�erence in learning speeds is signi�cant(p < 0:01). The fact that networks with protoplans and without direct access to goalscan learn the task more quickly than networks with goals suggests that the thirdscenario is correct|there is more than goal information accessible in the protoplans.The next section will look closely at the contents of the protoplans.



5. Towards planning 925.5 How do protoplans guide behavior?Table 5.4 summarizes the primary strategies used by the goal-trained networkthat was the originator of the protoplans and the protoplan-trained networks basedupon it. Of the �ve goal-trained networks, only GnetA developed a semi-circle basedstrategy; the other solutions relied on alternating turns. Of the �ve protoplan-trainednetworks, three developed similar semi-circle seek strategies, and two of these alsodeveloped similar semi-circle avoid strategies to the original GnetA. Therefore, semi-circle strategies developed more frequently in the networks using protoplans createdby a semi-circle based network than the networks relying only on goal guidance.This o�ers some evidence that the protoplans may have had a global in
uence onthe development process. To understand the local e�ects of protoplans, this sectionwill dissect the operation of controller PPnet1. This particular network was chosenbecause it was one of the two protoplan-trained controllers that developed strategiesmost like GnetA. StrategiesController Seek AvoidGnetA FL semi-circle BL semi-circlePPnet1 FL semi-circle BL semi-circlePPnet2 FL semi-circle BL semi-circlePPnet3 BR,F turns BL,FR one-point turnPPnet4 FL semi-circle BL,FR one-point turnPPnet5 FR semi-circle BR semi-circleTable 5.4: Strategies learned by the originator of the protoplans (GnetA) and thecontrollers which used them (PPnet1 - PPnet5).On each cycle of processing, PPnet1 queries the protoplan memory with its currentsensor readings, allowing the protoplan input to change at every time step. Figure 5.8depicts the contents of PPnet1's protoplans over the course of 55 time steps. WhenPPnet1's behavior is examined over these same time steps it is clear that units 2 and3 of the protoplan are strongly associated with seeking the light, while units 1 and4 are strongly associated with avoiding. Unit 5 was uniformly inactive so has beenomitted.During seeking-the-light phases, unit 2 immediately reaches a nearly maximumlevel of activation and remains there, acting like a goal unit. Unit 3 initially rises andin some instances abruptly 
uctuates between 0.6 and 0.4 before falling to a low levelagain (one such example has been circled). During avoiding the light phases, units1 and 4 tend to rise and fall in-step with one another, though unit 4 is always more
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Figure 5.8: Activation pattern of protoplan units. Of the �ve units in the protoplanlayer, only units two (solid curve) and three (dashed curve) are highly active duringseek behavior. Only units one (solid curve) and four (dashed curve) are highly activeduring avoid behavior. The vertical lines indicate when a goal was achieved. Thecircled portions will be examined in detail. Note that each �gure of this sort whichfollows re
ects the same time period.



5. Towards planning 94active. Units 1 and 4 also experience instances of quick 
uctuations in the activationvalues (one such example has been circled). We will concentrate on the behavior ofPPnet1 during the time steps associated with these circled 
uctuation points.Consider �rst the 
uctuations of unit 3 during the seek behavior that begins attime step 42 and ends at time step 53. Recall that PPnet1 uses FL semi-circlesto navigate to the light. However, if it begins approaching the light from the far-right end of the playpen, a succession of FL actions will force carbot into the southwall long before reaching the light. In these situations, the controller has learned toinstead alternate between FL and FR actions, zigzagging carbot towards the lightwhile sidestepping the south wall. It is precisely during this zigzag motion that unit3's 
uctuations occur. A drop in unit 3's activation correlates with a FR action anda rise correlates with a FL action.
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Figure 5.9: Activation pattern of protoplan units associated with seeking the lightafter being disturbed.This correlation is suggestive, but does not provide clear-cut evidence that theprotoplan is being used to guide the behavior. To reveal whether this is the case, wewill disturb the protoplan memory during the zigzag phase (time steps 47-51) andnote the e�ect on behavior. If the controller responds to a drop in unit 3's activationby switching to a FR action, then by �xing unit 3's activation and removing the
uctuations we may be able to eliminate all the FR actions during these time steps.



5. Towards planning 95Figure 5.9 shows how the circled portion of the seek protoplan was adjusted; everyother aspect of the environment remained exactly as it had been before.
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Figure 5.10: Seek behavior in network with protoplans before and after disturbance.Asterisks indicate the actions that correspond with the circled portions of the tracesof the protoplan contents.Figure 5.10 depicts the behavior that occurred before and after this disturbance ofthe seek protoplan. The disturbance began at time step 47. Originally the controllerproduced a FR action at this point, but after the disturbance it produced a FL action.Then because the new FL action brought carbot near the south wall, the controllerresponded at step 48 with a BR action. Throughout the disturbance to the protoplan,FL and BR actions were used and the controller did not produce a FR action. Similar
uctuations in later time steps were also examined in this manner, and in each case,�xing unit 3's activation eliminated the zigzag behavior. This is strong evidence thatthe protoplan is the cause of zigzag behavior.Next, let's consider whether disturbances to the avoid units of the protoplan willproduce equally dramatic results. PPnet1 uses BL semi-circles to avoid the light.If carbot nears a wall while backing away from the light, a FR action is used andthen the BL semi-circle is resumed. The 
uctuations in units 1 and 4 correlate withthese switches of direction from BL to FR. When the activations fall, a FR action isproduced, and when the activations rise, a BL action is produced.



5. Towards planning 96PPnet1 proved to be much less sensitive to disturbances to units 1 and 4 than itwas to units 2 and 3. Raising both units' level of activation to 0.7 did not eliminatethe FR actions. Lowering both units' level of activation to 0.5 did not a�ect the BLactions either. Only by lowering the activation of both units to 0.1 was any e�ect inbehavior produced. Figure 5.11 shows how the circled portion of the avoid protoplanwas adjusted. Because this disturbance occurred early on in time, the subsequenttrace of the avoid protoplan is quite di�erent from the original version.
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Figure 5.11: Activation pattern of protoplan units associated with avoiding the lightafter being disturbed.Figure 5.12 depicts the behavior that occurred before and after this disturbanceto the avoid protoplan. By drastically lowering the level of activation in both avoidprotoplan units, all of the BL actions were eliminated. This response is impressivedespite the fairly severe disturbance required to elicit it. An adjustment to the proto-plan caused a complete reversal of the standard avoid behavior|a series of BLs wasreplaced by a series of FRs. As with the seek protoplan, invoking the same distur-bances in the avoid protoplan at di�erent points in time a�ected the correspondingbehavior in the same way.Each of the other protoplan networks were tested for sensitivity to disturbancesin their protoplans. Table 5.5 shows that the protoplan controllers that developed
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Figure 5.12: Avoid behavior in network with protoplans before and after disturbance.Asterisks indicate the actions that correspond with the circled portions of the tracesof the protoplan contents.strategies most similar to the original protoplan generator were also the most suscep-tible to disturbances. Because PPnet3 and PPnet5 used such di�erent strategies fromthe original network, the 
uctuations in the protoplans were not as closely correlatedwith changes in their behavior. Still in certain limited situations, the protoplansseemed able to provide some guidance and disturbances a�ected the behavior.5.6 DiscussionIn summary, the standard action patterns of both the seek and avoid strategieswere consistently disrupted when disturbances were created in the normal 
uctuationsof the protoplans. Furthermore, the seek behavior was more susceptible to disruptionthan the avoid behavior. One explanation for the stability of the avoid behavioris that the switch from the BL semi-circle to a FR action is an essentially reactivemaneuver. The sonar sensors provide ample warning of an impending collision sothe controller need not rely on the protoplan for guidance about obstacles. Here theavoid protoplan primarily provides con�rmation for the reaction. Still when the avoid



5. Towards planning 98SensitivityController Seek AvoidPPnet1 *** *PPnet2 *** *PPnet3 **PPnet4 ***PPnet5 **Table 5.5: Sensitivity of seek and avoid strategies to disturbances in the protoplanactivations. The number of asterisks depicts the degree of sensitivity. PPnet1 andPPnet2 developed behaviors very much like the network that originated the proto-plans. PPnet4 developed a similar seek strategy, but a di�erent avoid strategy fromthe original network. PPnet3 and PPnet5 developed their own unique strategies forboth tasks.protoplan's 
uctuations were ampli�ed enough, the obstacle reaction was inducedwithout the proper stimulus. In contrast, the zigzag aspect of the seek strategy doesnot have as direct a basis in sensor readings. Following the light gradient requiresthat the two light readings be compared, while responding to an obstacle dependson a single sonar value. The seek protoplan provides the proper timing for executingthe zigzag pattern and when this timing was disrupted the controller fell back on thebasic semi-circle strategy. Because the zigzag behavior is more abstract than obstacleavoidance, the controller relies more on the protoplan to produce it.The transfer-of-learning experiments were quite successful. Protoplans developedin one network were applied in other networks and speeded the learning process.However the success of this enterprise depends on the structure of the original goal-directed network's hidden activations. When these hidden patterns are distinct (asin Figure 5.13) they should serve as a good foundation for protoplans, but when theyare closely clumped (as in Figure 5.14) they will be uninformative and ine�ective.These experiments o�er a glimpse of a new style of plan that is context-dependent,dynamic, and o�ers indirect guidance about action decisions. The protoplans we ex-amined emerged from a network that was involved in a close interaction with itsenvironment. Important moments in this interaction were marked by systematic
uctuations in the protoplan values. When a new controller using these protoplansdeveloped a similar interaction with the environment, these 
uctuations providedguidance and con�rmation about the proper timing of changes in behavior. Thecontext-dependent character of the protoplans is re
ected in the fact that the proto-plans were most useful to controllers that developed the same strategy as the originalcontroller. The kind of timing information the protoplans provided was indirect|no
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5. Towards planning 101speci�c actions were indicated|but knowing when to change one's behavior may bemore important than knowing how to change it.



6Conclusion
The model investigated in this thesis was developed in an incremental fashion ontwo planes|the capacities of the robot and the level of external guidance provided.The initial robot resided in a one-dimensional world and was equipped with a sin-gle light sensor and two touch sensors. Next the model was extended to an actualrobot, called carbot, that was equipped with two light sensors and four touch sensors.Finally, in simulation, carbot's touch sensors were upgraded to sonar sensors.In step with these improvements to the robot, the level of external guidance pro-vided to the model was manipulated. Initially, the e�ect of goals was examined.Next, two contrasting methods of providing evaluations to the model, CRBP and aGA, were compared. Finally, the development and use of a new form of plan-basedguidance was considered. Throughout these incremental investigations, the emphasishas been on adaptation from limited designer bias.In Chapter 3, I suggested a new form of goal which I termed a trigger. Ratherthan using goals to explicitly describe the desired outcome, these triggers provided anabstract cue about the current phase of the task, either seeking or avoiding the light.Varying the persistence of these trigger goals from continuous, to intermittent, to im-plicit signi�cantly changed every aspect of the controller networks|the performance,the pattern of weights, the use of the context memory, and the course of learning.These goal experiments clearly demonstrated that the connectionist approach to con-trol allows the task demands to be the primary force in shaping behavior, both theexternal behavior of the robot and the internal behavior of the controller network.The trigger style goal proved to be an e�ective means of providing external guidancewithout pre-specifying a solution to the task. However, even this abstract type of cuecan be overpowering when the domain is quite simple. The goal information must beproperly blended with perceptions to produce robust behavior.102



6. Conclusion 103Just as trigger-like goals provide an appropriately abstract kind of guidance, re-inforcement learning o�ers indirect and sketchy evaluations of actions in the form ofreward and punishment. In CRBP, the gradient descent method, the evaluation ofan action a�ects the learning rate and the chosen target for back-propagation. Whenrewarded, CRBP strongly pushes the network to produce the same action again insimilar situations, and when punished, it less strongly pushes the network to producethe opposite action in similar situations. In the genetic algorithm, a whole series ofactions are tested to produce a single global evaluation called the �tness. Individualcontrollers that receive high �tness marks are more likely to have mutated copies oftheir network structure added to the population.Chapter 4 contrasted the strengths and weaknesses of these two reinforcementlearning methods. Despite similar levels of performance across a number of experi-mental variations, the character of the solutions produced by the two methods wasquite unique. Being a local method, CRBP was much more sensitive to the moment-to-moment changes in the environment. When a goal was provided, CRBP-trainedcontrollers developed two di�erent, though related, strategies for seeking and avoidingthe light (such as a forward-left semi-circle for seeking and a backward-left semi-circlefor avoiding). When the goal was removed, some CRBP-trained controllers createdtheir own triggering unit in the hidden layer. Not surprisingly for a local method,CRBP failed to succeed when the evaluation of the actions was delayed until the timeof goal achievement. In comparison, as a global method, the GA was relatively insen-sitive to the dynamics of the environment and thus its performance was more robustacross the variations. Regardless of whether a goal was present, the GA developed asingle overall strategy that was applicable to both the seek and avoid the light tasks(such as a forward-left full-circle).The previous increments of the robot control model showed that a controller whichis given trigger-style goals and is trained with CRBP will develop behavior that isunique to each goal. As a side e�ect of learning how to produce this dynamic behavior,the contents of the short-term memory should re
ect a generalized history of theenvironmental context encountered while achieving the goals. If this is indeed thecase, then the hidden activations at the time of goal accomplishment can serve as thebuilding blocks to plans. This is speci�cally how the ability to plan could developfrom the more primitive capacity of reactive control.Armed with these insights gained from the earlier increments, the �nal extensionof the model, towards planning, was undertaken in Chapter 5. Sonar capabilitieswere added to the robot to ensure that the hidden representations would contain anadequate amount of information for planning. By replacing the proximal informationgiven by the touch sensors with the distal information given by the sonar sensors, thecontroller was better able to anticipate the future. This enrichment in perception led



6. Conclusion 104to an enhancement of action. With sonar capabilities, a single controller was ableto develop a much more varied repertoire of behavior. The cluster analysis revealedthat the structure of the hidden patterns re
ected these nuances and because of thisthe patterns could serve as protoplans.To prove that protoplans could be used to guide behavior, a learning transferexperiment was conducted. The protoplans constructed in one network were storedin an associative memory and retrieved by a new network as it learned the task fromscratch. In this way the strategies discovered in one controller biased the strategiesdeveloped in a new controller. Another agent, rather than a human designer, wasable to direct the learning process.Controllers with protoplans but no goals were able to converge more quickly tosuccessful solutions than controllers with goals. This showed that the structural sub-tleties seen in the cluster analysis of the protoplans were accessible to some degree.Changes in the protoplans over time revealed that particular 
uctuations in the proto-plan values were highly correlated with switches in behavior. In some instances, veryminor disturbances to the protoplan at these 
uctuation points severely disrupted thenormal pattern of behavior. Thus protoplans were playing a key role in determiningthe behavior.The success of these protoplan experiments supports the new set of intuitionsabout planning encompassed by the reactive planning view. Rather than static, stand-alone procedures, plans can be seen as dynamic, context-dependent guides, and theprocess of planning may be more like informed improvisation than deliberation. Itis not fruitful to spend processing time reasoning about an inherently unpredictableworld. With the protoplan model, a new protoplan can be recomputed on every timestep. Although each protoplan o�ers only sketchy guidance, any more informationmight actually be misleading. Once the chosen action is executed, the subsequentperceptions are used to retrieve a new, more appropriate protoplan. Therefore it ispossible to continually replan based on the best information available|the system'scurrent perceptual state. Furthermore, plan use in the protoplan model is continuous.The controller learns to strongly depend on some protoplans and to be loosely guidedby other protoplans. Planning is not an all or nothing process here. Protoplans canplay a variable role in all action decisions.The transfer experiments were a fairly direct means of determining how usingprotoplans as input could a�ect behavior. But because protoplans are so dependenton the context in which they were created, ultimately I believe that they should remaina part of the system which constructed them. To this end, the controller should beable to save and generalize over its own protoplans. Figure 6.1 shows a proposedarchitecture for the on-line storage and retrieval of protoplans. This architecture was



6. Conclusion 105inspired by work on Hebbian Recurrent Networks (Dennis and Wiles, 1993). In thisarchitecture, a protoplan memory can be updated on every time step to re
ect thesystem's ever changing summary of the current situation. In addition, a generalizedversion of this summary can be used to a�ect the current action decision.Within this type of system, protoplans could serve as the communication linkbetween various modules. By being grounded in the environment, protoplans canprovide information about the dynamics of the world to higher order modules notdirectly connected to perception. Furthermore, these higher order modules couldcreate higher order protoplans leading to more complex levels of control.As I continue to explore further increments of this model by increasing the com-plexity of the robot and the tasks, neither of the adaptation methods on their own willbe adequate. As the task di�culty and network size increases, CRBP's e�ectivenesswill diminish. In contrast, the GA will remain e�ective, but its insensitivity to the�ne environmental details make it a poor source of protoplans. In Chapter 4 we sawthat the respective strengths and weaknesses of CRBP and GAs were complementary,and in future work I will use a hybrid of the two methods. The GA will be used toglobally sample the space of alternative controllers, and CRBP will be used to locallysearch the immediate neighborhood of a particular solution. Such a hybrid shouldproduce controllers that are both robust across gross environmental changes and yetsensitive to subtleties as well.This thesis has described and demonstrated a possible origin of plans. Protoplansemerged from the situated activity of an agent through the formation of a generalizedhistory of the states encountered while achieving a goal. This generalized historyin the short-term memory arose as a natural side e�ect of having to make reactivedecisions. This �rst step towards planning developed directly from the more primitivecapacity of reactive control.
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