
Bridging the gap between robot simulations and realitywith improved models of sensor noiseAppeared in the Proceedings of the Third Annual Genetic Programming Conference, 1998, edited by Koza, J.R. et. al.,Morgan Kaufmann Publishers, San Francisco, CA, pages 824{831Lisa MeedenComputer Science ProgramSwarthmore College500 College AveSwarthmore, PA 19081 USAmeeden@cs.swarthmore.eduABSTRACTTraditionally sensors have beenassumed to behave independentlyof one another. In this paper evi-dence is presented that shows thatfor certain types of sensors this as-sumption of independence is incor-rect. In fact, in some cases groupsof sensors respond in a highly cor-related fashion. A new model ofsensor noise is introduced whichcombines independent noise withdependent noise to produce sen-sor responses with varying degreesof correlation. This new modelis then compared to the standardmodel in a set of evolutionary com-putation experiments. The resultsreveal that by adopting the newmodel transfer of simulation re-sults to reality is improved.1 IntroductionIn evaluating possible control structures for evolutionaryrobotics one has three options: use a physical robot, usea simulated robot, or use a hybrid of the two (Nol� et al.,1994). Using a physical robot is obviously the most de-sirable choice but is often too time consuming. Usinga simulated robot leads to the correspondence problem:How will results obtained in simulation transfer to thereal world? Using a hybrid approach, one can begin theevolutionary process on a simulated robot to quickly de-velop a high performing population. Assuming that thesimulation was developed through close observation of

the actual robot, this should provide a good startingpoint for the slower evolutionary process on the phys-ical robot. Also, a simulated robot can be used to prunethe set of possible experiments one may want to eventu-ally conduct on a physical robot (Dorigo & Colombetti,1997). For these reasons, the hybrid approach to evolu-tionary robotics may o�er the best compromise betweenspeed and accuracy.By adopting the hybrid approach, the correspondenceproblem is lessened but not eliminated. How should weconstruct simulations to make the transfer to reality asreliable as possible? Some speci�c suggestions have beenmade: base the simulation on carefully collected empir-ical data from a real physical robot; add noise to thesimulated sensor readings and the actuator outcomes;and calibrate the simulation through tests on the realphysical robot (Harvey et al., 1993).Several studies have been done to investigate how bestto add noise to simulations (Schultz et al., 1990) (Jakobiet al., 1995). Results con�rmed the intuitive expecta-tion: The closer the simulated environment matches theconditions expected in the real world|in terms of theamount of noise|the better the learned controllers willbe. Additionally, if a perfect match is not possible, itis better to have too much noise rather than too littlebecause learning algorithms may take advantage of spu-rious regularities.The traditional method of simulating robot sensors fol-lows these recommendations. For example, suppose thatfor a particular robot's light sensors in bright conditionsthe observed mean response is 66 and the observed rangeof response is 61{75. This could be modeled within asimulator by designating each light sensor value to bethe observed mean plus or minus a random value basedon the observed noise of 5 units. Each physical sensoris assumed to behave independently and therefore each
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Figure 1 Independently simulated light sensorresponses (correlation �29%).simulated sensor reading is an independent random vari-able. Figure 1 shows a simulation of two such sensors'responses over time.An examination of physical sensor data from severalmodalities indicates that this technique for simulatingsensors may only provide a crude approximation of physi-cal sensor behavior. Some 
uctuations in physical sensoroutputs are not independently random; instead, they re-
ect a structured variability that presumably is presentin the real world. In other words, the sensor values 
uc-tuate synchronously. There may be information in thesecorrelations which a simulated robot has no access to butthat a physical robot could exploit to improve its behav-ior. If robot simulations could more accurately mimicthis structured type of real world noise, we might im-prove the transfer from simulation to reality.In Section 2 the synchronous behavior of several typesof physical sensors is examined. In Section 3 a new sen-sor simulation model is proposed that better re
ects thissynchronous behavior. In Section 4 an experiment is de-scribed that demonstrates that the new sensor simulationmodel enhances the transfer of results from simulation toreality as compared to the standard model. In Section 5the results are summarized.2 Sensor SynchronyThree sensor modalities were examined: light, video, andsonar. The light sensors were read using the HandyBoard controller (Martin, 1998) and the video and sonarwere read using the Pioneer 1 Mobile Robot (ActivMe-dia, 1998). In each case the sensor values were recordedfrom a �xed location every second for a minute.Light sensors read from the Handy Board return valuesbetween 0 and 255, with low values indicating more light.
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Figure 2 Physical light sensor responses: Usinga 75 watt bulb placed 1 ft away (lower curves,correlation 5%) and 2 ft away (upper curves, cor-relation 85%).Two light sensors were placed one inch apart at a �xedlocation and were tested in a variety of light conditions.To ensure that the light readings were not a�ected by thepower source, each light sensor was read from a di�erentHandy Board operating from a separate battery supply.Figure 2 shows the two sensor responses to a 75 wattlight bulb placed one foot away and two feet away. Whenthe bulb is further away (the darker condition), the twolight sensors are 85% correlated, while in the brightercondition they are only 5% correlated. In addition, therange of values produced in the darker condition is largerthan in the brighter condition. These trends continue insubsequent tests with 
uorescent lights.In Figure 3, rather than using a direct light source,the e�ect of ambient light was examined. The upper twocurves represent the sensor response to the ambient lightin the room with all the shades drawn and the overheadlights o�. The lower two curves represent the sensor re-sponse to the same conditions with the overhead 
uores-cent lights on. Again, in the darker condition, the twolight sensors are highly correlated (98%), while in thebrighter condition they are less correlated (76%). Thesynchronous quality of these physical light sensor read-ings is quite dramatic, especially when compared to thetraditional simulated sensors shown previously in Fig-ure 1.To examine the real world noise in a video image, a Pi-oneer robot equipped with a standard CCD video camerawas aimed at a corner of a room. The values of adjacentpixels were monitored under di�ering lighting conditions.The examination was limited to the blue intensity com-ponent of the RGB triplet. This value ranged between0.0 and 1.0, with 1.0 representing total blueness. The
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Figure 3 Physical light sensor responses: Us-ing ambient light with overhead 
uorescent lights(lower curves, correlation 76%) and without (up-per curves, correlation 98%).two curves in the top portion of Figure 4 represent twoadjacent pixels near the middle of the scene under 
uo-rescent lights and are 37% correlated. Likewise, the twolower curves represent the same two pixels viewing thesame scene, except with the 
uorescent lights turned o�and are 14% correlated. Although not as strongly corre-lated as the light sensors, the pixel pairs do show somesynchronous behavior.To examine the real word noise in sonar responses, aPioneer robot was positioned in front of a closed woodendoor. The Pioneer's seven sonar sensors are situated inan arc around the the front of the robot, with sonar1pointing to the left, sonar4 pointing straight ahead, andsonar7 pointing to the right. The sonar responses wererarely noisy producing a nearly 
at pro�le. Perhaps thisis due to the fact that sonar is an active rather than apassive sensor. By creating its own signal to measure,the e�ect of real world noise may be lessened. If therobot had been moving rather than at a �xed locationmore noise would be expected. However when there wasvariation in the stationary readings, the sonar sensorsdid show some synchrony, see Figure 5.We have seen that in at least some modalities, thereal world noise between independent sensors is corre-lated. The next section describes one possible methodfor modeling correlated noise.3 A New Sensor ModelAs the data in the previous section revealed, physicalsensors exhibit a full range of interdependence, from noneto nearly complete. To accommodate this wide rangeof possible relationships, the new sensor model divides
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Figure 4 Video (blue component from two adja-cent pixels): Using ambient light with overhead
uorescent lights (upper curves, correlation 37%)and without (lower curves, correlation 14%).
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Figure 5 Sonar: Responses of a Pioneer robotplaced 1 ft away from a closed wooden door(sonar4 and sonar7, correlation 65%).



the overall level of noise into dependent and independentportions. For example, if the overall noise level is 10%and the sensors exhibit strong correlation, the dependentportion might be set to 8% and the independent portionto 2%. If instead the sensors exhibit weak correlation,the ratio could be reversed.Thus the �rst step in constructing this new model (asbefore) is to observe the robot being simulated to de-termine the range of possible sensor values. In addi-tion, however, one must observe which sets of sensorsshow some correlation and designate these as dependencegroups. These dependence groups will typically be col-lections of adjacent sensors of the same modality. Fi-nally, the degree of correlation within each dependencegroup should be noted.The following C function is useful in calculating thenoisy sensor values. Given a base sensor value v and apercentage of noise p, getnoise returns a random integerbetween �vp and vp. The function realrand() returnsa random real number between 0 and 1, inclusive. Forthe experiments in this paper, realrand() returned uni-formly distributed values, but a function that producedsome other distribution, such as normal, could be easilysubstituted.int getnoise(int v, float p) {return (int)(2*p*v*realrand() - p*v);} To calculate a simulated sensor value requires the fol-lowing steps (where n represents the sensor number):1. For each sensor s(n), get a base estimate base(n) ofthe reading (for a light sensor this would depend onthe distance of the sensor from a light source).2. Average together the base estimates within a depen-dence group and obtain a shared dependent noisevalue for the entire group (where d% represents thepercentage of dependent noise):dnoise = getnoise(groupavg; d%).3. To obtain the �nal sensor values, combine the baseestimate with the dependent noise and independentnoise (where i% represents the percentage of inde-pendent noise):s(n) = base(n) + dnoise+ getnoise(base(n); i%)By manipulating the ratio of dependent to indepen-dent noise, the degree of correlation can be controlled.For example, Figures 6{7 show how the simulation oftwo �xed sensors with base values of 100 and 110 canproduce very di�erent pro�les simply by modifying thedivision of the noise. This is a relatively simple modelwhich is not computationally expensive and it capturesthe kind of synchronous real world noise seen in the pre-vious section.
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time (seconds)Figure 6 A low correlation of 14% created with8% independent noise and 2% dependent noise.
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Figure 7 A high correlation of 96% created with2% independent noise and 8% dependent noise.



4 The ExperimentOur experimental hypothesis is that a combination ofdependent and independent noise is more similar to realworld noise than independent noise alone, and therefore asimulation that adopts a combination model of noise willexhibit better transference than a simulation that adoptsthe standard independent model of noise. Because lightsensors showed the strongest synchronous e�ects, the ex-periment focuses on a light task. A population of neuralnetwork controllers is evolved to solve the task. Thissection will describe the robot, the task, the controller,the experimental procedure, and the results.4.1 The robotA Khepera robot (Mondada et al., 1993) and its share-ware simulation (Michel, 1997) were used. The simula-tion source code (written in C) was modi�ed to allowthe noise model to be manipulated. The Khepera is cir-cular in shape and miniature (diameter 55 mm, height30 mm, and weight 70g). It has two DC motors whichpower two wheels, calibrated from -10 (full reverse) to+10 (full forward) in integer increments. Its standardsensory apparatus consists of eight infra-red proximitysensors, which can also measure light. Six of the sensorsare positioned in an arc around the front, while the re-maining two sensors are positioned in the back. For thepurposes of this experiment, only the light values of thefront six sensors were used. The Khepera light valuesrange from 0 to 525, with 0 being the brightest and 525being the darkest.4.2 The taskThe robot's primary goal was to center itself on a lightsource. Its position was �xed, but the robot could mod-ify its heading by controlling the power and direction ofturning. A secondary goal was that the robot had tocontinually turn, i.e. the power of a turn should be non-zero. To increase the di�culty of the task, every �vetime steps the robot's heading was randomly perturbed.Performance was measured as the average �tness over 60time steps.Fitness was a real number between 0 and 1 and wasthe product of three factors: balance of the light val-ues, intensity of the light values, and turning. For thebalance factor, the absolute value of the di�erence be-tween the average of the three left sensors and the av-erage of the three right sensors was calculated. Thisdi�erence was then adjusted, 1 � (difference=525), toproduce values close to 1 when the light readings werebalanced. For the intensity factor, the average of thetwo front sensors was calculated and then adjusted,1� (centeravg=525), to produce values close to 1 whenthe front light readings were very bright. Finally, theturning factor was de�ned to be 0 if the power of theturn was 0, otherwise it was 1.Figure 8 shows the �tness performance of a success-
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time (seconds)Figure 8 Fitness of a successful controller dur-ing testing.fully evolved controller during testing. Notice that the�tness drops every �fth step as the robot's heading israndomly perturbed. The average �tness for this perfor-mance test was 0.818.4.3 The controllerThe controller was a feed-forward neural network witha �xed architecture: six-unit input layer, two-unit hid-den layer, two-unit output layer, and four biases. Theinput layer received adjusted light readings: input(n) =1� (sensor(n)=525) so that brighter light created higherinput values. The �rst output unit coded the directionof a turn, where a value less than 0.5 indicated left andotherwise right. The second output unit coded for thepower of a turn from 0 to 9, by taking the real-valuedoutput between 0 and 1, multiplying by 10, and thentruncating.4.4 The experimental procedure and re-sultsThe details of the evolutionary algorithm used are givenin the appendix. Below is a high-level description of theprocedure.1. In simulation, evolve an initially random populationof neural network controllers to develop a reasonablesolution to the task.2. In simulation, test the best individual found in step1.3. In the real world, test the best individual found instep 1.4. In the real world, evolve a population of neuralnetwork controllers seeded with the best individualfound in step 1.
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Figure 9 Comparison of the training and test-ing performance of the two noise models us-ing 5% noise: black=combination noise model;white=independent noise model.5. In the real world, test the best individual found instep 4.For each noise model|the traditional independentmodel and the new combination model|ten trials of thisprocess were completed. The average �tness across theseten trials was tracked and compared using t-tests. Toprove the experimental hypothesis we must show thatusing the combination noise model is signi�cantly bet-ter than the independent noise model for transferringresults from the simulator to the real world. There aretwo points of transfer in this process|immediately aftersimulation training (step 3), and later after additionalreal world training (step 5).Two sets of experiments were run, assuming in onecase an overall real world noise level of 5% and in theother of 10%. Within the combination model, an es-sentially equal division of noise was used at both noiselevels. Because the correlation of real world light sen-sors seems to depend on light intensity, an equal divisionshould o�er a good compromise for both bright and darkconditions.At the 5% level, 5% independent noise was comparedto a combination of 3% dependent noise and 2% inde-pendent noise. At the 10% level, 10% independent noisewas compared to a combination of 5% dependent noiseand 5% independent noise. See Figure 9 for results atthe 5% level and Figure 10 for results at the 10% level.It is clear from these results that both models performsimilarly at the 10% level but show more marked di�er-ences at the 5% level. Let's consider the 5% results inmore detail.The best �tnesses achieved during simulation train-ing (step 1) and simulation testing (step 2) were almost
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experimental procedure stepFigure 10 Comparison of the training and test-ing performance of the two noise models us-ing 10% noise: black=combination noise model;white=independent noise model.identical for both noise models. The real world test per-formance (step 3) dropped o� dramatically from the sim-ulation test performance for both noise models, with theindependent model showing a larger drop (though notstatistically signi�cant). After real world training (step4), both models showed improvement, but not quite tothe initial simulation level (step 1). In the �nal real worldtesting phase (step 5), controllers developed from a pop-ulation seeded with the combination noise model signif-icantly outperformed controllers developed from a pop-ulation seeded with the independent noise model (0.795versus 0.763 with p < 0:05).An additional di�erence was also discovered for the 5%noise level. In simulation training (step 1), on averagethe evolutionary algorithm achieved its best �tness sig-ni�cantly faster (p < 0:05) using the combination noisemodel (at generation 35.0) as compared to the indepen-dent noise model (at generation 42.8).5 ConclusionsTable 1 Ranking of each model's �nal real worldperformance average.Rank Noise model Final performance1 5% combination 0.79522 10% combination 0.76963 5% independent 0.76274 10% independent 0.7567Table 1 summarizes the �nal real world performanceaverages for all the experimental variations. These rank-ings suggest that the combination model is a better re-
ection of the real world than the independent model.



Furthermore they suggest that within a model, 5% noiseis a better re
ection of the real world noise for this taskand environment than 10% noise.We have seen that real world noise is not indepen-dently random for certain types of sensors but displayssynchrony. When a robot simulation was modi�ed tomore accurately mimic these structured 
uctuations inthe sensor outputs, the transfer of simulation resultsto reality was signi�cantly improved. Future simula-tions for adaptive robotics should try to model the morecomplex properties of real world noise. The combina-tion noise model, using both dependent and indepen-dent noise, is one relatively straight-forward and com-putationally inexpensive method for creating the rightstyle of synchrony. There are certainly other methodsthat could be explored in future research.In the introduction we argued that the hybrid ap-proach, using both simulation and real world evaluation,is currently the most promising method for conductingevolutionary robotics. However, as the complexity ofrobots increases it will become more and more di�cultto build faithful simulations. This does not bode well forthe hybrid approach, given that the consensus view onthe correspondence problem is that a simulation mustbe a high �delity model of the real world for success-ful transfer to occur (Mataric & Cli�, 1996). Indeed itdoes not bode well for evolutionary robotics in generalbecause without simulation we are left with real worldevaluation which is inherently slow.Some recent research contradicts these dire conclu-sions by providing a methodology for constructing min-imal simulations that are easy to build, computation-ally cheap, include complex sensory capabilities such asvision, and yet still allow successful transfer to real-ity (Jakobi, 1998). The key idea is that the only fea-tures of the world that need to be modeled accurately inthe simulation are those that the control system will useto perform the desired behavior. All other features canbe �lled in arbitrarily and should be made so unreliablethat no successful control system would depend on them.Using this style of simulator we can ensure that the solu-tion will be based on the aspects of the world we considerrelevant. On the other hand we limit the possibility thatthe evolutionary process will opportunistically discoverfeatures that may unexpectedly prove to be relevant. Onthe whole, these results show promise that simulationswill scale up and continue to be important tools for doingevolutionary robotics in the future.AcknowledgementsThanks to Doug Blank for conducting the video experi-ments and for his helpful discussions about the problem.Thanks to the Naval Center for Applied Research on Ar-ti�cial Intelligence for hosting me during my sabbaticalwhile I conducted this research.

AppendixIn this evolutionary algorithm, the individual neural net-works were represented as real-valued strings of length20 (6�2 input to hidden weights, 2�2 hidden to outputweights, and 4 biases). The initial population could becreated randomly or from a seed network. If random,each weight and bias was assigned a random value be-tween -0.4 and +0.4. If seeded, each weight and bias wasassigned the associated seed value plus a random valuebetween -1.0 and +1.0. See (Grefenstette, 1987) for adiscussion of seeding techniques.A generation consisted of a number of tournamentsequal to the population size. A tournament consistedof selecting two members from the population randomly.The member with the better �tness was designated thewinner and the other the loser. The loser was replacedby a mutation of the winner, where the winner served asa seed for the new individual (just as described above).See (Meeden, 1996) for a discussion of the merits of thisstyle of evolutionary algorithm.In the experiment, the �rst phase of evolution (con-ducted in the simulator) consisted of 50 generations witha population of 25, while the second phase of evolution(conducted in the real world) consisted of 5 generationswith a population of 10. For the �rst phase, the ini-tial population was random. For the second phase, theinitial population was seeded from the best individualproduced in the �rst phase.BibliographyActivMedia 1998. Pioneer 1 Mobile Robot. World WideWeb, URL is http: // www.activmedia.com / Real-World /.Dorigo, M. and Colombetti, M. 1997. Precis of robotshaping: An experiment in behavior engineering.Adaptive Behavior, 5(3{4):391{405.Grefenstette, J. 1987. Incorporating problem speci�cknowledge into genetic algorithms. In Davis, L., ed-itor, Genetic Algorithms and Simulated Annealing,pages 42{60. Morgan Kaufmann.Harvey, I., Husbands, P., and Cli�, D. 1993. Issues inevolutionary robotics. In Meyer, J.-A., Roitblat, H.,and Wilson, S., editors, From Animals to Animats:Proceedings of the Second International Conferenceon Simulation of Adaptive Behavior, pages 364{373,Cambridge, MA. MIT Press.Jakobi, N. 1998. Evolutionary robotics and the radi-cal envelope-of-noise hypothesis. Adapdive Behav-ior, 6(2):325{368.Jakobi, N., Husbands, P., and Harvey, I. 1995. Noiseand the reality gap: The use of simulation in evolu-tionary robotics. In Moran, F., Moreno, A., Merelo,
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