Bridging the gap between robot simulations and reality
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ABSTRACT

Traditionally sensors have been
assumed to behave independently
of one another. In this paper evi-
dence is presented that shows that
for certain types of sensors this as-
sumption of independence is incor-
rect. In fact, in some cases groups
of sensors respond in a highly cor-
related fashion. A new model of
sensor noise is introduced which
combines independent noise with
dependent noise to produce sen-
sor responses with varying degrees
of correlation. This new model
is then compared to the standard
model in a set of evolutionary com-
putation experiments. The results
reveal that by adopting the new
model transfer of simulation re-
sults to reality is improved.

1 Introduction

In evaluating possible control structures for evolutionary
robotics one has three options: use a physical robot, use
a simulated robot, or use a hybrid of the two (Nolfi et al.,
1994). Using a physical robot is obviously the most de-
sirable choice but is often too time consuming. Using
a simulated robot leads to the correspondence problem:
How will results obtained in simulation transfer to the
real world? Using a hybrid approach, one can begin the
evolutionary process on a simulated robot to quickly de-
velop a high performing population. Assuming that the
simulation was developed through close observation of

the actual robot, this should provide a good starting
point for the slower evolutionary process on the phys-
ical robot. Also, a simulated robot can be used to prune
the set of possible experiments one may want to eventu-
ally conduct on a physical robot (Dorigo & Colombetiti,
1997). For these reasons, the hybrid approach to evolu-
tionary robotics may offer the best compromise between
speed and accuracy.

By adopting the hybrid approach, the correspondence
problem is lessened but not eliminated. How should we
construct simulations to make the transfer to reality as
reliable as possible? Some specific suggestions have been
made: base the simulation on carefully collected empir-
ical data from a real physical robot; add noise to the
simulated sensor readings and the actuator outcomes;
and calibrate the simulation through tests on the real
physical robot (Harvey et al., 1993).

Several studies have been done to investigate how best
to add noise to simulations (Schultz et al., 1990) (Jakobi
et al., 1995). Results confirmed the intuitive expecta-
tion: The closer the simulated environment matches the
conditions expected in the real world—in terms of the
amount of noise—the better the learned controllers will
be. Additionally, if a perfect match is not possible, it
is better to have too much noise rather than too little
because learning algorithms may take advantage of spu-
rious regularities.

The traditional method of simulating robot sensors fol-
lows these recommendations. For example, suppose that
for a particular robot’s light sensors in bright conditions
the observed mean response is 66 and the observed range
of response is 61-75. This could be modeled within a
simulator by designating each light sensor value to be
the observed mean plus or minus a random value based
on the observed noise of 5 units. Each physical sensor
is assumed to behave independently and therefore each
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Figure 1 Independently simulated light sensor
responses (correlation —29%).

simulated sensor reading is an independent random vari-
able. Figure 1 shows a simulation of two such sensors’
responses over time.

An examination of physical sensor data from several
modalities indicates that this technique for simulating
sensors may only provide a crude approximation of physi-
cal sensor behavior. Some fluctuations in physical sensor
outputs are not independently random; instead, they re-
flect a structured variability that presumably is present
in the real world. In other words, the sensor values fluc-
tuate synchronously. There may be information in these
correlations which a simulated robot has no access to but
that a physical robot could exploit to improve its behav-
ior. If robot simulations could more accurately mimic
this structured type of real world noise, we might im-
prove the transfer from simulation to reality.

In Section 2 the synchronous behavior of several types
of physical sensors is examined. In Section 3 a new sen-
sor simulation model is proposed that better reflects this
synchronous behavior. In Section 4 an experiment is de-
scribed that demonstrates that the new sensor simulation
model enhances the transfer of results from simulation to
reality as compared to the standard model. In Section 5
the results are summarized.

2 Sensor Synchrony

Three sensor modalities were examined: light, video, and
sonar. The light sensors were read using the Handy
Board controller (Martin, 1998) and the video and sonar
were read using the Pioneer 1 Mobile Robot (ActivMe-
dia, 1998). In each case the sensor values were recorded
from a fixed location every second for a minute.

Light sensors read from the Handy Board return values
between 0 and 255, with low values indicating more light.
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Figure 2 Physical light sensor responses: Using
a 75 watt bulb placed 1 ft away (lower curves,
correlation 5%) and 2 ft away (upper curves, cor-
relation 85%).

Two light sensors were placed one inch apart at a fixed
location and were tested in a variety of light conditions.
To ensure that the light readings were not affected by the
power source, each light sensor was read from a different
Handy Board operating from a separate battery supply.

Figure 2 shows the two sensor responses to a 75 watt
light bulb placed one foot away and two feet away. When
the bulb is further away (the darker condition), the two
light sensors are 85% correlated, while in the brighter
condition they are only 5% correlated. In addition, the
range of values produced in the darker condition is larger
than in the brighter condition. These trends continue in
subsequent tests with fluorescent lights.

In Figure 3, rather than using a direct light source,
the effect of ambient light was examined. The upper two
curves represent the sensor response to the ambient light
in the room with all the shades drawn and the overhead
lights off. The lower two curves represent the sensor re-
sponse to the same conditions with the overhead fluores-
cent lights on. Again, in the darker condition, the two
light sensors are highly correlated (98%), while in the
brighter condition they are less correlated (76%). The
synchronous quality of these physical light sensor read-
ings is quite dramatic, especially when compared to the
traditional simulated sensors shown previously in Fig-
ure 1.

To examine the real world noise in a video image, a Pi-
oneer robot equipped with a standard CCD video camera
was aimed at a corner of a room. The values of adjacent
pixels were monitored under differing lighting conditions.
The examination was limited to the blue intensity com-
ponent of the RGB triplet. This value ranged between
0.0 and 1.0, with 1.0 representing total blueness. The
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Figure 3 Physical light sensor responses: Us-

ing ambient light with overhead fluorescent lights
(lower curves, correlation 76%) and without (up-
per curves, correlation 98%).

two curves in the top portion of Figure 4 represent two
adjacent pixels near the middle of the scene under fluo-
rescent lights and are 37% correlated. Likewise, the two
lower curves represent the same two pixels viewing the
same scene, except with the fluorescent lights turned off
and are 14% correlated. Although not as strongly corre-
lated as the light sensors, the pixel pairs do show some
synchronous behavior.

To examine the real word noise in sonar responses, a
Pioneer robot was positioned in front of a closed wooden
door. The Pioneer’s seven sonar sensors are situated in
an arc around the the front of the robot, with sonarl
pointing to the left, sonar4 pointing straight ahead, and
sonar? pointing to the right. The sonar responses were
rarely noisy producing a nearly flat profile. Perhaps this
is due to the fact that sonar is an active rather than a
passive sensor. By creating its own signal to measure,
the effect of real world noise may be lessened. If the
robot had been moving rather than at a fixed location
more noise would be expected. However when there was
variation in the stationary readings, the sonar sensors
did show some synchrony, see Figure 5.

We have seen that in at least some modalities, the
real world noise between independent sensors is corre-
lated. The next section describes one possible method
for modeling correlated noise.

3 A New Sensor Model

As the data in the previous section revealed, physical
sensors exhibit a full range of interdependence, from none
to nearly complete. To accommodate this wide range
of possible relationships, the new sensor model divides
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Figure 4 Video (blue component from two adja-
cent pixels): Using ambient light with overhead
fluorescent lights (upper curves, correlation 37%)
and without (lower curves, correlation 14%).
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Figure 5 Sonar: Responses of a Pioneer robot
placed 1 ft away from a closed wooden door
(sonar4 and sonar7, correlation 65%).



the overall level of noise into dependent and independent
portions. For example, if the overall noise level is 10%
and the sensors exhibit strong correlation, the dependent
portion might be set to 8% and the independent portion
to 2%. If instead the sensors exhibit weak correlation,
the ratio could be reversed.

Thus the first step in constructing this new model (as
before) is to observe the robot being simulated to de-
termine the range of possible sensor values. In addi-
tion, however, one must observe which sets of sensors
show some correlation and designate these as dependence
groups. These dependence groups will typically be col-
lections of adjacent sensors of the same modality. Fi-
nally, the degree of correlation within each dependence
group should be noted.

The following C function is useful in calculating the
noisy sensor values. Given a base sensor value v and a
percentage of noise p, getnoise returns a random integer
between —vp and vp. The function realrand() returns
a random real number between 0 and 1, inclusive. For
the experiments in this paper, realrand() returned uni-
formly distributed values, but a function that produced
some other distribution, such as normal, could be easily
substituted.

int getnoise(int v, float p) {
return (int) (2xp*v*realrand() - p*v);

}

To calculate a simulated sensor value requires the fol-
lowing steps (where n represents the sensor number):

1. For each sensor s(n), get a base estimate base(n) of
the reading (for a light sensor this would depend on
the distance of the sensor from a light source).

2. Average together the base estimates within a depen-
dence group and obtain a shared dependent noise
value for the entire group (where d% represents the
percentage of dependent noise):
dnoise = getnoise(groupavg, d%).

3. To obtain the final sensor values, combine the base
estimate with the dependent noise and independent
noise (where i% represents the percentage of inde-
pendent noise):

s(n) = base(n) + dnoise + getnoise(base(n),i%)

By manipulating the ratio of dependent to indepen-
dent noise, the degree of correlation can be controlled.
For example, Figures 6-7 show how the simulation of
two fixed sensors with base values of 100 and 110 can
produce very different profiles simply by modifying the
division of the noise. This is a relatively simple model
which is not computationally expensive and it captures
the kind of synchronous real world noise seen in the pre-
vious section.
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Figure 6 A low correlation of 14% created with
8% independent noise and 2% dependent noise.

120

115

simulated light sensor output
e N
o =
a1 o

i
5]
=]

95

90 I I I I I
0 10 20 30 40 50 60

time (seconds)

Figure 7 A high correlation of 96% created with
2% independent noise and 8% dependent noise.




4 The Experiment

Our experimental hypothesis is that a combination of
dependent and independent noise is more similar to real
world noise than independent noise alone, and therefore a
simulation that adopts a combination model of noise will
exhibit better transference than a simulation that adopts
the standard independent model of noise. Because light
sensors showed the strongest synchronous effects, the ex-
periment focuses on a light task. A population of neural
network controllers is evolved to solve the task. This
section will describe the robot, the task, the controller,
the experimental procedure, and the results.

4.1 The robot

A Khepera robot (Mondada et al., 1993) and its share-
ware simulation (Michel, 1997) were used. The simula-
tion source code (written in C) was modified to allow
the noise model to be manipulated. The Khepera is cir-
cular in shape and miniature (diameter 55 mm, height
30 mm, and weight 70g). It has two DC motors which
power two wheels, calibrated from -10 (full reverse) to
+10 (full forward) in integer increments. Its standard
sensory apparatus consists of eight infra-red proximity
sensors, which can also measure light. Six of the sensors
are positioned in an arc around the front, while the re-
maining two sensors are positioned in the back. For the
purposes of this experiment, only the light values of the
front six sensors were used. The Khepera light values
range from 0 to 525, with 0 being the brightest and 525
being the darkest.

4.2 The task

The robot’s primary goal was to center itself on a light
source. Its position was fixed, but the robot could mod-
ify its heading by controlling the power and direction of
turning. A secondary goal was that the robot had to
continually turn, i.e. the power of a turn should be non-
zero. To increase the difficulty of the task, every five
time steps the robot’s heading was randomly perturbed.
Performance was measured as the average fitness over 60
time steps.

Fitness was a real number between 0 and 1 and was
the product of three factors: balance of the light val-
ues, intensity of the light values, and turning. For the
balance factor, the absolute value of the difference be-
tween the average of the three left sensors and the av-
erage of the three right sensors was calculated. This
difference was then adjusted, 1 — (dif ference/525), to
produce values close to 1 when the light readings were
balanced. For the intensity factor, the average of the
two front sensors was calculated and then adjusted,
1 — (centeravg/525), to produce values close to 1 when
the front light readings were very bright. Finally, the
turning factor was defined to be 0 if the power of the
turn was 0, otherwise it was 1.

Figure 8 shows the fitness performance of a success-
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Figure 8 Fitness of a successful controller dur-

ing testing.

fully evolved controller during testing. Notice that the
fitness drops every fifth step as the robot’s heading is
randomly perturbed. The average fitness for this perfor-
mance test was 0.818.

4.3 The controller

The controller was a feed-forward neural network with
a fixed architecture: six-unit input layer, two-unit hid-
den layer, two-unit output layer, and four biases. The
input layer received adjusted light readings: input(n) =
1— (sensor(n)/525) so that brighter light created higher
input values. The first output unit coded the direction
of a turn, where a value less than 0.5 indicated left and
otherwise right. The second output unit coded for the
power of a turn from 0 to 9, by taking the real-valued
output between 0 and 1, multiplying by 10, and then
truncating.

4.4 The experimental procedure and re-
sults

The details of the evolutionary algorithm used are given

in the appendix. Below is a high-level description of the

procedure.

1. In simulation, evolve an initially random population
of neural network controllers to develop a reasonable
solution to the task.

2. In simulation, test the best individual found in step
1.

3. In the real world, test the best individual found in
step 1.

4. In the real world, evolve a population of neural
network controllers seeded with the best individual
found in step 1.
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Figure 9 Comparison of the training and test-
ing performance of the two noise models us-
ing 5% noise: black=combination noise model;
white=independent noise model.

5. In the real world, test the best individual found in
step 4.

For each noise model—the traditional independent
model and the new combination model—ten trials of this
process were completed. The average fitness across these
ten trials was tracked and compared using t-tests. To
prove the experimental hypothesis we must show that
using the combination noise model is significantly bet-
ter than the independent noise model for transferring
results from the simulator to the real world. There are
two points of transfer in this process—immediately after
simulation training (step 3), and later after additional
real world training (step 5).

Two sets of experiments were run, assuming in one
case an overall real world noise level of 5% and in the
other of 10%. Within the combination model, an es-
sentially equal division of noise was used at both noise
levels. Because the correlation of real world light sen-
sors seems to depend on light intensity, an equal division
should offer a good compromise for both bright and dark
conditions.

At the 5% level, 5% independent noise was compared
to a combination of 3% dependent noise and 2% inde-
pendent noise. At the 10% level, 10% independent noise
was compared to a combination of 5% dependent noise
and 5% independent noise. See Figure 9 for results at
the 5% level and Figure 10 for results at the 10% level.
It is clear from these results that both models perform
similarly at the 10% level but show more marked differ-
ences at the 5% level. Let’s consider the 5% results in
more detail.

The best fitnesses achieved during simulation train-
ing (step 1) and simulation testing (step 2) were almost
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Figure 10 Comparison of the training and test-
ing performance of the two noise models us-
ing 10% noise: black—=combination noise model;
white=independent noise model.

identical for both noise models. The real world test per-
formance (step 3) dropped off dramatically from the sim-
ulation test performance for both noise models, with the
independent model showing a larger drop (though not
statistically significant). After real world training (step
4), both models showed improvement, but not quite to
the initial simulation level (step 1). In the final real world
testing phase (step 5), controllers developed from a pop-
ulation seeded with the combination noise model signif-
icantly outperformed controllers developed from a pop-
ulation seeded with the independent noise model (0.795
versus 0.763 with p < 0.05).

An additional difference was also discovered for the 5%
noise level. In simulation training (step 1), on average
the evolutionary algorithm achieved its best fitness sig-
nificantly faster (p < 0.05) using the combination noise
model (at generation 35.0) as compared to the indepen-
dent noise model (at generation 42.8).

5 Conclusions

Table 1 Ranking of each model’s final real world

performance average.
Rank | Noise model Final performance
1 5% combination 0.7952
2 10% combination 0.7696
3 5% independent 0.7627
4 10% independent 0.7567

Table 1 summarizes the final real world performance
averages for all the experimental variations. These rank-
ings suggest that the combination model is a better re-
flection of the real world than the independent model.



Furthermore they suggest that within a model, 5% noise
is a better reflection of the real world noise for this task
and environment than 10% noise.

We have seen that real world noise is not indepen-
dently random for certain types of sensors but displays
synchrony. When a robot simulation was modified to
more accurately mimic these structured fluctuations in
the sensor outputs, the transfer of simulation results
to reality was significantly improved. Future simula-
tions for adaptive robotics should try to model the more
complex properties of real world noise. The combina-
tion noise model, using both dependent and indepen-
dent noise, is one relatively straight-forward and com-
putationally inexpensive method for creating the right
style of synchrony. There are certainly other methods
that could be explored in future research.

In the introduction we argued that the hybrid ap-
proach, using both simulation and real world evaluation,
is currently the most promising method for conducting
evolutionary robotics. However, as the complexity of
robots increases it will become more and more difficult
to build faithful simulations. This does not bode well for
the hybrid approach, given that the consensus view on
the correspondence problem is that a simulation must
be a high fidelity model of the real world for success-
ful transfer to occur (Mataric & Cliff, 1996). Indeed it
does not bode well for evolutionary robotics in general
because without simulation we are left with real world
evaluation which is inherently slow.

Some recent research contradicts these dire conclu-
sions by providing a methodology for constructing min-
imal simulations that are easy to build, computation-
ally cheap, include complex sensory capabilities such as
vision, and yet still allow successful transfer to real-
ity (Jakobi, 1998). The key idea is that the only fea-
tures of the world that need to be modeled accurately in
the simulation are those that the control system will use
to perform the desired behavior. All other features can
be filled in arbitrarily and should be made so unreliable
that no successful control system would depend on them.
Using this style of simulator we can ensure that the solu-
tion will be based on the aspects of the world we consider
relevant. On the other hand we limit the possibility that
the evolutionary process will opportunistically discover
features that may unexpectedly prove to be relevant. On
the whole, these results show promise that simulations
will scale up and continue to be important tools for doing
evolutionary robotics in the future.
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Appendix

In this evolutionary algorithm, the individual neural net-
works were represented as real-valued strings of length
20 (6 x 2 input to hidden weights, 2 x 2 hidden to output
weights, and 4 biases). The initial population could be
created randomly or from a seed network. If random,
each weight and bias was assigned a random value be-
tween -0.4 and +0.4. If seeded, each weight and bias was
assigned the associated seed value plus a random value
between -1.0 and +1.0. See (Grefenstette, 1987) for a
discussion of seeding techniques.

A generation consisted of a number of tournaments
equal to the population size. A tournament consisted
of selecting two members from the population randomly.
The member with the better fitness was designated the
winner and the other the loser. The loser was replaced
by a mutation of the winner, where the winner served as
a seed for the new individual (just as described above).
See (Meeden, 1996) for a discussion of the merits of this
style of evolutionary algorithm.

In the experiment, the first phase of evolution (con-
ducted in the simulator) consisted of 50 generations with
a population of 25, while the second phase of evolution
(conducted in the real world) consisted of 5 generations
with a population of 10. For the first phase, the ini-
tial population was random. For the second phase, the
initial population was seeded from the best individual
produced in the first phase.
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