Nature versus Nurture in Evolutionary Computation: Balancing the
Roles of the Training Environment and the Fitness Function in
Producing Behavior

Jordan Wales, Jesse Wells and Lisa Meeden
jwalesl@swarthmore.edu, jwellsl@swarthmore.edu, meeden@cs.swarthmore.edu
Swarthmore College, Swarthmore, PA 19081

1 Introduction

There are at least three levels at which one can,
through a fitness function, influence the develop-
ment of evolved robot behavior. We have termed
these levels: sensory state, behavioral expression,
and task achievement. A sensory state fitness
function attempts to maintain sensor values in set
ranges that we believe to be correlated with par-
ticular desired patterns of behavior. In contrast,
a behavioral expression fitness function focuses on
rewarding or punishing higher-level behaviors. Fi-
nally, rather than monitoring how the goal is met,
a task achievement fitness function is simply based
on a measure of the final outcome.

If one considers the sensory level to be the low-
est level, behavioral expression the middle, and
task achievement the highest, then the necessary
complexity of the fitness function increases as one
moves to lower levels of control. And, as the com-
plexity of the fitness function increases, the train-
ing environment must be simplified.

At the lowest, sensory state, level it is often the
case that training cannot initially occur in the
target environment. Instead, the robot must be
"bootstrapped” through increasingly complex en-
vironments until the desired behavior is achieved
in the target environment. The resulting behavior
is also typically not robust; when transferred to
other environments, performance is severely de-
graded. In short, the environment must be tai-
lored so that the fitness function can exert its in-
fluence more directly on the way that the evolving
controller translates sensor readings into actions.

At the highest, task achievement, level the fitness
function is so abstract that the evolutionary pro-
cess relies much more heavily on the environment
for its cues. Therefore, a single training environ-
ment can be used, but it must be very complex
to provide a wide range of potential situations.
However, the training time can be quite lengthy.

At the intermediate, behavioral expression, level
the guidance provided by the fitness function is
somewhat abstract, but not overly so. In this
case, both the environment and the fitness func-
tion can more equally share the load in guiding
the evolving behavior. We contend that fitness
functions at this level, when combined with rea-
sonably complex training environments, are the
most successful at producing robust behavior in
fewer generations of evolutionary computation.

We explored these ideas by evolving an artifi-
cial neural network (ANN) controller for a sim-
ulated Khepera robot navigating through various
labyrinths. The Khepera [4, 3] is circular in shape
and miniature (diameter 55 mm, height 30 mm,
and weight 70g). It has two motors which power
two wheels. Its standard sensory apparatus con-
sists of eight infra-red proximity sensors.

2 Training environments

The environment was conceived of as a simple
labyrinth—a twisting and turning passage that
constitutes a single path. We selected a labyrinth
rather than a maze because the robot is con-
strained to a single path and can therefore be
guided through a series of encounters with vari-

Figure 1: The rectilinear environment.

Figure 2: The dead end environment.

ous types of obstructions and path configurations.
This constrained environment provides a good fo-
rum for the development of a controller able to
successfully maneuver in tight spaces.

Three different environments were used. Each
was developed to abide by the labyrinth paradigm
while presenting a different set of principle fea-
tures. The rectilinear environment, shown in Fig-
ure 1, contains 90-degree turns and two dimen-
sional corners only. The dead end environment,
shown in Figure 2, contains 90 degree turns, one
and two dimensional corners and a dead end. The
angle environment, shown in Figure 3, contains
turns of multiple angles, and one and two dimen-
sional corners.

The differences in the environments can be illus-
trated by rating their difficulty. The rectilinear
environment is clearly simpler than the other two.
All passages are of equal width, all turns are 90

Figure 3: The angle environment.

degrees, and each turn is bounded by a straight
passage. The dead end environment is more dif-
ficult than this because a 180 degree turn is re-
quired at the dead end, and the additional one di-
mensional turns are more difficult to sense. The
angle environment is the most difficult because,
in addition to one dimensional turns, it also has
passages of uneven width and turns of multiple
angles.

3 Fitness Functions

In designing possible fitness functions for this
task, we began with Floreano and Mondada’s idea
of creating fitness criteria based on variables that
can be directly measured on the robot at each
time step [1]. For example, they designed a fit-
ness function for navigation and obstacle avoid-
ance that maximized the product of three compo-
nents: speed, straightness of motion, and distance
from obstacles.

3.1 Sensory State

The design of this fitness function was predicated
upon the assumption that we wanted the robot
to develop specific behaviors, and that these be-
haviors would lead to successful navigation of the
labyrinth. The desired behavior was straight and
fast forward motion between the parallel walls.

We took an explicit approach to ensuring the last
of these conditions, movement between parallel
walls, would be met through what we termed the

Voronoi criterion. Based on the assumption that
the ANN would use sensory data to determine
its next move, we hypothesized that the sensory
state of the robot would be a good indicator of
how well it was maintaining its path between the
walls on either side of the corridor. Therefore,
obstacle-avoiding behavior would be character-
ized by infra-red readings that were equal on both
sides of the robot.

In experimenting with various sensory-based fit-
ness functions, we discovered that the evolution-
ary process found numerous loopholes through
which the robot was able to obtain a high score by
selecting an undesired, simpler behavior. These
loopholes required further modifications of the fit-
ness function, eventually leading to a rather ad
hoc and unweildy fitness measure. This fitness
function maximized the product of maintaining
centeredness, speed, and straightness. In addi-
tion, the result was decremented when a collision
occurred.

3.2 Behavioral Expression

Rather than attempt to reward the robot for sen-
sor states that we believed were indicative of good
behavior, we elected to score the robot directly
on behavior. This philosophy led us to remove
the Voronoi criterion and to reward the robot, as
before, for straight and fast motion, with a decre-
This removed our bias that
being centered in the passageways was an impor-
tant aspect to solving the task.

ment for collisions.

3.3 Task Achievement

This final fitness function was by far the sim-
plest. We evaluated performance based solely on
the percentage of the environment covered by the
robot. To calculate this, the environment was di-
vided into a grid of robot-sized cells and each cell
was initially marked as unvisited. Then as the
robot moved, its current position was used to up-
date the appropriate grid cell as visited. In this
case, there is no explicit reward for moving fast,
straight or avoiding obstacles. Yet, each of these
features of movement are implicitly required in
order to cover the most ground.

This led to some very interesting behaviors that
were side effects of the discretized area measure
we employed. Those results are explored in our
discussion of experimental results.

4 Experiments

Our aim was to investigate the effects and inter-
actions of two variables—namely, training envi-
ronment and fitness functions. We used the three
fitness functions and the three environments de-
scribed above. Each possible combination was
evolved four times.

The ANN controller had a fixed, Elman-style ar-
chitecture consisting of 8 inputs for the infra-red
sensors, 3 hidden nodes, and 4 outputs to con-
trol wheel speeds. The goal of the evolutionary
process was to find a successful set of weights.
Each individual in the population was represented
as a real-valued string of weights. Initially, the
weights were set randomly, and each individual
was evaluated for 300 simulated seconds. This
is enough time to complete two loops through
each labyrinth. Selection was done by tourna-
ment, with the loser being replaced by a mutated
copy of the winner. No crossover was used. For
details on the merits of this style of evolution-
ary computation see [2]. Each evolution consisted
of 300 generations, with a population of size 30.
The ANN controller that produced the best fit-
ness score during the evolutionary process was re-
turned as the result.

Each best ANN from each of four evolutions was
tested in each environment 4 times. This final
evaluation was whether the robot traversed the
entire path of the labyrinth or not. This was
considered the ultimate measure of success for a
labyrinth navigating robot.

5 Results

Path completions were infrequent for ANNs
trained under the state-based fitness function,
see Figure 4. As one would expect, path com-
pletion occurred most often in the Rectilinear
environment—the environment most closely ful-
filling the assumptions (straight, parallel pas-

Lebwindh Complefions bu AMMs Treined under State Fitness Function

mumber of Succesful Labwrinth Completions

&)

I
Il Tested in Recilinear 4
[Tested in andle
Il 7ested in Dead End Rectilinear

Ml

(1) Trained in Rectilinear, (2) Treined in Andgle, (3) Trained in Dead End Rectilinear

Figure 4: Labyrinth Completions by ANNs Trained under State Fitness Function

sages) upon which the Voronoi criterion was
based.

It is interesting that ANNs trained in the Rec-
tilinear environment under this fitness function
performed equally well when tested in all three
environments. This result accords with the asser-
tion that a simple training environment allows the
fitness function greater influence over ANN devel-
opment. These results could be taken as indica-
tion that the theory of implicit progression (state
implies behavior, which implies success) was in-
deed correct. However, these results should be
treated with caution; the successful test runs by
ANNSs trained in the Rectilinear environment were
all produced by one of the four ANNs. The other
three trained in that environment with the state-
based fitness function did not complete any runs
successfully.

ANNSs trained under the state-based function in
the Angle and Dead End environments had only
a few successes. The ANN trained in Angle had
the most successes when tested in Rectilinear. Be-
cause of its configuration, Rectilinear is most con-

ducive to simple movement fulfilling the Voronoi
criterion. With so few successes, it is difficult
to draw reliable conclusions, however one should
note that the ANN was more successful in Dead
End even when trained in the Angle environment.
This could possibly indicate, again, the domi-
nance of the fitness function rather than the en-
vironment in formation of behavior.

Figure 5 shows results for ANNs evolved under
the Behavioral Expression fitness function. This
function may at first seem quite limited in its
usefulness, obtaining a majority of successes only
when trained in the Angle environment. It was
predicted earlier that the behavior-based fitness
function would produce ANNs with generalized
behavior capable of dealing with novel features
if those ANNs were given a rich enough training
Indeed, the ANNs trained in the
Angle environment gave a strong performance on
test in all environments. Behavior was general-
ized sufficiently to accommodate to novel features
such as the dead end. Evidently, the Angle envi-
ronment provided the rich environment that was
needed.

environment.

Labwinth Complefions b AMs Trained under Behaviorsl Fitness Function

20 :

mumber of Succesful Labwrinth Completions
=
T

I
Il Tested in Recilinear
[Tested in andle
Il Tested in Dead End Rectilinear |

|HL

2

(1) Trained in Rectilinear, (2) Treined in Andgle, (3) Trained in Dead End Rectilinear

Figure 5: Labyrinth Completions by ANNs Trained under Behavioral Fitness Function

The ANNSs trained in the Dead End environment
did not have the benefit of the varying angles in
their training experience. In test, it was observed
that ANNs trained under the behavior-based and
state-based fitness functions never became stuck
on corners or projections. Their most common
failure was to execute a 180-degree turn at a bend
in the hall, leading to a doubling-back that pre-
vented a complete path traversal in the allotted
test time. Among ANNSs trained in the rectilinear
environments, the 180-degree turn usually came
either at the first or second bend in the corridor.
The robot would make another 180-degree turn
at the next encountered forward obstacle, leading
to a back-and-forth behavior confined to a single
straight portion of the labyrinth.

ANNSs trained in the Angle environment would fail
by doubling back after several twists and turns
through the labyrinth, retracing the path and los-
ing a lot of time. This type of doubling back and
path retracing was less frequently observed among
ANNSs trained in Rectilinear environments.

We hypothesize that the reason for this lies in

the geometry of the turns required by the purely
rectilinear environments: they require only 180-
degree and and 90-degree turns, permitting the
robot to turn blindly 90 or 180 degrees toward
the closest obstacle-free heading as soon as it is
confronted with a forward obstacle. The Angle
environment, presenting bends with a variety of
severities, forces the robot to monitor its sensors
while executing a turn. Thus, the Angle-trained
ANN can deal with the dead end, even though
such a turn was previously not required of it, be-
cause the requirements of the varying angles pro-
duce behavior that generalizes well to a dead-end
turn-around.

Following this logic, it is to be expected that
the ANNs trained in purely rectilinear environ-
ments will be ill-equipped for the angle environ-
ment since there is nothing in those environments
to encourage a more complex turning ability.

The Task Achievement fitness function ensures
that the dominant ANNs are those that can cover
the most ground in the environment. Peculiarities
of our method for determining area covered led to

Laburinth Complefions by AMM Trained under Task Achievement Filness Funcfion

mumber of Succesful Labwrinth Completions

I
Il Tested in Recilinear 4
[Tested in andle
Il 7ested in Dead End Rectilinear

; I ‘Hl

(1) Trained in Rectilinear, (2) Treined in Andgle, (3) Trained in Dead End Rectilinear

Figure 6: Labyrinth Completions by ANNs Trained under Task Achievement Fitness Function

some strange behaviors. The environment was di-
vided into grid squares measuring 30 units on a
side. The robot itself is circular with a diameter
of 60 units. It was observed that the robot would
often move sinusoidally through corridors, passing
through as many grid squares as possible. Some
robots clung to the walls of the corridor, resulting
in slow movement that prevented successful path
traversal.

Figure 6 shows that these ANNs performed con-
sistently well in the basic Rectilinear environment
but in other environments performance was not
appreciably better than that of the state-based
ANN. Getting stuck on corners and in angles were
the most common failure of the Task Achievement
trained ANNs. This makes sense if one considers
that conservative turning helps prevent the robot
from doubling back, permitting it to maximize
ground covered.

By the same token, this reluctance to turn re-
sults in a luck-of-the-draw turning behavior. At
an angle, there may be no clearly free heading
in the forward sensor readings; this is surely the

case with the dead end. In situations where the
necessary turn is not crisply defined in the for-
ward sensor readings, the ANN, having learned
to avoid doubling back, often does not complete
the required turn in time. Also, having evolved to
move along walls rather than at a distance from
them, the ANN may not turn the robot out of
corners into which it has moved. All these factors
lead to the results observed—consistent success
occurs only in the simple, well-defined rectilinear
environment.

Without a general behavioral goal to guide it,
the ANN develops to perform as well as possi-
ble when confronted with features from the train-
ing environment. Further investigations hint that,
under the Task Achievement fitness function, a
much longer training period with a larger popu-
lation and a more complex environment produces
ANNSs which are more robust. However, the ANN
trained under this function does not produce gen-
eralized behavior patterns. Therefore, novel fea-
tures are never dealt with particularly well. When
considering the number of 90-degree turns nec-
essary in all three environments, it is easy to

Figure 7: Path taken by an ANN trained in the
Angle environment under the behavioral expres-
sion fitness function.

Figure 8: Path taken by an ANN trained in the
Dead End environment under the task achieve-
ment fitness function.

see that the comparative infrequency of angles
or dead ends in the Angle and Dead End envi-
ronments made these much less salient elements
during training.

See Figure 7 for the a sample traversal of a ANN
trained under the behavioral expression regime.
See Figure 8 for the a sample traversal of a ANN
trained under the task achievement regime. No-
tice that it has a curvier path than seen in Fig-
ure 7 because straightness was not explicitly mea-
sured and covering wider ground was rewarded.

6 Conclusions

In summary, we found that the most successful
fitness function and training environment combi-

nation was one in which a good balance was struck
between those two factors with respect to their in-
fluence on behavioral development. The behavior-
based fitness function encouraged desired behav-
ior while leaving the evolutionary process rela-
tively free to develop its own strategies for attain-
ing this behavior based on the features encoun-
tered in the training environment. This resulted
in behaviors that were easily generalizable.

At opposite extremes, the state-based function
paid little heed to the environment itself and the
task achievement function allowed the evolution-
ary process to adapt to the specific requirements
of the training environment. A primarily recti-
linear environment results in rectilinear behavior.
Repeated training in very complex environments
is necessary under task-achievement fitness mea-
sures, and repeated training in environments mov-
ing from simple to complex is necessary under the
state-based fitness measure.

References

[1] D. Floreano and F. Mondada. Evolution of
homing navigation in a real mobile robot.
IEEE Transactions of Systems, Man, and
Cybernetics-Part B: Cybernetics, 26(3):396—
407, 1996.

[2] L. Meeden. An incremental approach to de-
veloping intelligent neural network controllers
for robots. IEEE Transactions on Systems,
Man, and Cybernetics-Part B: Cybernetics,
26(3):474-485, 1996.

[3] O. Michel. Khepera simulator package version
2.0: Freeware mobile robot simulator written
at the University of Nice Sophia—Antipolis.
World Wide Web, URL: http: // wwwi3s.unice.fr
/ ~om / khep-sim.html, 1997.

[4] R. Mondada, E. Franzi, and P. Ienne. Mo-
bile robot miniturization: A tool for investi-
gation in control algorithms. In Proceedings
of the Thrid International Symposium on Fx-
perimental Robots, Kytoto, Japan, 1993.

