Curiosity: Emergent Behavior Through Interacting Multi-Level Predictions

Lisa Meeden
Computer Science Department
Swarthmore College
Swarthmore, PA 19081, USA
meeden@cs.swarthmore.edu

Douglas Blank
Computer Science Department
Bryn Mawr College
Bryn Mawr, PA 19010, USA
dblank@cs.brynmawr.edu

James Marshall
Computer Science Department
Sarah Lawrence College
Bronxville, NY 10708, USA
jmarshall@slc.edu

Author Keywords
Developmental robotics; Curiosity; Attention

ACM Classification Keywords
I.2.6 [Learning]: Connectionism and Neural Nets; I.2.9
[Robotics]: Autonomous systems

Introduction
Over the past 15 years our research group has been exploring models of developmental robotics and curiosity. Our research is based on the premise that intelligent behavior arises through emergent interactions between opposing forces in an open-ended, task-independent environment. In some early experiments we constructed a recurrent neural network model where self-motivation was “an emergent property generated by the competing pressures that arise in attempting to balance predictability and novelty” [5]. The system first focused on its error, then learned to successfully predict its error, and finally became habituated to what caused the error. This process of focusing, learning, and habituating can be seen as a rudimentary type of curiosity.

However, focusing directly on error can be problematic: one issue is that it may be intractable to focus on all dimensions of sensory error at once, and accurate prediction may be impossible in real-world, noisy environments. To better understand learning in noisy environments, a predictable task...
was embedded into varying amounts of randomness [2]. Even in conditions with extreme noise (75%), networks trained with prediction of their hidden state were able to more quickly and successfully discern the signal from the noise. We believe that this type of self-awareness is necessary for developing more sophisticated behavior.

To cope with the continual flood of sensory data, which William James described as "one great blooming, buzzing confusion," we explored several hierarchical, categorization models. The first model was based on self-organizing maps [1], and we demonstrated that autonomously created categories could be subsequently activated to guide an agent's behavior. The second model was based on growing neural gas [4], and improved on the first model by allowing the topology and number of categories to emerge based on experience.

Attention-Mediated Multi-Level Framework

Our current focus is to bring these components—prediction, novelty, curiosity, self-awareness, and categorization— together to build a more complete model of development. In order to integrate these components, we propose an architecture that mediates low-level and high-level predictions via attention (see Figure 1). Attention is essential to a developmental system in order to focus resources on the most salient prediction errors. The resulting behavior is what we would describe as curiosity. This model is inspired in part by existing research that points to the importance of prediction in cognition combined with bottom-up and top-down interactions [6, 3].

Biographies

Lisa Meeden, Douglas Blank, and James Marshall all teach at small, liberal arts colleges that focus on undergraduate education. They each received a Ph.D. in Computer Science from Indiana University. Meeden and Blank both taught the first undergraduate courses focused on developmental robotics in 2003 at their respective institutions.

References

