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Abstract

I conduct a comparative study of different tech-
niques (standard backprop, complementary reinforce-
ment backprop, NEAT) for training a recurrent neural
net on a difficult problem. I contribute an additional
layer of strategy by offering the net access to expert al-
gorithms, which can provide domain knowledge about
the task at hand. My hypothesis was that learning how
to make use of this expert knowledge would prove an
easier task than learning the problem from scratch. Re-
sults support this hypothesis, but indicate that experts
also introduce further complication.

Artificial neural network (ANNs), inspired by the biologi-
cal circuitry of the human brain, are one of the oldest and
most versatile algorithms for machine learning. Academics
and industry professionals have successfully applied them
to a wide variety of learning tasks, spanning the gamut from
facial recognition to e-mail spam filtering and more.

By and large, the basic structure of neural nets has re-
mained the same over many years.1 However, effective train-
ing of a neural net can require a fair amount of wrangling,
and different approaches have proven most successful in dif-
ferent contexts. I am interested in pushing the limits of neu-
ral nets by placing them in a context where they have tra-
ditionally done poorly, and then exploring new options for
training.

The context I chose for this study is a puzzle game
called Mastermind. It presents two primary challenges as a
learning task:

1. Good moves require a memory of all previous moves that
have been made

2. Optimal strategy changes as the game progresses

In theory, neural nets with “recurrence” – that is, connec-
tions which relay information backwards – are capable of
factoring previous decisions into future ones. However, the
depth and persistence of this kind of memory is a subject of
ongoing research, and neural nets tend to perform best when
short-term memory is unimportant.

1Recent advances in “deep learning” are the most notable ex-
ception.

Neural nets can also suffer from the issue of “catastrophic
forgetting” – that is, even their long-term memory can fail,
provided significant changes in environmental conditions
(like the shifting game strategies of Mastermind). Some re-
search has tried to address this problem by performing clus-
tering analysis, and forking off different local experts to
learn each cluster.2

The defining concept for this study was to apply a local-
expert-based model to a recurrent neural network. However,
rather than evolving experts from scratch, I wanted to de-
termine whether the network could learn to consult pre-
established experts in its domain. These experts were hard-
coded with a variety of standard strategies for playing Mas-
termind. None of them could play an entire game in an opti-
mal fashion, but each possessed some knowledge that might
be useful during particular game phases. It is worth noting
that Mastermind was an especially convenient candidate for
this kind of supervised learning, because of how easy it is to
verify, for any given move, which expert would have offered
the best advice.

This study has potential implications both for training
ANNs on multimodal learning tasks in general, and for in-
tegrating pre-existing domain knowledge into the learning
process. Ideally, it would be possible to use these techniques
to take experts trained in CBIM (or some equivalent algo-
rithm) and apply them to new learning contexts. My work
also offers promise for making optimal use of redundant
control systems – for example, programming an aircraft to
automatically know when to trust its pilot and when to trust
its co-pilot instead. Multiple experts are only better than one
provided that they are each allowed to play to their respec-
tive strengths. A well-trained ANN might be able to classify
exactly what those strengths are and when to rely on them.

Background
A previous study by Lisa Meeden considers the problem of
training ANNs (or “connectionist systems”) on tasks that re-
quire some temporal planning. (Meeden 1996) She draws
a helpful distinction between local techniques (like rein-
forcement learning) and global techniques (like genetic al-

2c.f. Intelligent Adaptive Curiosity (which uses a form of k-
nearest-neighbors), Category-Based Intrinsic Motivation (which
uses a Growing Neural Gas), and Horde



gorithms) for learning. This framework guides my current
angles of approach, and, in particular, I have adopted a
very similar style of reinforcement learning, via comple-
mentary reinforcement back-propagation (CRBP). However,
Meeden’s work emphasizes an ANN’s essential nature as a
bottom-up strategy, while I would like to explore a closer
marriage between hands-off, bottom-up evolution and the
utilization of top-down domain knowledge. Perhaps the ex-
perts in my study fulfill the role of Waltz’s ”control struc-
tures [that] allow planning,” a higher-level component of ar-
tificial intelligence, which Meeden’s study does not explore.

In terms of learning to apply expert knowledge to new do-
mains, some promising groundwork has already been con-
ducted using recurrent neural nets, indicating that they can
make generalizations about patterns of letters based only on
prior exposure to analogous patterns of audio data. (Dienes,
Altmann, and Gao 1999) Unfortunately, the authors showed
that this transfer of knowledge depended on adding an extra
hidden layer to their Elman network, which will be beyond
the scope of my current study.

Experimental setup
I conducted all of the coding for this lab in Python, which
allowed for fast development, while simultaneously offering
a sufficiently speedy runtime environment to train my net-
works on tens of thousands of data points. I wrote a custom
Mastermind class from scratch, but I relied heavily on Conx
(packaged with PyroRobot) for back-propagation and a stan-
dard Python implementation of NEAT for genetic evolution.
In this section, I will discuss each of these components in
further depth.

Mastermind
In its earliest incarnation, Mastermind was a physical
boardgame invented in 1970. At the start of the game, one
player would come up with a secret code, represented by a
series of colored pegs placed on a board and hidden behind
a divider. Subsequent play would involve the other player
trying to match this code by placing their own pegs on the
board. After each guess, the first player would respond with
a number of black and white pegs indicating, respectively,
how many of the guess pegs were present somewhere in their
secret code, and how many of them were matched in the cor-
rect position.

The difficulty of this game depends on how long the se-
cret code is (the puzzle size) and how many different kinds
of symbols it could contain (the alphabet size). For the pur-
poses of this study, I set both of these parameters to four
and used a numeric alphabet. This meant that there were
44 = 256 valid guesses, represented by the set (0000, 0001,
... 3332, 3333). For a human with complete memory of game
history, this setup presents a very easy challenge, typically
solvable within at most 10 guesses. For a neural net, though,
collating data collected over the course of 10 activations is a
non-trivial task.

Strategy
Mastermind lends itself to a number of different styles of
play, which I attempted to distill into three expert heuristics

Figure 1: Screenshot of a basic Mastermind GUI;
note that there are 6 colors in the alphabet

and that the puzzle size is 4

(along with one “bad” player). Each one takes a previous
guess as input, then transforms it into a new guess at what
the secret code might be. The heuristics are as follows:

Incremental change expert
Implementation: Randomize one symbol in code, keeping
the rest the same
Notes: Expected to be a decent strategy for the mid to later
part of the game, when we are closing in on the right answer

Swapping expert
Implementation: Randomly choose two symbols in code
and swap them
Notes: Expected to be useful when the characters in the
previous guess are mostly correct, but appear in the wrong
order; expected to perform poorly when the previous guess
contains many duplicate characters, since random swapping
may have no effect

Non-overlapping expert
Implementation: Generate new code randomly from alpha-
bet of symbols not used in the previous guess (e.g. ’2232’
→ ’1001’); if all symbols were used, then just generate a
code with no positional matches (e.g. ’0123’→ ’2300’)
Notes: Expected to be most useful early in the game, when
making diverse guesses can help narrow the search space
faster

Random player
Implementation: Generate entirely random string from
alphabet, disregarding previous guess
Notes: This “expert” serves as both a baseline and a red
herring; my expectation was that the neural net would learn
never to consult it.
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Optimal play
In order to perform local reinforcement learning, it was nec-
essary to establish a metric for determining which of these
experts was the “right” expert to trust on each turn of the
game. If there were an obvious answer to this question, Mas-
termind would present little value as a learning task. Fortu-
nately, while there is rarely an obvious answer, there does
exist a straightforward and robust method for evaluating the
merit of any given guess, after that guess has been made.

This method involves maintaining a list of all potential
candidates for the secret code. Every time the player makes
a guess – and gets feedback about the number of correct
characters, number of characters in correct positions, etc. –
the algorithm runs through the list of remaining secret code
candidates. Codes which would have yielded the same feed-
back if they were the secret code are kept in the list, while
any codes that would have yielded different feedback are re-
moved. In effect, this method implements a simple form of
constraint propagation, such that, after a handful guesses,
only one or two possibilities will remain. By calculating the
number of potential codes that each guess rules out, we can
assign a numerical value to the utility of that guess.

In my code, I determined optimal play based on two
factors. The first was this constraint-propagation technique,
while the second simply looked at how similar a guess was
to the correct answer. For example, if swapping the charac-
ters in a code wouldn’t have ruled out many potential can-
didates, but would nonetheless have resulted in two more
characters being in the correct positions, I wanted to rein-
force that behavior. The details of how this reinforcement
worked are discussed under “Local training” below.

Network topology
Neural nets consist of a collection of nodes (representing
neurons) and edges (representing synapses), interconnected
in any number of different configurations. Typically, there
are at least one layer of nodes serving as inputs, one layer
serving as outputs, and one or more “hidden” layers in be-
tween.

For the purposes of local training, I used a fixed topology
with 18 input nodes, 12 hidden nodes, and 3 output nodes.
These three layers were fully connected (input to hidden,
hidden to output), with the middle (hidden) layer having
a recurrent relationship with itself – the standard structure
for an Elman network. Among the input nodes, there were
16 nodes that represented the previous guess the player had
made and two representing the feedback that that guess had
generated (i.e. percentage of characters correct and percent-
age of characters in the correct place). Each of the output
nodes indicated a decision to trust a given expert. After acti-
vation of the network, a winner-takes-all process would de-
termine which of the outputs was dominant, and then the
corresponding expert would provide the next guess for the
player to use. (See Fig. 2, below.)

My primary global training involved the same set of in-
puts, but with a fourth output node also present, which cor-
responded to the random player. This allowed me to test
the hypothesis that networks which ignored the fourth node

would have more evolutionary fitness than networks which
sometimes made random guesses. The rest of the topology
(hidden nodes, edges etc.) was variable, as discussed under
“Global training” below.

Finally, for the sake of comparison, I also studied one ad-
ditional global training scenario, in which I discarded the
experts altogether and attempted to learn Mastermind from
scratch – a seemingly monumental task. Once again, the in-
put nodes were the same as those used for local training,
but there were now 16 output nodes in four groups of four,
which encoded an output guess in the same manner as the
input nodes encoded the previous, input guess. (For a rep-
resentation of this general encoding, see bottom of Fig 2.;
outputs, per usual, were resolved via winner takes all.)

Local training
The general premise of local training is for our neural net-
work to receive feedback at each step of the way as it plays
Mastermind. After each new set of inputs propagates for-
wards through the net, there will be a corresponding back-
propagation of targets and updating of edge weights. By em-
bodying a very close linkage of cause and effect, local train-
ing can theoretically support more nuanced and closely tar-
geted learning than global training. However, it also risks
being short-sighted, or producing solutions that don’t gener-
alize very well.

This study involved three variant methods of determining
targets for local training, all of which utilized the scoring
data discussed above (see ”Optimal play”):

• Winner Takes All
This approach reinforces only the expert that would have
yielded the maximal score. For example, for scoring
vector S = {19, 112, 50}, the corresponding target vector
would be T = {0, 1, 0}. Ties get settled randomly.

• Gradient Targets
Rather than reducing the scoring vector to a completely
binary representation, this approach merely scales it to
fit within the range [0,1]. As a simple example, scoring
vector S = {200, 150, 100} becomes target vector
T = {1, 0.5, 0}. In the rare case that all scores are equal,
this method returns T = {0.5, 0.5, 0.5}.

• Complementary Reinforcement
Unlike the previous two methods, complementary re-
inforcement takes account of which expert the network
has already decided to trust. If this expert yields a score
surpassing a certain threshold, then complementary rein-
forcement rewards the network for choosing that expert,
in proportion to the strength of that score. 3 Otherwise,
if the score is below said threshold, complementary
reinforcement punishes the network by offering small
rewards to the other two experts, and no reward to the

3Because scores get lower in the later stages of a game, I nor-
malized this value by dividing it by the maximum possible score
for the given turn.
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Figure 2: Diagram of network topology for local reinforcement, with example data
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chosen one. Only the score of the chosen expert has any
bearing on this process.

Regardless of approach, local learning entailed plugging
these targets into the standard back-propagation algorithm,
with a learning rate of 0.3 and a momentum of 0.05. Games
were allowed to run for at most 15 guesses, or until the
player had won, whichever came sooner. The total training
time for each local learning method was 10,000 guesses.

Global training
Many of the questions and subtleties associated with local
training disappear when we adopt a global approach. The
only relevant metric now is the actual, demonstrated success
of an individual at playing Mastermind over the course of
its “lifetime.” How many games did it win? How long did it
take for it to win them? This holistic view has the advantage
of being firmly grounded in our end goals, without us, as
developers, ever needing to know how best to achieve them.
However, that lack of immediate guidance is exactly why
global training can fail on complex tasks like playing Mas-
termind: it is impossible to reward specific good behaviors
and punish bad ones. Furthermore, the search space is very
large, and we have no guarantee of traversing it quickly.

Nevertheless, the NeuroEvolution of Augmenting
Topologies (NEAT) algorithm, developed by Kenneth O.
Stanley at UCF, tackles these problems by starting with
a highly simplified search space, then gradually working
its way up to more complex solutions. NEAT is a genetic
algorithm, which means that it breeds and evolves entire
populations of Mastermind players, each represented by a
separate neural net. These nets start out with direct linkages
between input and output nodes, and then probabilistically
gain intermediate nodes and connections as they evolve.
The key step to configuring NEAT is to provide a relevant
fitness function, which essentially determines how likely an
individual is to pass its genes along to the next generation.
For this study, I wanted to select for individuals that
consistently beat Mastermind in the smallest number of
guesses, and so my function was:

fitness =
maxGuesses− actualGuesses

maxGuesses

In other words, a player that always guesses the secret
code on its first try will have a fitness of around 1, while a
player that always exhausts the allowable number of guesses
will have a fitness of 0. In order to allow individuals a bet-
ter opportunity to differentiate themselves, I set a high up-
per limit of 1000 guesses per game (after which point the
Mastermind class would reset itself). Then, in order to pro-
duce more robust results and minimize the role of dumb
luck, I required each individual to play 10 games before
receiving a fitness score. This meant that maxGuesses =
1000 guesses

game ∗ 10 games = 10000 guesses.
The only other setup required for running NEAT was to

provide a config file with some basic evolutionary param-
eters. I used a population size of 40, with a species size
of 10. Most of my evolutions ran for 200 generations (or

Player type Mean guesses Std. dev.
Optimal 96.857 96.471
Random 266.207 244.980
Random experts 316.510 288.606
Random “good” experts 402.917 332.565

Table 1: Benchmark data

“epochs”). Importantly, I set feedforward = 0 in order
to allow NEAT to evolve recurrent connections.

Results and discussion
Benchmarks
In order to have a context in which to understand the effec-
tiveness of my training, I ran a number of benchmark simula-
tions, representing players at different extremes. The results
are summarized in the following table: These data all refer to
the number of guesses it takes to win a game of Mastermind,
sampled over 1000 games. The “optimal” player selects ex-
perts based on constraint propagation; “random” ignores the
experts and just makes random guesses; “random experts”
trusts a different expert (including the random player) on
each move; and “random ‘good’ experts” works similarly,
except that it never chooses the random player.

Even among these benchmarks, there are several interest-
ing findings. Most notably, listening to the expert algorithms
at random actually results in significantly worse perfor-
mance than ignoring the experts altogether! (Keep in mind
that higher mean values indicate more guesses to win and
thus lower fitness.) The random player traverses the search
space uniformly, eventually hitting on the right code. The
experts, however, have the potential to get stuck in various
pockets of the space, or else to jump back and forth among a
small set of bad guesses. Nonetheless, we see that it is defi-
nitely possible to obtain good results by making optimal use
of the experts.

Local learning progress
By and large, local training did not prove an effective way
to learn when to trust each of the expert algorithms. While
complementary reinforcement back-propagation (CRBP)
yielded marginally better results than the other approaches,
all did worse than random:

Approach Mean guesses Std. dev.
CRBP 374.661 333.066
Gradient targets 390.061 344.606
Winner takes all 400.365 334.240

Table 2: Results for local training

Once again, these data were each collected by playing
1000 sample games after training had completed. Given
their similarity in value to the “random ‘good’ experts”
benchmark, it seems reasonable to assume that almost no
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Approach Trust Exp. 1 Trust Exp. 2 Trust Exp. 3
CRBP 33.4% 33.3% 33.3%
Gradient 33.4% 33.2% 33.4%
WTA 33.4% 33.3% 33.4%

Table 3: Expert trust rates for local training

meaningful learning has occurred.4 Further support for this
hypothesis resides in the following breakdown of time spent
trusting each expert:

Although it is possible that all of the experts proved
equally valuable, the utter uniformity of these percentages
seems more strongly to suggest that the neural net has not
learned to differentiate among the experts. There are many
potential explanations for this failure of local training: per-
haps the fixed topology was too simple; perhaps more hid-
den layers were necessary to preserve game context; perhaps
the granularity of reinforcement was too fine and the pat-
terns too abstract. The only obvious conclusion is that global
training was the better approach.

Global learning progress
While most members of the first several generations repeat-
edly failed to guess the secret code, earning themselves fit-
ness scores of 0, there were just enough successful individ-
uals for fruitful evolution to get underway. In fact, learning
progress was actually quite steep for the first 50 epochs or
so, after which point the curve tended to level out, with an
average fitness near 0.75 and a best fitness hovering around
0.9; (see Fig. 3). Below are results for a couple of the all-
time best chromosomes:5

Epoch Mean guesses Std. dev.
187 237.518 235.498
198 246.977 237.212

Table 4: Best NEAT results

Although the standard deviation is high, these means fall
significantly below the “random” benchmark – and even far-
ther below the “random experts” benchmark. Thus global
training has successfully gleaned some knowledge about
each expert’s strengths and weaknesses, and, more impor-
tantly, it has managed to use their collective domain knowl-
edge to strategic advantage. (See Fig. 4 for a visualization
of the network topology underlying this success.) A break-
down of how often each of these players trusts each expert
offers further insight:

Encouragingly, the players have learned that some experts
(notably Expert 1, the incremental change expert) are more
helpful than others, and yet the evolved strategies do not ne-
glect any of the experts altogether. This balance suggests a

4N.B.: Local training only had access to three output nodes,
and thus could only choose from among the “good” experts; see
”Network topology” above

5Each of these chromosomes comes from a different 200-epoch
run of NEAT; they are not part of the same progression

Epoch Expert 1 Expert 2 Expert 3 Random
187 40.6% 8.0% 5.2% 46.2%
198 31.3% 15.5% 2.4% 50.8%

Table 5: Expert trust rates for best NEAT chromosomes

nuanced representation of the problem. It is surprising to me
that random play remains such a substantial element of strat-
egy – around half of these moves are random – but I suspect
that this is an important means of getting “unstuck” when ex-
perts offer circular advice. (Both Expert 2, the swapping ex-
pert, and Expert 3, the non-overlapping expert, can be guilty
of cycling back and forth between recommended guesses.)

As a final piece of evidence that the task of learning Mas-
termind has benefited from expert knowledge, I present the
results of training NEAT to play Mastermind from scratch:

Epoch Mean guesses Std. dev.
170 439.739 392.426
214 480.708 394.226

Table 6: Best results learning Mastermind from scratch

Over the course of a comparable number of epochs, NEAT
hasn’t learned to beat even the worst of the random bench-
marks. This result may be expected, given the complex and
multimodal nature of Mastermind, but it is especially signif-
icant in contrast to NEAT’s relative success when consulting
experts.

Further work
Although learning Mastermind from scratch was decidedly
unsuccessful, it might be interesting to research a hybrid net
that could choose between trusting an expert and doing its
own learning, from scratch, on each turn. I suspect that hav-
ing the freedom to output independent guesses might be es-
pecially helpful in the end game, once the net has already
acquired enough knowledge about the secret code to outstrip
the utility of its hard-coded expert consultants.

I would also like to find ways to make local training a
more viable option. The Conx library does not seem to sup-
port recurrent networks with more than one hidden layer, but
a more sophisticated topology might increase the capacity
for remembering game history and detecting abstract pat-
terns.

Finally, having established that it is indeed possible for a
neural network to make effective use of domain knowledge
gained elsewhere, I would like to test this hypothesis in more
real-world scenarios. In particular, I’d like to see how well
neural nets can learn to filter out advice from nefarious ex-
perts (for example, Internet “trolls” seeking to sabotage a
game).

Conclusion
Introducing expert algorithms into a learning task can add
new layers of complexity, even as it makes the problem at
hand more accessible. Players naı̈vely trusting experts, with

6



insufficient knowledge of their relative merits, did worse
than players who simply ignored the experts and took stabs
in the dark. Nevertheless, by looking at the long-term ef-
fects of siding with different experts at different times, it was
possible to learn to benefit from their domain knowledge.
Players who did this outperformed players trying to learn
the problem from scratch, as well as players who learned to
interact with the experts on a more local scale.
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Figure 3: Plot of fitness over the course of a typical NEAT evolution

Figure 4: Topology of most successful NEAT chromosome (epoch 187);
note the recurrent relationship between nodes 19, 20, and 23
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