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Abstract

In machine learning, the fitness function is an incredibly important part of defining and
learning how to complete a task. For complex tasks, it is possible to identify a set of sub-goal that
can be explicitly rewarded as part of the fitness function. However, there are several different
ways of incorporating these sub-goals into evolution. The fitness function can be a weighted sum
of the different sub-goals or several separate populations can be evolved as specialists in one sub-
goal. These specialists can then be combined or crossed over after evolution is complete to create
a composite population or controller designed to complete the complex task. The purpose of this
experiment was to explore the effects of using one multi-objective fitness function rather than
a composition of individuals evolved using different fitness functions in NeuroEvolving Robotic
Operatives (NERO) with real-time NeuroEvolution of Augmenting Topologies (rtNEAT). Two
teams of robots were evolved within the NERO game, one evaluated using a multi-objective
fitness function and the other a composite of three separate specialist populations each evolved
as an expert in a single objective. The multi-objective team was pitted against three separate
specialist teams and the composite team. Our hypothesis was that the population evolved using
a multi-objective fitness function would be more effective in battle than the composite team, but
results showed that the composite team was more effective in battle than the multi-objective
team. However, the multi-objective team was more effective than most of the specialist teams
on their own. We took this a a promising sign that decomposition of a multi-objective fitness
function could be applicable to complex tasks.

1 Introduction

When designing and evolving robot controllers to accomplish difficult tasks, there are often several
different sub-tasks. More complicated fitness functions, such as multi-objective functions, allow
individuals to be evaluated based on several different parameters simultaneously. This helps negate
some of the pitfalls associated with fitness-based search, such as sub-optimal local maxima in the
fitness landscape that cause premature stagnation. It also allows for multiple factors to be included
in fitness, some potentially more complex than others. However, the calculation of multi-objective
fitness evaluations can be computationally costly. The use of ANNs in calculating approximate
fitness functions has been a topic of discussion in recent years [1]. Working from the premise that
calculating a single-objective fitness function may be less computationally costly than calculating
a multi-objective fitness function (due to its parallelizability), the goal of this experiment is to
evaluate the performance of a population of individuals generated using a single multi-objective
fitness function compared to that of a population formed from a composite of individuals evolved
using different fitness functions. We were able to find an example of a study of the decomposition of
multi-objective fitness functions. The MOEA/D method separates the fitness function into separate
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fitness functions, and optimizes each of these separately at each step. The individual optimizations
are then combined into one fitness function at each step. This procedure was applied to the
knapsack problem, and was shown to be a viable computational alternative to direct computation
of the multi-objective fitness [3].

To explore this problem, we will be using the rtNEAT system developed for NeuroEvolving
Robotic Operatives (NERO) by Kenneth O Stanley and others [2]. In the NERO game, the task
is to evolve a population of individuals and form a team of these individuals that will win a
match against another team by killing them off. This task is well suited for the usage of a multi-
objective fitness function as several different skills are incorporated in winning battle strategies.
The rtNEAT system replaces individuals in the population in real time, allowing for the kind of
continuity necessary for evolution in video games. NERO uses rtNEAT as its evolution protocol,
replacing individuals in real time. It cycles through the sequence of steps outlined in [2]:

1. Remove worst agent based on adjusted fitness (fitness/species size)

2. Readjust average fitness

3. Choose parents

4. Adjust compatibility threshold and reassign species

5. Replace old brain with new brain

The time between replacements is determined by a parameter I, the ineligible fraction of the pop-
ulation, which is set here to be 50 percent. An individual is considered ineligible for replacement
until it reaches a given age, allowing for fair evaluations. Each baby is set down into the world at
a fixed ”factory” location, again to promote fair evaluation. Each individual in NERO is given five
enemy radar sensors that divide the 360 ◦ around it into slices which each activate in proportion
to the nearest enemy, an on target sensor which is activated if the individual is targeting an en-
emy, five range sensors, two enemy line of fire sensors which detect where the bullet stream from
the nearest enemy is heading, and one bias input. There are three output values for left/right
movement, forward/backwards movement, and a fire output (Figure 1).

We expect that the population evolved using a multi-objective fitness function will be more
effective in battle than the population evolved as a composite of separate single-objective fitness
function teams. This is because by using a multi-objective fitness function, the networks can be
evolved to optimize all parameters of the function together, providing the ideal balance between
all of the desired behaviors. In contrast, with the single-objective fitness function,the individuals
are evolving toward only one parameter in ignorance of the others. We plan to test this hypoth-
esis by forming five different teams of each type of evolution (multi-objective vs. composite of
single-objective fitness functions) and having a tournament of sorts where every team will battle
every other team (including multi-objective teams fighting other multi-objective teams and single-
objective teams fighting other single-objective teams).

2 Experiments

We performed several different experiments. First, we performed an experiment looking at whether
a particular specialist team was dominant over the others. Next, we performed a series of experi-
ments pitting a multi-objective team against our composite of specialist teams. We ran this type
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of battle in two separate environments. We then evolved each of our populations for an additional
hour, and pitted our long evolution multi-objective team against our long evolution composite team
of specialists. All experiments were designed to test the efficacy of the multi-objective team against
the composite team of single-objective specialists. We initially evolved 4 separate populations in
NERO, each of 50 individuals. NERO has the capability to evolve for 6 different parameters at once:
stick together, hit target, approach enemy, avoid fire, approach flag, and stand ground. We decided
to study the problem of multi-objective fitness evaluations versus single-objective evaluations using
the three objectives of approach enemy, hit target, and stick together. These parameters were
chosen because they seemed to be distinct, non-contradictory goals. Initially, we had attempted
to evolve individuals to avoid fire, but the most fit individual still had a fitness value of zero after
an hour, so we decided to evolve a team designed to stick together instead. This turned out to be
advantageous, as upon further reflection the avoid fire and approach enemy objectives are slightly
contradictory. We believe this error was intrinsic to NERO, and not a result of our actions. Each
team was allowed to evolve for an hour. The multi-objective population was evolved with the ap-
proach enemy, hit target, and stick together all designated as maximally important (i.e. the slider
was set to positive 100%). The approach enemy population was evolved with the approach enemy
slider set to 100%, the hit target population was evolved with the hit target slider set to 100%,
and the stick together population was evolved with the stick together slider set to 100%. Each
population was evolved in the sandbox environment with no walls or flags, with the population
spawned from one end of the arena and a ”better turret”, a.k.a. a turret capable of rotating to face
the nearest player, at the other end, seen in Figure 2. We chose this type of enemy as it was more
complicated than the normal turret, but the troops were still capable of evading fire by shuttling
behind the turret.

Out of curiosity, we decided to pit different specialist teams against the multiobjective team
to determine whether a particular trait could be more or less important to overall fitness. This
is obviously not an absolute measure of performance, as one team may have a strength that is
particularly effective at exploiting the multi-objective teams weakness. However, we believed that
this could give an indication of why the composite team may be more or less effective than the
multi-objective team. If a specific goal was determined to be more or less effective, it may make
sense to adjust the reward for each objective to reflect that. The multi-objective team was composed
of the 18 most fit individuals from this population at the end of evolution. The composite team was
formulated of the 6 most fit individuals of each of the specialist populations (approach enemy, hit
target, and stick together). The teams were initially looked at in the standard sandbox environment.
The battles here typically lasted less than 5 seconds, and didnt allow the teams to distinguish
themselves in terms of performance. Thus the environment was deemed insufficient for analyzing the
performance of these different teams, and we attempted battle in a more complicated environment
that we designed, with a line of three walls in the middle of the field (Figure 3). As a measure
intended to control for the impact of environment on team performance, the teams were then tested
in the preset NERO ”Andrian Arena” world (Figure 4). The populations were then evolved for an
additional hour each, and were re-tested against each other both in the ”Andrian Arena” and in
the ”Sandbox”.
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3 Results

In this experiment, we evaluated our five different populations of robots in two different ways.
First, we examined the average and best individual fitness of each population and second, battled
each team against the multi-objective team and evaluated the win percentage and average battle
length for each team. The fitness data can be seen in Figure 5. Looking first at the fitness of
each individual, the multi-objective team had both the highest average fitness and the most fit
individual. This is because the multi-objective fitness function is a construction of all three single
objective fitness functions and so can reach higher values more quickly than any of the single-
parameter functions. The hit target specialists received the lowest average and individual fitness
as this task was the hardest to learn. Not only must an individual learn to find the enemy, but it
must also learn to aim. When compared with the stick together specialist population, it is clear
that hitting an enemy is much more difficult than sticking together as the robots are all spawned
very close to each other initially, but much further from the enemy. The composite team does not
have any fitness data as it was formed from taking the six most fit members of each of the specialist
populations and placing them all on the same team.

The first set of battles we ran were between the populations that had been evolved for one
hour on our custom map (Figure 3). The results from these trials can be seen in Figure 6. The
multi-objective team was able to defeat both the approach enemy specialists and the stick together
specialists but did not win against the hit target specialists. The multi-objective team fared the
best against the stick together specialists, winning 100% of their battles against them. While the
average battle length of these battles was the longest, this makes sense because the stick together
specialists do not approach the enemy team, but instead stay as a group where they are spawned.
This however, makes it very easy for the multi-objective team to defeat this group as the stick
together specialists have no training in hitting the opponent. The approach enemy specialists fared
a bit better, winning 30% of their battles against the multi-objective team, however their lack of
hit training was apparent again as their battles only lasted an average of 15.1 seconds. The hit
target specialists were able to defeat the multi-objective team 80% of the time in an average of
17.5 seconds, reinforcing that this was the most important parameter towards the overall goal of
winning. When the multi-objective team was battled against the composite team, the composite
team won 100% of their battles but had the second longest average battle length only behind the
multi-objective team against the stick together specialists.

Our second set of battles were done between the multi-objective team and the composite team
only. The results can be seen in Figure 7. The first set of battles took place on the Andrian Arena
map (Figure 4), a map with more obstacles. Of the ten battles, only five ended with a clear victor.
The composite team won 60% of these battles with an average battle length of 58 seconds. Each
team was then evolved for one more hour and battled again on the Andrian Arena map. After
running several trials, none had ended in a victor so we decided to pit these teams against each
other in the empty Sandbox map, exploring the possibility that longer evolution would lead to more
complex battle tactics used by each team and battles would last longer than only several seconds.
This proved to be true. Of the battles that concluded, the composite team won 100% with an
average battle length of 87.3 seconds.

4



4 Discussion

From the battle lengths, we can draw several conclusions about the importance of the three objec-
tives we chose, multi-objective versus single-objective speed of evolution, and specific outcomes of
NERO. From the fitness graphs, we can see that certain tasks improved in fitness more quickly than
others both in terms of average fitness and in terms of highest fitness. This lead us to believe that
certain tasks, such as stick together, were easier to learn. We attributed this to the setup of NERO,
which spawns all individuals from the same location. The hit target appeared to be the hardest
task to learn but proved more effective in battle against the multi-objective team. This indicates
that the hit target objective is more closely correlated to success against the multi-objective team.
As a player of this video game, performing experiments of this kind could be useful in determining
the weighting each objective should be allowed during evolution. Interestingly, during the battles
the hit target team was important for the initial exchange of fire, but typically didnt survive the
longest, and therefore were not necessarily the most integral to success. The stick together special-
ists tended to survive a lot longer, due to their propensity for lagging behind and thereby evading
the bloodbath. Again, through analysis of the various behaviors a better evolution strategy could
be devised for actual players of the game.

The single-objective specialists did have higher fitness values than the multi-objective individ-
uals in their respective tasks when evolved for the same length of time. Additionally, we were able
to parallelize the evolution of the specialist populations. This gives credence to the idea that being
able to decompose a multi-objective fitness function is a desirable trait. The fact that the composite
team handily beat the multi-objective team in combat in our initial world seems to indicate that
this decomposition can definitely be useful in complex problems, such as battlefield combat.

As a probe for this problem, NERO is interesting because it allows for a team composed of
individuals evolved to do different things, however these individuals cannot be crossed over. For
a more direct comparison, the products of single-objective evolution should be combined into a
single brain through crossing over, and compared to a team evolved with a multi-objective fitness
function. Finding a different platform that allowed us to perform this kind of comparison would
be an interesting addition to this analysis.

In conclusion, our results indicate that decomposition of a multi-objective fitness function could
be an effective tool for faster evolution. Our composite team of specialists fared sufficiently well
against the multi-objective fitness function, disproving our hypothesis. However, while we were
able to parallelize evolution of different specialist teams, we were not capable of acheiving the kind
of improved evolutionary speed-up that is the primary incentive for investigating this problem.
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Figure 1: The inputs and outputs of the neural networks used for each individual in NERO.

Figure 2: The training environment used for all training. It contains a better turret and no walls.

6



Figure 3: The custom map used for the first set of battles. There are three walls in the center of
the map with each team spawning on opposite sides.

Figure 4: An overhead image of the more complex Andrian Arena map.
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Figure 5: Average fitness and best individual fitness for each population after being evolved for one
hour.

Figure 6: Win percentages and average battle length for each battle in the first round.

Figure 7: Win percentages and average battle length for each battle in the second round.
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