Using NEAT to Stabilize an Inverted Pendulum

Awjin Ahn and Caleb Cochrane
May 9, 2014

Abstract

The inverted pendulum balancing problem is a classic benchmark problem on which
many types of control implementations are tested, as well as being an apt analog to
actual applications in which the system being controlled is naturally unstable. As a
means of aiding the design process, and in an effort to explore alternative controller
implementations, adaptive control systems have been developed to automatically tune
control system parameters. We hypothesized that the Neuroevolution of Augmenting
Topologies (NEAT) technique will evolve effective neural network controllers for an
inverted pendulum system. NEAT was, in fact, successful in producing controllers that
provided consistent balancing motion. Tweaking the fitness function provided us with
even smoother and efficient solutions. Furthermore, to test the robustness of NEAT,
we introduced random disturbances during evolutions. NEAT was able to generate
controllers that handled these disturbances well, despite needing more generations.

1 Introduction

1.1 Overview

A common problem of particular interest in the study of control theory is the design of
controllers for systems that are naturally unstable. Furthermore, the design of precise and
robust controllers for such systems require deep knowledge of control theory principles, and
can thus be difficult to design. As an alternative, it is possible to use learning systems and
adaptive methods to aid in the design of effective control systems. In particular, artificial
neural networks (ANNs) may be used in place of conventional controllers, and careful design
of the network topology (use of recurrence, feed-forward connections, hidden units, etc.) can
be used to design highly effective ANN controllers. Finally, Neuroevolution of Augmenting
Topologies (NEAT) can further simplify the design task, as the topology of the control ANN
does not need to be hard coded by the designer [3].

1.2 The Inverted Pendulum

We want to be able to design a control system capable of balancing an inverted pendulum
on a cart. In the following sections, we discuss two different approaches to this problem, and
the motivations behind them.

1.2.1 Classic Control Solutions

Of classic importance in the study of system control is the unstable system. An unstable
system may have a theoretically infinite or constantly increasing output due to a finite input.
For example, a ball resting on a hill constitutes an unstable system, as a small push in any
direction will cause the ball to begin accelerating down the hill. Similarly, balancing an
inverted pendulum is difficult, because a small perturbation in any direction will start the
pendulum falling faster and faster. This class of problems has several real world applications,
such as controlling the trajectory of a rocket immediately after launch, or the steering controls
of fighter jets.

Precise controller implementations are traditionally designed through the application of
control theory. By characterizing the response of the system with a transfer function, one
can design a variety of control systems, such as a PID (proportional, integral, derivative)
controller [5]. PID controllers are effective for inverted pendulum control. A block diagram
of a PID controller is shown in figure 1:

Desired State _ e(f) Control S]gual
T e e

d
Ky Zel)
Feedback Signal

Measured State

Figure 1: A Basic PID Controller. The current system state is fed back to the input, to
generate an error signal, e(¢), which is in turn used to calculate the input to the system

Other classic control theory solutions include state-space representations and pole plac-
ing, whereby feedback gains can be calculated by using a matrix representation of the system
characteristics [4]. It is important to note that each of these implementations relies on feed-
ing back the current state of the system to the controller, where this state information is
scaled and combined to generate an output for the system being controlled.

1.2.2 Adaptive Control and Neural Networks

Rather than designing controllers fully by hand and making them tailored to very specific
environments, it is possible to design controllers with built-in learning. For example, a
method called gain scheduling automatically sets system parameters by first breaking the

control task into several sub-tasks, according to differing sets of operating conditions, and
making linear approximations for each region [6],[2].

A system controller can also be modeled with an artificial neural network. Just like a
classic controller, a neural network can take current system states and calculate the next
controller input to effectively control a system. Using a modified back-propagation algo-
rithm and careful consideration of network topology, neural network controllers tested on
benchmark control system tests have comparable performance to classic implementations
[1]. Furthermore, design of a dynamic neural network can achieve desirable control system
properties such as disturbance rejection, or the ability to easily respond to sudden changes,
through more complex learning algorithms [6]. Each of these techniques is designed to supply
greater assistance in the design of a control system, while maintaining robust control over
the system.

1.2.3 Taking Adaptive Control Even Further

The neural network control techniques discussed above all aid in the design of control systems
by adapting system parameters, but the designer must still carefully consider the particular
topology and training algorithms to achieve robust control. Alternatively, we hypothesize
that it is possible to reduce even topological considerations through the use of NEAT to
evolve an effective topology.

NEAT works with an initially small population of neural networks. Over the course of
several generations of evolutions, the topology of the networks is complezified to achieve
more and more sophisticated behaviors. During each generation, the most fit networks
(as assessed by a fitness metric) reproduce and create new generations. During this step,
topologies of the network are altered through mutation and crossover, potentially adding
connections between nodes, or adding nodes themselves, producing more complex offspring
for the next generation. NEAT is also uniquely able to maintain a diverse population through
speciation—compartmentalization of types of networks, using historical markings—to pro-
tect emerging strategies and give younger individuals a chance to thrive. Speciation also
allows more similar networks to produce offspring more efficiently [3].

By instantiating a population of controller networks with a NEAT algorithm, we hope to
be able to evolve effective inverted pendulum balancing strategies. Furthermore, we believe
that recurrence is likely to be an important aspect of an effective controller, based on the
natural back-and-forth motion used by humans when balancing similar systems.

2 Methods

2.1 Hypothesis and Overview

We hypothesize that the NEAT algorithm will develop effective controllers for balancing an
inverted pendulum. We explore the efficacy of NEAT in three ways:

1. We implement a penalty for moving too much in order to encourage less erratic (and
more physically feasible) solutions.

2. We allow the generation of recurrent connections in order to test whether recurrent
connections are beneficial.

3. We evolve networks to handle disturbances to the system.

2.2 Simulator

In order to evolve and evaluate a NEAT population of controller networks, we built a sim-
ulated environment of a pendulum balanced on a cart using the pygame graphics library.
(A screenshot of our finished simulator is shown in figure 2). To ensure that the controllers
developed a physically feasible control system, we carefully derived the equations of gen-
eral plane motion. These equations describe the motion of the pendulum for each timestep,
namely the translational position, velocity, and acceleration (z.,v., and a.) and the angle
and rotational velocity and acceleration (f,w,and «), and make sure that both the force
generated by the base and the pull of gravity on the pendulum are accurately represented.

Each ANN generated by NEAT has 4 inputs and 1 output. The 4 inputs fed into the
ANN by the simulator are the linear velocity of the rod, the angle of the pendulum relative
to the vertical, the linear velocity of the base, and the linear position of the base. The
ANN generates an output -1 to 1, as the activation function is tanh(inputs). The output is
scaled by a factor of 10, then passed back to the simulator which moves the pendulum by
the output amount.

Inverted Pendulum Sim - x

Time: 23.893 Fitness: 570.875449 PRESS SPACE TQ CONT

angle: -1.7121 PRESS ESC TO QUIT

Figure 2: Inverted Pendulum Simulator (Human Control)

We refactored the open source code for NEAT and integrated it into our simulator.
Normally, NEAT’s evolutions depend on error generation and propagation, but we decided
to measure the fitness of an ANN using time:

fitness = (duration of time balanced)®

This ensured that controllers that could balance the pendulum for longer periods of time
received exponentially greater rewards.

2.3 Experiments

To test our hypotheses, we conducted trials of at most 30 generations for each of the following
experiments. At the beginning of each ANN evaluation, the pendulum was set to a random
angle in the range of [-0.01, 0.01] radians. The NEAT algorithm stopped whenever an ANN
was generated that could balance the pendulum for 120 seconds, which we deemed as a
reasonable maximum fitness. Videos of the best evolved topologies, as well as demonstrations
of the simulator, are available online at: http://goo.gl/c2JToV.

2.3.1 Experiment 1: Distance Penalty

After some experimentation with NEAT training, we noticed a general trend in the evolved
controllers: since the fitness was measured solely via time, the controllers were moving
extremely rapidly back and forth. This was effective in terms of balancing the pendulum for
a long time, but was an unfeasible solution in terms of energy, sustainability, and realistic
physical limits. Therefore, we tested an alternative fitness function in contrast to the original
one, in which moving greater distances incurs a higher penalty. The new function is as follows:

total distance travelled

10

fitness = (duration of time balanced)® —

2.3.2 Experiment 2: Recurrence Enabled

In attempts to evolve a controller with even more regular movements, we allowed NEAT to
form recurrent connections. We used the new fitness function described above and compared
the results to those obtained using only feedforward connections.

2.3.3 Experiment 3: Disturbances to the System

We added disturbances to the system in order to see if NEAT could evolve a robust controller.
The disturbance consisted of a consistent push to either the left or the right for 5 time steps.
The disturbances occurred at every 100th time step, but the direction and force of the push
were randomly generated.

3 Results

3.1 Experiment 1: Distance Penalty

In an effort to get more smooth control of the inverted pendulum, we altered the fitness
function by penalizing excessive movement. In this way, NEAT’s solutions can be more con-
servative with its solutions, rather than oscillating rapidly. The fitnesses for these trainings
are shown below in figure 3, though it is important to notice that the scale for the two
fitnesses is completely different, due to the altered fitness metric. The qualitative results are
also discussed in the following sections.

Population's average and best fitness

WOFT — — 7 T T T T —T 0000

Population’s overage and best fitness
T T3

14000 F
12000 F] 30000 - 1
10000 F]

8000 20000 -

Fitness
Fitness

6000 1
Lok 1 10000 1

000k]

I S SO S A R SN SR (T SR SR T S M T’ [IR SR NN SNSRI A R R | IR B R
0 5 10 15 0 ? 4 § 8 10
Generations Generations

(a) Fitness function without distance penalty (b) Fitness function with distance penalty

Figure 3: Fitness of controllers trained with different fitness functions

Figure 3 shows that NEAT is able to evolve a successful controller within 30 generations,
for two different fitness metrics. Though they only represent one evolution, the trials shown
in figure 3 are very typical runs for each method. These figures mostly serve to show that both
fitness metrics could be used to develop a successful controller. Observing the qualitative
results, however, provides a much better illustration of the difference in behavior resulting
from the two functions, which we address in the discussion section.

3.2 Experiment 2: Recurrence Enabled

After performing two training runs to determine the effect of recurrence, the plots of average
fitness for two training runs are shown below, side-by-side, in figure 4.
The topologies of the learned networks can also be examined below in figure 5

Population's average and best fitness

Population’s average ond best fitness

OFT T T L e L N B I
5L]
30000] ’
. 1+ " W/_/\\/\// "“-\;“-“ 4
0] N\ \/ \ /
9 o0] ¢ AR
C uuv 5 “.“
L L / 1
10000 F 1 2 /]
1+]
! R Ll L PR SRR R
0 2 4 b 8 10 0 5 10 1 20 f5 N
Generations Generations
(a) Recurrence disabled (b) Recurrence enabled

Figure 4: Controllers trained with recurrent connections enabled and disabled. Note radical
difference in scale between the two fitnesses

(]
ted
=

4]

(b) Controller topology, Recurrence enabled

(a) Controller Topology, Recurrence disabled

Figure 5: Controllers trained with recurrent connections enabled and disabled

The non-recurrent solution was able to generate a solution within 30 generations, as
seen in figure 4a, and was able to do so consistently, but NEAT with recurrence enabled
actually failed to evolve a controller, as shown in figure 4b, and failed consistently. This
contradicts our hypothesis that recurrent connections in the networks would be instrumental
in the development of feedback control systems. The recurrent trials of NEAT likely failed
because the extra search space created by allowing recurrent connections made the problem
too difficult for NEAT, at least for our modest population size and number of generations.
We also realized that the non-recurrent network implementation still constitutes a feedback
control system, because the inputs to the network can be considered as feedback on the
current state of the system. Therefore it is actually very reasonable that NEAT without
recurrent connections has an easier time finding solutions, since the recurrence options only
serve to complicate the problem.

3.3 Experiment 3: Disturbances to the System

We also experimented with implementing a system that can handle random disturbances by
training NEAT with random “pushes” to the pendulum system. After twenty-four genera-
tions of evolution, a controller was developed that was able to keep the pendulum balanced
for the entire allotted time interval. The average fitness across the 24 generations is shown
below, in figure 6, as well as the topology developed by the fittest controller in 7.

Population’s average and best fitness
4UUDD _I | T I | I T T 1 | 1 T I T | T T 1 T ’ T T J_

30000 |

0

] R r
2 20000

+

T
L

w

10000 F]

Ll o 1 1
0 5 10 15 20 2
Generations

Figure 6: The average fitness of the NEAT population across 24 generations of evolution

Figure 7: The Topology of a network evolved with disturbance rejection

By training the NEAT population on an environment with constant, random distur-
bances, we also developed a controller to successfully handle disturbance rejection, as shown
in 6. We can also examine the topology of the highest fitness network in figure 7, essentially
the disturbance-rejection controller evolved by NEAT. Compared to the topologies of the
standard controllers developed in experiment 2, in figure 5 and 5, the topology is much more
complex, reflecting the fact that this is a much harder problem to solve.

4 Discussion

For most of our trials, we examined the changes in fitness over the course of evolution
to check whether or not a maximum network controller achieved a viable solution to the
problem. However, our fitness graphs are somewhat uninformative, beyond demonstrating
whether or not a solution is found, because our trials were designed to terminate once a
viable solution is found. Also, the learning curve of the population is very steep, because the
network essentially either has a correct implementation, or it doesn’t—here is surprisingly
little middle ground. As a result, fitness rates tend to look like very steep step functions.
This is unsurprising, as the act of balancing a pendulum requires a very subtle and deliberate
motion that has little room for error.

Rather than looking at the fitness curves, we can get a much better sense of the actual
behavior under different conditions by watching the highest fitness networks in action in
the simulator. With a simple fitness function of time-squared, NEAT was able to evolve
effective but somewhat spastic controller for the inverted pendulum system. Using a slightly
more sophisticated fitness function, we were able to achieve much smoother controllers.
We also tested recurrent networks, to test our hypothesis that this would enable better
controllers, but found that recurrent networks were unable to develop successful controllers.
The disturbance handling was quite capable and smooth, and almost indistinguishable from
the controller evolved with a distance penalty.

5 Conclusion

In order to aid in the design of complex control systems, many engineers have turned to
adaptive methods to assist in the tuning and structural design of the controller. Many such
solutions use careful design of neural networks to automatically design system parameters.
Our approach was to use the NEAT algorithm to aid in the design of network-controller
topologies by automatically evolving the structure of the networks. We have shown that it is
possible to use this method to design highly effective and robust controllers, with important
features such as disturbance rejection.

6 Future Work

Our work with the evolution of system controllers using NEAT feels very much like just
scraping the tip of the iceberg. For future research, it would be highly informative to
compare the efficacy of NEAT-evolved controllers against other control methods, such as
classic, hand-designed, PID controllers, and other adaptive methods, such as the Kalman
Filter. We would also like to apply evolved controllers to actual hardware applications.

7 Acknowledgements

We would like to thank the following individuals:

1. Eric Liu, for sharing his research on hand-designed controllers, especially concerning
physical parameters and kinematic equations for an actual inverted pendulum system

2. Professor Faruq Siddiqui, for helping us with the Kinematics of our simulator, and

3. Professor Lisa Meeden, for providing guidance and feedback throughout the semester,
and helping with implementation details as they arose.

10

References

1]

Tarek Aboueldahab and Mahumod Fakhreldin. “Identification and Adaptive Control of
Dynamic Nonlinear Systems Using Sigmoid Diagonal Recurrent Neural Networks”. In:
Intelligent Control and Automation 2 (2011), pp. 176-181.

Lingji Chen and Kumpati S. Narendra. “Identication and Control of a Nonlinear Dy-
namical System Based on its Linearization: Part I1”7. In: American Control Conference,
2002 1 (2002), pp. 382 —387.

Joel Lehman and Kenneth O. Stanley. “Abandoning Objectives: Evolution through the
Search for Novelty Alone”. In: Evolutionary Computation 19.2 (2011), pp. 189-223.

Eric Liu. “Rotary Inverted Pendulum”. In: Swarthmore College (2013).

Francesco Corucci Pasquale Buonocunto. “Real-time PID Control of an Inverted Pen-
dulum”. In: University of Pisa (2012).

Gregory L. Plett. “Adaptive Inverse Control of Linear and Nonlinear Systems Using
Dynamic Neural Networks”. In: IEEE Transactions on Neural Networks 14.2 (2003),
pp. 360-376.

11

