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I. INTRODUCTION 
 Inter-robotic communication and swarm communication 
are a fascinating area of developing research. Several papers 
have focused on how communication in a swarm of agents can 
develop grounded communication systems using very simple 
communication frameworks, but few have compared a variety 
of frameworks. What types of information should be 
communicated between robots to create the fittest individuals? 
Might it be better to communicate with an already grounded 
set of data, like motor values, and allow the robots to abstract 
this information into a communication system? 
 This paper divides communication into two somewhat 
overlapping classes: abstract and concrete. Concrete data is 
grounded and definite. It has an absolute meaning within the 
context of its environment. Abstract data on the other hand 
contains a meaning deeper than its concrete representation. For 
example, figure 1 is a set of concrete data corresponding to the 

amplitudes of a series of sounds, but what this representation 
does not hint at is the abstract representation behind the data. 
If a human, rather than a computer, had interpreted the data, 
they would have likely heard, “I am a robot”. Agents that have 
evolved communication take these concrete data sets and 
abstract them. In terms of a robotics framework, concrete data 
would be sensorimotor data, which needs to be interpreted into 
behavior cues to be useful, and abstract data would be a 
specific command from a controller, which only has meaning 
in terms of the robot’s interpretation of the command. 
 Another distinction between data is the degree of 
abstraction and concreteness. Most abstract data is a highly 
abstracted interpretation of concrete data; human speech for 
example can be broken down into a highly concrete data set of 
frequencies. Furthermore, some forms of data ride the line 
between abstract and concrete. Comparing human speech to 
human gesturing, speech is much more highly abstracted 
because it more often carries meaning independent of its raw 
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ABSTRACT 

This paper presents the results of an experiment, which investigated different modes of communication by evolving a 
swarm of communicating robots to solve a collective searching task. Two types of information sending were evaluated: 
signals and movement knowledge. The first set of robots evolved communication based on sending abstract signals between 
members of the swarm. This set of robots was intended to demonstrate how robots could develop a grounded 
communication system based on highly abstract sensory inputs and outputs, but instead, these robots optimized their 
individual strategies and failed to develop a valid communication system. The second set of robots sent their motor values 
to communicate. This group illustrated how agents can interpret the motor states of their peers and extract pertinent social 
and environmental information. This group evolved robots with a heavy dependence on communication, and this group 
never managed to optimize its individual strategy. Lastly, a group of robots with both types of communication was evolved 
to illustrate how different data representations can be used in a communication system. Out of this group, there were 
individuals that either focused on communication or individual strategy, but no individuals focused on both.  Unfortunately, 
due to the idiosyncrasies of the test environment and the evolution runs, the control group, without communication, 
outperformed the communicative robots.  
 

 
 
 

Figure 0: An amplitude chart of the author saying, “I am a robot”. This demonstrates the necessity of data abstraction in 
communication; the concrete representation of the data obscures the abstract meaning. To effectively communicate, agents 
must be able to interpret the raw data they receive.   
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data. Gestures, though, may or may not be intended for 
communication. If a person’s hand moves towards an object, 
that person could be either gesturing at the object or moving to 
interact with it. In the first case, communication occurs and an 
observer can infer an abstract meaning, but in the latter case, it 
is an action to effect change on the environment, independent 
of observers. While both methods of communication can be 
abstract, gesturing is more concrete, because the 
communication is based on a grounded method of interacting 
with the environment. 
 Another important area of study comes from the 
combination of concrete and abstracted data in the same 
communication system. For example, body language and 
speech form a highly nuanced communication system when 
combined.  
 The goal of this paper is to observe how communicating 
with different types of data effects the behavior of a swarm of 
robots. This goal will be achieved in three ways: robots will be 
evolved to 1) show how robots can ground abstract data in 
social and environmental cues, 2) form an abstract 
interpretation of concrete data, and 3) integrate these different 
data modes into the same communication system.  
 There will be three different types of robots, one for each 
sub-goal. The first swarm of robots will be evolved to develop 
an abstract method of communication. This method of 
communication would be most similar to speaking, where the 
abstract data is ungrounded, so the swarm must evolve both 
the values and the interpretations of the signals. Since these 
robots use signals to communicate, they shall hitherto be 
referred to as signal senders. The second set will communicate 
using grounded, concrete information. In the implementation, 
these robots communicate by sending the previous time step’s 
motor states. Since this method uses the movement of the 
robots as a form of communication, they will be referred to as 
movement type robots. The third will be evolved to 
communicate with both abstract and concrete data and will be 
evaluated based on the different ways in which it incorporates 
the data into its communication system. This robot will be a 
combination of the two previous robots, so it will be referred 
to as the conglomeration type robot.  
 In the following section, a short review of related 
literature will be made. Section III, details the experimental 
procedure, including the task environment and an overview of 
the four types of robots that were evolved. Section IV, 
presents and analyzes the qualitative and quantitative results, 
while section V discusses the successes, limitations, and 
failures of the experimental method and results. Lastly, section 
VI concludes this paper with a brief evaluation of the 
experimental goals and possible edits and continuations of the 
experimental method. 
 

II. RELATED WORKS 
 Quinn et al. evolved swarms of robots for effective 
flocking behavior, staying close together and aligning their 
movement axis. They were given only a proximity sensor, but 

individuals evolved a method of signaling based on 
movement. Robots, could communicate the roles of leader and 
follower based on the way that individuals approached each 
other. If one robot is approaches another robot and stays close 
for an extended period of time, it is signaling that it would 
take the role of follower. If a robot experiences a high 
activation of its proximity sensors, then it would invert its 
direction and assume leadership of the swarm. This simple bi-
modal communication strategy allowed individuals to 
effectively communicate without any explicit communication 
sensors. These robots were taking concrete data from their 
proximity sensors and abstracting them into social cues for 
effective swarming behavior. 

In Marocco et al. (2003), evolved a controller for an arm 
robot tasked with discerning the shape of objects through 
tactile information. These controllers took turns being 
“speakers” and “hearers”. The speakers were given tactile 
information about the object being held and had to interpret 
this data into a communication vector, a vector of floating-
point values, which was then sent to the hearer. The hearer 
then reinterprets the communication vector to discern which 
type of object is being touched. The goal of the task was to 
pick up spherical items and avoid cubic objects, and the 
controllers with communicative abilities were able to create 
abstract representations for the concrete data and use this 
representation to solve the task faster. This paper showed how 
robots could evolve a method of abstracting concrete data and 
reinterpreting the data into environmental features.  

Nolfi and Marocco (2004) evolved a swarm of 
communicating robots with a homogeneous neural network 
controller to solve a collective navigation task. They explored 
how robots capable of sending signals could develop and use a 
system of communication to improve their effectiveness at 
finding target areas. This experiment focused on how 
communication and goal solving abilities co-evolve, and how 
with a simple and open-ended communication system, a 
complex method of communication can arise. Through 
evaluating the fittest individuals in a ‘deprived’ condition, in 
which they took away the ability to communicate, they proved 
that in addition to creating a communication strategy, the 
searching strategy of individuals was also optimized. Their 
robots developed multi-modal types of communication, while 
communicating with just a single floating-point value.  

The experimental method in this paper simplifies the 
Nolfi and Marocco paper’s method, but tests a variety of 
communication types. Experiments have been done to evaluate 
the effectiveness of using abstract and concrete data for 
communication, but this paper compares the two approaches in 
the same evolutionary context. Rather than focusing on the 
development of complex communication systems, I examine 
the behaviors of robots that communicate using different 
forms of communication.  
 
III. EXPERIMENTAL DESIGN 
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 This experimental setup was designed to evolve neural 
network controllers for a collective searching task. Each 
member of a swarm of robots is given. The controllers were 
evolved using NeuroEvolution of Augmenting Topologies 
(NEAT), a genetic algorithm that gradually complexifies 
simple neural networks by adding nodes and connections. Neat 
was given the ability to evolve recurrent connections. All four 
robots have the same controller.  
 In addition to the four robots, the environment consists of 
a square arena, and a circular target area. The target starts in 
the middle of the top half of the arena, and the robots are 
initialized randomly in the bottom half with initial headings in 
the range of [-22.5°, 22.5°] from straight up. 
 The goal of the robots is to search the arena, find the 
target and converge on it.  

 
 
1. Robot Topology 

Four different types of robotic controllers were evolved, 
and each type, excepting the control, examines a different type 
of data representation. Since NEAT changes the topology of 
the networks as they evolve, the illustrated networks are only 
the initial starting points, and do not accurately represent the 
connectivity and hidden layers of the evolved topologies. 
1. Control Group (no communication): this controller has no 

form of communication. Its neural network has three input 
nodes and two output nodes. The first two input nodes are 
left and right sonar sensors, and the third input node is a 
target sensor that returns a 0 if the robot is outside the 
target area and a 1 if it is in the target. The two output 
nodes are the left and right motors. 

  
 

2. Signal Type (abstract data): This type of robot was 
designed to evolve a method to ground arbitrary signal 
values in environmental and behavioral cues. These robots 
communicate with an arbitrary signal value, so the 
controller must evolve both what value signals to send 
and the meanings behind those values. This mode of 
communication represents the use of abstract knowledge 
because there is no the meaning of the signal is based not 
on the raw data of the signal value, but on the robot’s 
interpretation of the value. In addition to the motor output 
nodes, this robot has a signal actuator that sends out a 
floating-point value from 0 to 1. This signal can be 
‘heard’ by the additional sensor node that inputs the signal 
value of the closest neighbor robot. The last input node, 
the direction sensor, gives the direction of the closest 
robot relative to the heading of the robot.  

 
3. Movement Type (concrete data): This type was designed 

to evaluate how robots can develop abstract 
interpretations of concrete data. These robots 
communicate by sending their motor states, and unlike the 
signal senders, a concrete meaning grounds the data being 
transmitted. To effectively complete a task, this controller 
must be able to communicate and interpret important 
environmental features from movement, similar to how a 
bee signals to the swarm using a ‘dance’. In addition to 
the sonar and target sensors, this robot has two motor 
sensors that return the previous time step’s motor values 
for the nearest robot and one more input node, which 
gives the direction of the nearest robot.  

 

 
4. Conglomerate Type (combination of concrete and abstract 

data): this controller combines the previous two methods, 
and can give insight as to how concrete and abstract data 
can interact to form more nuanced communication modes. 

Figure 2: A  diagram of the task environment and the initial 
starting points of the target and the robots. The outer boundary 
of the arena is demarked by the black square. The lighter lines 
are the rays of the sonar sensors. The circular area is the target 
area. 
 

Figure 4: The neural network of the signal type robots. 
Nodes 1, 2, and 3 are the sonar and target sensors. Node 4 is 
the signal sensor. Node 5 is the direction sensor. Node 6 
and 7 are the motor outputs, and node 8 is the signal 
actuator. 

Figure 5: The neural network of the movement type robots. 
Nodes 1, 2, and 3 are the sonar and target sensors. Nodes 4 
and 5 are the movement sensors, which input the motor values 
of the nearest robot. Node 6 is the direction sensor. Nodes 7 
and 8 are the motor outputs. 

Figure 3: The neural network of the control type robots. 
Nodes 1 and 2 correspond to left and right sensors. Node 
3 corresponds to a target sensor. Nodes 4 and 5 are the 
motor outputs. 
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This controller combines all the nodes and outputs of the 
previous three controllers. 

 

 
All the controllers with the ability to communicate were also 
given a direction sensor that gives the direction in degrees of 
the nearest neighbor relative to the robot’s heading. This 
sensor was necessary for high-level communication because 
communication is much more useful in a collective searching 
task if you know where the communication is coming from.  

 
2. Fitness 
 At each time step (i) fitness was evaluated in three 
different ways: 

1. To encourage effective searching behavior in the 
beginning of evolution, the controller was awarded a 
small amount of fitness (α) for each robot not stalling 
(A). 

2. The controller was awarded the value of the 
cumulative distance that all the robots travelled 
towards the target from their initial starting points (B) 
multiplied by a constant (β). 

3. For each robot in the target area (X) the controller 
was awarded a small amount of fitness (χ). 

The controller was also awarded a large amount of fitness (E) 
for the number of times (ε) that all four robots reached and 
moved the target. These four values result in the following 
fitness function: 

€ 

F = εΕ + αΑ + βΒ+ χΧ
i=0

n

∑  

In the experiments ε = 300, α = 0.1, β = 1, and χ = 1. 
 
3. Rationale Behind the Task 

  The task was crafted to make sure that the movement type 
robots could be competitive with the signal sending robots. 
Signal sending robots have a highly flexible framework 
because their signals have no inherent meaning and can be 
tailored to any particular task. Furthermore these robots can 
communicate independently of their movement, unlike 
movement type robots. To make movement communication a 
viable strategy, changes in the environment needed to 
correspond to obvious changes in robot behavior. This allows 
movement type robots to communicate salient features of their 
position without compromising their movement strategy. To 

this effect, the environment is highly discretized into target 
area and non-target area, and the movement strategies in each 
of these areas should be completely different. In the non-target 
area, movement should be fast and wandering, to maximize 
the search area, but in the target area, movement should be 
kept to a minimum to stay inside the target area. This 
correlation between environmental states and motor states 
makes it feasible to communicate using motor states.  
 
4. Evolution Runs: 

Controllers were evolved for 300 generations with a 
population of 100 individuals. Each controller was given 4 
trials with different random starting points and had 100 time 
steps to acquire fitness. An individual’s fitness was the sum of 
each of the trials.  
 

IV. RESULTS: 

In this section robots are evaluated qualitatively and 
quantitatively. Special interest is paid to the qualitative data 
because it is the best method of examining the behavior of the 
robots. None of the communicative controllers contained all of 
the different communication modalities exhibited by the 
entirety of the population, so rather than picking apart the 
communication strategy of one robot, there is a broad 
overview of the all the basic communication strategies that 
were developed. 

 
 
 

 
Figure 11: The ten best individuals from each communication type were each 
tested for 100 trials of 100 times steps, and the displayed fitness represents the 
average fitness of the controllers per trial.  The same controllers, excepting the 
control group, were each tested with their communication values set to 0 for 
100 trials as well. The ‘Deprived’ data represents the average of those trials.  
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Figure 6: The neural network of the conglomerate type robots. 
Nodes 1, 2, and 3 are the sonar and target sensors. Node 4 is the 
signal actuator. Nodes 5 and 6 are the movement sensors. Node 7 
is the direction sensor. Nodes 8 and 9 are the motor outputs, and 
node 10 is the signal actuator. 
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1. Comparative Analysis: 
 The best 10 controllers from each evolution run were 
tested in the task environment with 100 times steps for 100 
trials. To increase consistency, each controller was given the 
same set of 100 random starting points. Next, each of the 10 
best communicative controllers was tested without being 
allowed to communicate. For these trials, all the inputs 
corresponding to communication nodes were set to zero. 
Controllers were tested in the deprived environment for 100 
trials of 100 time steps each. The ‘deprived’ tests evaluated the 
controller’s individual strategies; how robots move by 
themselves to optimize their ability to find the target area 

(figure 11). An individual strategy is the behavior that a robot 
uses when communication is non-effective or non-existent. 
This set of behavior includes any behavior independent of 
communication, including but not limited to effective 
wandering strategies, stopping inside the target area, and wall 
avoidance. 
 Much of the behavioral differences between controllers 
can be evaluated on how their fitness was split by independent 
and communicative strategies. Since the deprived tests 
evaluate how well a controller does without the ability to 
communicate, it provides a valid method of analyzing the 
individual strategies of each robot.  

Figure 8: This graph illustrates the average (blue) and best (red) 
fitness at each generation for signal type robots. This evolution run 
developed very similarly to the control group, but it plateaued at a 
lower value, and the fitness is less consistent. 

Figure 7: This graph illustrates the average (blue) and best (red) 
fitness at each generation for the control group. The control group 
had the highest average fitness, and it created many of the fittest 
individuals out of all the trials. (Note: the values on the y-axis  are 
different than the other fitness graphs) 

Figure 10: This graph illustrates the average (blue) and best (red) 
fitness at each generation for signal type robots. This evolution run 
developed very similarly to the movement type, just slower due to 
the higher dimensionality of the neural network. The fitness of the 
best individuals was highly erratic, belying the tremendous mix of 
strategies in contest. 

Figure 9: This graph illustrates the average (blue) and best (red) 
fitness at each generation for signal type robots. This evolution run 
developed much slower than the control or signal sending types. 
Even though its average fitness is much lower, it still managed to 
produce some individuals competitive with the signal sending type. 
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Control Group: 
 This population had the highest average fitness and some 
of the fittest individuals (figure 7). It very quickly developed 
an effective searching strategy and then plateaued. One factor 
contributing to the higher average of its top ten controllers is 
because they all use a nearly identical, albeit very good, 
strategy. All three communicative types had individuals on par 
with the best of the control.  
Signal Type:  
 This controller had the highest average fitness of the 
communicative robots (figure 8 and 11), but not a statistically 
significant amount more. It was actually superior (not by a 
significant amount though) in the deprived environment. It 
never found an effective way of grounding its signal in its 
behavior, so its communication sensor was just providing 
noise. Depriving this network of its ability to communicate 
produced such a small effect because it had already learned 
how to filter its communication sensor out. 
 Some of the best controllers from the early generations 
had the ability to communicate using simple feedback loops, 
but this ability was quickly lost as individuals with highly 
optimized individual strategies flooded the population. 
 To test where communication broke down, each of the ten 
best signal controllers was tested on a single robot placed 
alone in the task area, and the motor values were recorded for 
a range of possible signal values. There was no discernible 
change in motor values for 8 of the ten robots. When the signal 
values of the other two robots were observed while performing 
the standard task, their signal values never rose above 0.01. 
Depending on the controller, communication failed at either 
the front or back end. This type of controller produced robots 
that either refused to send or receive signals. 
Movement Type: 
 These robots developed at a much slower rate than the 
signal type and control type, and also converged at a much 
lower fitness value (figure 9). One factor that slowed its 

growth is the codependence of communication and movement 
behavior; the ability of the movement type to communicate is 
dependent on its ability to move in the environment. 
Communication ability could not increase until the robot had 
some form of effective movement controller. 
 This controller was the most dependent on its 
communication sensors (figure 11). It performed abysmally in 
the deprived condition. This controller depends on 
communication for its ability to stay in the target area 
Conglomerate type: 
 This controller had the lowest average fitness, but 
produced the some of the fittest individuals. Furthermore, the 
signal type controller never found an effective use for 
communication, but this type had several individuals that 
made effective use of the signal sender. Unlike in the deprived 
conditions of the signal type robots, which were equally as 
good as the non-deprived individuals (figure 11), when the 
conglomerate type robot was deprived of its signal sending 
abilities, its fitness, on average decreased (figure 12). The 
higher complexity of the neural network for this controller 
made it slower to learn, but also made the population converge 
later. 
 This population acted much like an average of the values 
of the signal and movement type controllers. Its fitness in the 
deprived task (figure 11) is between the signal and movement 
type controllers, implying that it had an effective, but not 
optimized movement strategy. 
 
2. Evaluation of Communication:  
 While comparative results are informative about the 
comparative strengths and weaknesses of differing types of 
communication, the real goal of this experiment is to analyze 
the behaviors of robots that developed communication. The 
fittest individuals were observed, and their unique approaches 
and modalities of communication were observed. 
 
 

Figure 12: This graph represents the results of four experiments performed on the best 10 conglomerate type controllers. Each of the different types of test 
was run for 100 trials, and the averages of those trials are displayed. In the normal set, these robots were each tested in the normal task. The controllers are 
ordered by their level of fitness in the normal task with the 1st controller receiving the highest score, the second receiving the second highest score, and so on. 
For the deprived data set, the ability to communicate was taken away from the controllers. For the ‘deprived of signal data’ set, the conglomerate controllers 
were only able to communicate with movement knowledge. For the ‘deprived of movement data’ set, the conglomerate controllers were only able to 
communicate through signal sending. This graph represents the numerous ways in which the conglomerate type controller integrated signal and movement 
data. 
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Movement Communication: 
The most common use of communication in this type of 

controller was the use of feedback loops. This feature 
developed very early in this controller’s evolution and stuck 
until the end. Dimensions were added to it as it progressed. In 
its simplest and weakest implementation, if one robot started 
going in circles, other robots receiving this signal would also 
start moving in circles. This helped weak controllers keep 
robots that had found the target inside of the target. By 
mirroring their peer’s actions, they would, in effect, remind it 
to stay in the target area. 

In later generations, this feedback loop was refined to be 
context specific. Rather than all listening robots duplicating an 
action, only robots in the correct environmental context will 
emulate the action. Once robots enter the target area, they start 
spinning, and if other robots enter the target area, they also 
start spinning. In the fittest movement controller, when there 
was more than one robot in the target area, the chances that a 
robot would exit the target became 0, and since they were 
continuously spinning, they also had no translational 
movement. In the deprived condition, this controller was 
highly ineffective because there was no feedback loop to 
remind the controller to stay in the target area. 

The strongest strategy that developed was context 
independent unidirectional communication. Robots in the 
target area would move repeatedly in circles signaling the 
location of the target area encouraging robots to converge on 
its location. The one problem with this mode of 
communication is it does not work well with the feedback 
structure that earlier forms of communication use. When a 
robot converged on the target area with other robots in it, 
sometimes it would break the feedback reinforcement loops 
and cause another robot to move out of the target area. Since 
movement robots do not have effective individual controllers, 
as evidenced by their low deprived condition scores (figure 
11), they are not well prepared to stay in the target area if they 
are not receiving feedback. 
Conglomerate Communication: 
 This type of controller had the greatest variety of 
behaviors and communication styles, but rather than creating 
highly novel communication forms, it Number 10 behaved 
similarly to the non-communicative individuals in the signal 
type population. Rather than creating a strategy of 
communication, it found a way to block out communication 
and rely solely on an individual strategy, evidenced by the fact 
that the fully deprived controller is equally as good as the 
communicative controller. This population also includes 
individuals that closely mimicked the movement type 
controller. The eighth controller in particular took this 
mimicry to the extreme as it did better when it was deprived of 
its signal sending abilities. It was, in effect, just a movement 
type controller with the signal sending nodes only adding 
noise to its sensors.  

A common use of both communication systems was in 
dual modality reinforcement. Rather than using different types 
of communication for different types of communication, this 

mode communicated with concrete and abstract data at the 
same time to reinforce each other. This strategy reinforces the 
social cues and provides a greater degree of specificity to 
communication. For example, most of the effective robots 
would spin in circles when they found the target area, but 
robots using dual modality communication would also send 
out a signal value of 1. This behavior figured very prominently 
in the individuals numbered 3, 5, 6, and 7 in figure 12. With 
only one of their communication modes active, they had a 
lower fitness than the normal, but a higher fitness than the 
deprived because they had the ability to communicate 
effectively with either type of communication. Furthermore, 
the behaviors of the partially deprived robots were almost 
identical because of the overlap in communication 
representations. Even though no new form of communication 
was created from the combination of the two types, controllers 
depended on both representations to reinforce their behavior. 
When the seventh individual was deprived of one of the 
communication modes, the robots had trouble staying inside 
the target area; if the sonar values of a robot in the target area 
got too low because another robot was approaching the target 
area, this controller would often back out of the target area to 
avoid stalling against it.  

The tenth individual represents a particularly bizarre 
method of using communication, cancellation. In the pure 
deprived test, it performed just as well as the normal test, 
meaning it had a highly developed individual strategy, but 
give it only half of its communication abilities and it becomes 
a very poor controller. Rather than use the communication 
data to improve its strategy, it developed a very effective 
individual strategy and used the two methods of 
communication to cancel each other out.  

 
V. DISCUSSION 

 One of the reasons that the control group was so 
successful in this experiment is because it optimized its very 
simple, independent movement strategy. Starting in a low 
dimensional problem space, it quickly and effectively found a 
valid movement strategy. The communicative robots on the 
other hand never optimized their movement strategy, and this 
failure also prevented them from developing highly evolved 
form of communication. In many instances, communication is 
completely useless without an effective movement strategy. 
Take for instance a robot that has found the target area; the 
only way that it can effectively communicate the direction of 
the target area to its peers is if it knows to stay inside the target 
area.  

A main problem with the experiment was the isolation of 
strategies possibly caused by the speciation method of NEAT. 
It separated members of the population that specialized in 
different aspects of the task. Some of the best members of 
each of the communicative populations developed very 
effective movement strategies but non-existent communication 
strategies. When these individuals were tested in normal and 
deprived conditions, they did slightly better in the deprived 
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conditions. Other members of the population developed highly 
effective communication strategies, but had weak individual 
movement strategies. These individuals performed very poorly 
under deprived conditions, proving that effective 
communication can be an extremely powerful strategy.  

Another precursor to effective communication is effective 
spatial organization of the robots. Since robots only hear their 
closest neighbors, the swarm of four robots could and often 
did break down into two pairs of two robots communicating 
with each other. In this state, even if one pair found the target 
area, the other pair would never receive a signal from the first 
pair. This is likely one of the reasons that communicative 
robots either had a sub-optimal communication or movement 
strategy. If a species of robots were evolving communication 
then they needed to evolve a method to effective orient 
themselves to prevent isolation. Spatial organization strategies 
prevented the development of effective individual strategies 
because rather than moving to maximize their individual 
ability to find the target, robots moved to maintain the ability 
to communicate, so that once a robot found the target, the rest 
could converge on its location.  

Another explanation for the peculiar behavior is the 
fitness function and the incremental nature of the task. The 
fitness function gives more fitness for robots that are in or near 
the target area, and this feature was meant to encourage robots 
to stay in the target area and to move towards their peers in the 
target area. A problem though arises from the fact that robots 
could receive more fitness if there are three robots in the target 
area and only one robot outside of it. In this configuration, 
controllers would receive a sizeable amount of fitness at each 
time step, which could easily amount to a higher fitness than 
getting a large amount of fitness by moving the target and less 
fitness per time step.  

Even if moving the target provides a large fitness increase 
it is still a risky strategy. Rather than finding the target and 
moving it immediately, it could benefit robots to find the 
target, stay close to it, and only move it near the end of the 
trial. Furthermore, moving the target and trying to find it again 
is a risky strategy; if the robots do not find it again within the 
allotted time steps, they would get a much lower fitness than 
they usually do. This inconsistency would make them more 
likely to be removed from the population if they have a 
particularly bad fitness run.  

This combination of factors resulted in the premature 
convergence of the populations on sub-optimal strategies. It 
was too hard to consistently move several targets, so evolution 
favored controllers that stayed close to the target for extended 
period of time and only moved it once.  

In a task that rewarded robots for staying in the target area 
and not moving it, it makes sense that non-communicative 
robots were better; if the target area is moved shortly after it is 
found, less fitness will be gained at each time step.  

Even though the task had some flaws and the control 
group was equally as good as the communicative populations, 
this experiment still succeeded in its central goal of evolving 

and evaluating robots using different data types to 
communicate. 

 
VI. CONCLUSION: 

 There are some changes that could be made to the 
experimental method to improve and change the results. The 
values used in the fitness function need to be tweaked to more 
clearly reward robots converging on the target area. The task 
could also benefit from an increased number of time steps and 
trials per fitness evaluation. In the Marocco paper (2006), an 
individual’s fitness was based on 20 trials with 1000 time 
steps per trial. Due to the limited time of the experiments, this 
level of evaluation could not be implemented.  
 Despite these problems, robots were evolved that had the 
ability to communicate using concrete data. These robots 
found an abstract representation of this data that enabled them 
to connect it to important behavioral cues. Robots with the 
ability to communicate with abstract values were never able to 
ground the data with any relevant meaning. Some of the early, 
ineffective controllers used these values to communicate with 
feedback loops, but these weak communication strategies were 
quickly made obsolete by highly effective individual 
strategies. Communication based strategies never became fit 
enough to supplant the dominance of these non-
communicative strategies. Robotic controllers that combined 
the different data representations also learned how to 
communicate effectively rather combining the different data 
representations to communicate in radically different ways, 
these controllers used both methods to communicate similar 
data. The duality of the data representation was a powerful 
tool for these robots in cueing behaviors.  
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