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Abstract

Flocking behavior in nature provides an example of
perfectly graceful collective navigation. Inspired by
this ability of the birds and the bees, we attempted
to use techniques from artificial intelligence (AI) to
“naturally” develop a neural network controller for
swarms of robots. We constructed a framework con-
sisting of a parallelized genetic algorithm (GA), a
three–layer feed–forward neural network, and a 2D
flocking simulator, and used this setup to run ex-
periments searching for controllers that effectively
demonstrated flocking behavior, as measured by the
properties of compactness and alignment. These ex-
periments used a range of training scenarios and fit-
ness functions, including situations with and without
food sources, with and without alignment rewards,
and with varying degrees of local awareness of flock
neighbors. Though we were ultimately unsuccessful
in developing a consistent controller that imitates bi-
ological flocking, we gathered some encouraging re-
sults and gained valuable experience attempting to
solve a complex problem with techniques from AI.

1 Introduction

Flocking, mesmerizing and delightful to watch in na-
ture, is an example of evolution’s ability to create
an elegant solution to a monumentally complex task.
In a starling flock, hundreds — or even hundreds of

thousands — of birds decide their motion via local in-
teractions, leading to the emergence of a single large-
scale phenomenon: the coordinated dance of the flock
as a whole.

Flocking behavior, defined concisely by Craig
Reynolds as “polarized, noncolliding, aggregate mo-
tion” [9], has long attracted the attention of both
biologists and computer science researchers. In com-
puter animation, modeling realistic flocking behavior
can completely eliminate the tedious task of script-
ing the paths of every individual in an animated flock
of birds. To this end, graphics researchers have pro-
posed simple models of an individual’s behavior in a
flock that results in realistic–looking flocking behav-
ior [9, 11]. That fairly simple organisms, such as birds
and fish, can perform their individual roles in a flock,
reacting perfectly and instantaneously to their envi-
ronment, suggests that simple yet accurate models of
flocking behavior do exist.

At the same time, multi-agent coordination in nav-
igation tasks is still an unsolved problem in robotics.
A quick survey of demonstration media by various re-
search groups reveals that graceful and efficient nav-
igation is typically well out of the reach of the sys-
tems on display. This is often because these systems
rely upon some central controller performing path
planning for all the agents and sequentially issuing
movement orders to other agents. Researchers have
proposed imitating nature’s solution to this problem
with simple navigation controllers that primarily use
local information [1, 7].
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In this paper, we apply techniques from the fields
of artificial intelligence and adaptive robotics to-
ward producing multi-agent coordination in naviga-
tion tasks. Specifically, we use genetic algorithms to
evolve weights in a neural network navigation con-
troller for large groups of homogeneous simulated
agents. This process involves a computationally ex-
pensive simulation of agent behavior in order to eval-
uate each candidate agent’s “fitness”, as well as a
long evolution time consisting of several hundred or
more generations of evolution (refer to Section 4.1 for
the details of the genetic algorithm we implemented).
Thus, in order to complete a reasonable number of ex-
periments within the time frame of this project, we
employ our previously implemented parallel frame-
work for genetic algorithm computation, the details
of which can be found in Felt and Koonce [3]. To
evolve neural network controllers using this frame-
work, we rely on a lightweight neural network library
and a simulator running within a custom fitness func-
tion called by the framework. With these tools, we
attempt to evolve effective flocking agents, using a
variety of fitness functions and evaluation scenarios.
Though our experimental results are generally unsuc-
cessful, we do discuss the ways in which they did not
match our expectations. Finally, we review lessons
learned and various routes for future work that could
improve on our approach.

2 Related Work

Relevant prior work falls into two categories. First,
biologists and computer scientists at the intersection
of computer science and animal behavior have ex-
tensively studied the behavior of flocks, herds, and
schools of biological organisms [2, 8]. Many emer-
gent properties of the flocks as a whole have been
enumerated and described in attempt to reduce the
behavior down to simple rules. Conversely, many lo-
calized spatial and social interactions have been ob-
served and proposed as factors leading to the emer-
gent flocking behaviors. Both of these approaches to
studying biological flocking are useful to a computer
scientist implementing simulated flocking. The emer-
gent properties provide starting points for evaluating

the performance of artificial models, and the individ-
ual interactions provide building blocks for creating
these artificial models.

In the other category are prior attempts to develop
mathematical, artificial models of biological flocking
[6, 7, 9]. The models presented in these papers draw
constraints and rules from the aforementioned work
by biologists. Olfati-Saber [7] concisely summarizes
the rules that most mathematical models of flocking
incorporate:

� Stay close to nearby flockmates

� Avoid collisions with nearby flockmates

� Match the alignment of nearby flockmates

� Match the velocity of nearby flockmates

These rules have resulted in models that func-
tion by exerting a turning and acceleration force on
each individual as a function of distance from and
alignment with its neighbors. Olfati-Saber [7] also
presents some shortcomings in this prior work, dis-
cussed in detail in Section 3.1, some of which we hope
to address in our solution.

A few other researchers have attempted to use
adaptive techniques like genetic algorithms to at-
tempt to evolve controllers for flocking agents [5, 12].
Zaera et al. [12] attempted to evolve neural network
controllers for simulated fish, and it was after this
paper that we most closely modeled our approach.
The authors were not able to produce a controller re-
sulting in behavior that resembled schooling. There
were three major differences between our approach
and the approach in this paper that we hoped would
allow us to succeed where the authors failed.

First, the flexibility of the neural networks in Zaera
et al. [12] was limited — only 5 hidden nodes. Fur-
thermore, though the authors do not specify what
the activation function used in the neural networks
is, weights were constrained to the interval [0, 1.0).
Especially if the standard logistic function was used,
this may have severely limited flexibility of the net-
works produced. The neural networks used in our ex-
periment have unbounded weights and a different mu-
tation method (presented in Section 4.2) that elimi-
nates this constraint. Second, evolution was only run
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for 100 generations. Because the authors employed a
sequential evolution on a sequential simulator, their
experiments were constrained by time. Reflecting on
experiments we have run in our AI and Adaptive
Robotics courses, we concluded that 100 generations
is not nearly long enough to solve a complex task like
flocking

Finally, the simulator and simulated fish in this
work were very complex. In an attempt to maxi-
mize biological plausibility, the authors simulated fish
in 3D with realistic Newtonian kinematics (including
mass, moments of inertia, and drag). Furthermore,
each agent’s inputs were based on 3D simulated vi-
sion. In our implementation (see Section 4.2 for de-
tails), we simulate agents in 2D and discard most
of the physics simulation, only limiting the speeds
of each agent. We do not simulate vision and give
individuals perfect information about their nearest
neighbors. While less biologically plausible, this elim-
inates a huge amount of complexity that could pre-
vent the GA from finding a solution. As a last note,
Zaera et al. [12] conclude with an important point in
their paper: developing a fitness function to encour-
age flocking behavior is at least as difficult as creating
a hand–tuned model. Perhaps we should have better
heeded this warning!

3 Hard–Coded Models

Before attempting to evolve a neural network flock-
ing controller, we attempted to replicate the results
of prior work in the modeling of flocking behavior in
order to better gauge the complexity of the task we
were setting the genetic algorithm. Particularly, we
wished to imitate the work of Hodgin [4], who cre-
ated an absolutely mesmerizing simulation of a real
behavior in fish schools know as the “bait ball”. In
this simulation, Hodgin uses only the 4 main rules
listed above (and an addition rule to avoid preda-
tors) and achieves stunning results. While we lack
Hodgin’s graphics experience, we hoped to develop
simulated agents with similar behavior. We quickly
realized that this task could easily be a project on its
own (perhaps in a graphics course — Hodgin built
his simulation in the framework of a particle effects

rendering engine), but we did encounter many of the
pitfalls predicted by Olfati-Saber [7], which we will
now discuss.

3.1 Pitfalls of Force–Based Models

In the simulations presented in this paper, individuals
started out placed randomly in a 640 × 480 window,
with 0 velocity. The first experiment was to sim-
ply subject the individuals to forces from neighbors
according to a function of their distance function. In-
tuitively, this function should a) be very negative at
close distances, b) be around zero for ideal follow-
ing distances, and c) be positive when an individual
should move closer to its neighbors. Originally, the
function in Equation 1 was used. This function ac-
counts for avoiding collisions with the −1/x term,
and gives a positive attractive force starting around
x = 40. However, this led to the first of the pitfalls:
group collapse.

− 1

x
+ 10 ∗ 1

1 + e−x+40
(1)

Olfati-Saber [7] proposes that force–based models
can lead to group fragmentation and group collapse.
With a constant, positive, attractive force above a
certain distance threshold, all individuals are pulled
toward the centroid of the group, and even with a
strong negative force at close distances, the force
function acts like gravity and crushes individuals in-
ward. The resulting simulation looks completely in-
organic, with individuals effectively bouncing off one
another close to the centroid like excited particles. A
screen capture is shown in Figure 1b.

Another experiment led to the other extreme of
Olfati’s pitfall. Using Equation 2, which includes a
term to decay the force exerted by neighbors with dis-
tance, we saw group fragmentation, as shown in Fig-
ure 1a, because there was no significant force pulling
disparate groups back together as there likely is in
biological flocks.

−100

x
+ x ∗ e− x

100 ∗ 1

1 + e−x+40
(2)

By rewarding our evolved agents for simply being
at reasonable distances from one another and evolv-
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(a) Fragmented Group (b) Collapsed Group

Figure 1: Two of the failures explained by Olfati, frequently encountered in hard–coded force–based models.

ing the parameters of the controller, we hoped to
avoid both of these problems entirely. Another pit-
fall was that individuals had no knowledge of and
therefore no capability to react to global flock loca-
tion. In our hard–coded model we combined a func-
tion of nearest neighbor distance with similar force
functions for distance from the flock’s centroid and
distance from a target (a food source, to give a real–
life example), and achieved behavior that vaguely re-
sembled flocking in our hand–tuned agents. This re-
quired with considerable tuning of both the individ-
ual functions (adding and tweaking terms) and their
relative weights. Our hope was to replace what was
sure to be endless tweaking of parameters and func-
tion terms with an adaptive search technique: genetic
algorithms.

4 Implementation

4.1 Genetic Algorithms

To perform the experiments presented in this paper,
we implemented a parallel genetic algorithm frame-
work in C++ using MPI, a message-passing inter-
face standard providing high scalability. The details
of this framework and its API appear in Felt and
Koonce [3]; the parts relevant to this work are the
specific details of the genetic algorithm this frame-

work implements. It is a standard genetic algorithm,
which consists of a population of individuals — each
represented by an array of numeric values, the chro-
mosome, typically encoding a solution to a problem
— and a fitness function with which to evaluate in-
dividuals. Each generation of evolution consists of
evaluation of each individual, selection of pairs of
new individuals with probability proportional to their
fitness using the roulette selection method, single–
point crossover of every two new individuals per-
formed with a probability Pc, and then mutation of
each value in the chromosome of the new individuals
with probability Pm. In our framework, individu-
als are subclasses from a generic ArrayIndividual

class, templated on the type of data in the chro-
mosome and the chromosome’s size, and override a
compute fitness() fitness function and optionally
the mutate() method. This allows for our framework
to easily be applied to many problems.

4.2 Neural Networks

To evolve neural networks for flocking controllers, it
was necessary to either incorporate an existing C++
neural network library into our framework or imple-
ment our own. Since we did not foresee requiring
recurrent networks or requiring back–propagation,
we implemented our own lightweight neural network
class, and restricted our solutions to three–layer,
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Figure 2: The topology of our three–layer feed–forward neural network controller, showing the inputs to the
network (X and Y distances to some number of neighbors, the flock centroid, and the target location) and
the network outputs (the agent’s X and Y velocity).

feed–forward, fully–connected networks. The general
topology for these networks appears in Figure 2. In-
puts to the network included the X and Y distances to
some preset number of the agent’s nearest neighbors
(we varied this exact number between experiments,
from as little as 3 to as high as 10). Other inputs that
we used in some experiments included the centroid of
the flock and the target (i.e. food source) location,
again both represented as X and Y distance offsets
from the individual agent.

We also implemented an agent class, consisting of
little more than a wrapper around an instance of the
neural network class with additional state such as lo-
cation and velocity, along with a method to construct
the neural network from a chromosome of weights.

4.3 Simulator

Neural network controlled agents reside in a simu-
lator object, which allows agents to move and com-
municate location information with each other in an

unbounded 2D world. The simulator runs an update
function for a specified number of time steps (which
we varied between experiments). At each time step,
the simulator updates the inputs of all agents, runs
each agent’s feed–forward method, updates the veloc-
ities of all agents, and then updates their positions.
The simulator class can register a function pointer to
an arbitrary fitness function to perform analysis of
the group as a whole (to give fitness for compactness
or group alignment, for example), which can be run
every N time steps for a set value of N , or once at
the end of simulation.

4.4 Tying into the GA Framework

All these pieces tie together into a powerful system
to search for effective flocking controllers. We cre-
ated a subclass of the ArrayIndividual templated
on doubles and the size of a compile–time deter-
mined network topology, which is configured by a
series of compiler directives. This flocking individ-
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Figure 3: GeneticAlgorithm selects, recombines,
and mutates an array of individuals, using the in-
dividuals’ evaluation function, which instantiates a
Simulator. This simulator contains an array of
NNetAgents, which all move according to the outputs
of their neural networks.

ual class overrides two important methods. First,
mutate() adjusts each randomly-mutated gene in the
chromosome by a random scaling factor in the inter-
val [−2, 2). This allows random mutations to both
tweak values slightly, but also to grow or shrink them
exponentially. Second, compute fitness() instanti-
ates a simulator for this individual, populates it with
a neural network agents with weights from this indi-
vidual’s chromosome, registers a fitness function for
the group as a whole, and simulates a fixed number
of time steps, aggregating fitness as appropriate. A
schematic diagram of our system, showing its con-
situent pieces, appears in Figure 3.

5 Experimental Results and
Discussion

Most experiments in this paper were run using
groups of 10 agents, simulations that lasted 1000
timesteps, using populations of 300 individuals, run
for 1000 generations. Using a non–parallelized frame-
work, each experiment would have taken over 26
hours, which would have prevented us from itera-
tively tweaking the fitness function and simulator pa-
rameters, looking for positive results. With our par-

allel framework, we could run the same experiments
on over 300 cores in parallel, achieving nearly linear
speedup in evolution run time.

We began by simply rewarding agents based on
their distance from all other individuals according to
the function in Equation 3, a plot of which is shown
in Figure 4a. This resulted in group collapse, just as
the hand–coded experiments showed. We hoped to
achieve flock–like clustering by rewarding individuals
positioned a certain distance from its neighbors, and
giving zero (or near–zero) fitness for being too close,
because in roulette selection, fitness values must all
be positive real numbers. With this always–positive
function, we could simply add the reward for each
neighboring agent in the simulator and return this
value to the GA as the fitness for the individual from
which the agents were instantiated.

xe
−x
100

1

1 + e−.1x+10
(3)

The results of simulating with more agents (50,
100), for more generations (5000, 10000), and longer
simulations (5000, 10000 time steps) were all similar.
We next tried changes to the fitness function, adding
a −100/x term to punish agents that ended up too
close to one another. The function and its graph are
shown in Equation 4 and Figure 4b. In order to use
this with the roulette method of selection, we clipped
all negative fitnesses to 0. We tried the same amount
of tweaking as we did in the previous experiments,
and we were met with considerably more success. As
shown in Figure 5a, agents quickly organize into a
cluster that resembles a flock, moving slowly as a
group in a random direction. This was very encour-
aging, but our excitement was short–lived. In longer
simulations, agents controlled by these networks con-
sistently moved farther and farther apart, as shown
in Figure 5b.

−100

x
+ xe

−x
100

1

1 + e−.1x+10
(4)

Other attempts to encourage flocking with differ-
ent fitness functions were not much more success-
ful. Among other things, we added inputs for sens-
ing neighbor alignment, a target (simulating a food
source), and the flock centroid. We tried different
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(a) Initial Reward Function (b) Reward Function with Collision Punishment

Figure 4: The initial and modified reward functions. The x-axis shows squared distance from a neighbor,
the y-axis shows a scale-independent reward.

(a) Correct Clustering (b) Drifting Apart

Figure 5: Our more successful experiments led to the group forming a well–spaced cluster, but then in longer
simulations, the group drifted ever farther apart.
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combinations of fitness functions that rewarded indi-
viduals for aligning with the aggregate motion of the
group, with its neighbors, for being near the flock
centroid, and for being near food, and we also varied
the number of neighbors for which a reward involving
nearest neighbors was applied. For each combination
of sensory capabilities and additions to the fitness
function, we found in the best case a new variation
on not–quite flocking behavior, and in the worst case
something entirely implausible (like group collapse).

6 Conclusion and Future Work

We originally hoped to replace the tedious process of
tweaking parameters in a hand–tuned controller for
swarm agents with adaptive search using genetic al-
gorithms. We hypothesized that with a fitness func-
tion that rewarded individuals for being well–spaced
and aligned with their neighbors, genetic algorithms
would find weights for a simple neural network con-
troller that would imitate biological flocking behav-
ior. Ultimately, however, we discovered that develop-
ing a good fitness function for the genetic algorithm is
equally difficult, if not more difficult, than the task of
hand–coding a controller that imitates flocking with
force–based functions.

We still believe that this method for developing
neural network controllers is viable, given a good fit-
ness function. The problem we encountered in our re-
search is a problem encountered by nearly every com-
puter science researcher who has employed genetic
algorithms. That said, many researchers have over-
come the hurdle of finding a fitness function without
any “loopholes” or inconsistencies while encouraging
all the behaviors desired in the evolved agents. A
few of the controllers we evolved behaved briefly very
much like biological organisms in flocks, but they al-
ways went on to perform unrealistically later on. We
expect that with more time and more experiments,
we could achieve more thoroughly satisfying results.

Among the ideas we have for improving the exper-
imental strategy presented in this work, one of the
most promising would be adopting a more gradual
approach to evolving flocking controllers. One way
to accomplish this would be to use the NEAT algo-

rithm for neural network evolution, first introduced
by Stanley and Miikkulainen [10]. Since NEAT starts
with a very simple network and gradually adds com-
plexity when needed to adapt to more complex tasks,
it might perform well at developing minimal flocking
controllers. For example, we could evolve a NEAT-
based network by first evaluating it as a controller for
very small flocks (e.g. of size 2) and then for flocks of
increasing size. Another potential advantage of this
approach is that NEAT provides built-in methods for
ensuring that crossover of chromosomes respects the
topological structure of the neural network, which
our general genetic algorithm implementation does
not. This aspect could make NEAT more effective at
combining successful parts of parent individuals into
new candidate individuals.

One other approach we considered originally (that
is more attractive in retrospect) is to train neural
network controllers for flocking agents with back–
propagation. This would require training examples
of actual flocking behavior, but such do datasets ex-
ist. Couzin et al. [2] have published research with
golden shiners, a species of fish that forms schools
in shallow water (i.e., in an approximatation of a 2D
plane). They have produced frame-by-frame datasets
of flocking motion derived from top-down videos of
golden shiners schooling in a tank, with location
and velocity information over time for each individ-
ual. This dataset would lend itself to use in training
a neural network to school using back–propagation.
Agents could be exposed to examples of the turn-
ing and acceleration vectors of individual fish paired
with the relative locations of their nearest neighbors.
Such an approach might provide an alternative, po-
tentially more direct way of achieving simple and re-
alistic flocking behavior.

This project has shown us the depth of difficulty
inherent in solving a complex task using AI tech-
niques. Still, considering our progress in the context
of progress made previously by other researchers and
current biological research in collective behavior, we
hope and expect that the problem of creating sim-
ple models for nature-inspired multi-agent navigation
will soon be solved.
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