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Abstract 
The ultimate goal of this project is to apply a NEAT controller to a simulated combat 

environment. Our immediate goal became to evolve a single robot and have it battle a hard-

coded enemy and then gradually increase the complexity of the task by adding multiple enemies 

and robots or increasing the complexity of the environment until our ultimate goal was 

accomplished. The combat environment was a simple 6x6 grid world but only 4x4 can be 

occupied because the outside was all walls. The battles were turn based. A lot of time was spent 

trying to make sure that the single robot was actually evolving and were therefore unable to 

create the heterogeneous swarms as originally planned. However, after much difficulty we were 

able to successfully evolve a single robot. Overall after several trials, we managed to get a 

working but inelegant robot that could survive in the combat environment. 
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1 Introduction 
 

Our goal for this project is to apply developmental, adaptive techniques within a simulated 

combat environment. We believe that combat simulations provide a unique set of challenges, and 

that even though adaptive systems aren't the current industry standard, they can provide a unique 

perspective. Many of the systems we've seen have been occasionally disappointing in their 

limited scope. Knowing that we couldn't do any better, we chose to reduce the realism of our 

simulation environment. This gave us a bit more freedom in designing our experiments since we 

cheated and ignored the inherent complexity of the real, physical world. We aim to demonstrate 

that our approach has merit, despite its compromises. 

Given the time constraints of the project, we set out to create a basic but extensible 

simulator that would become a test bed for new features and tweaks. This simulator provides a 

battleground for our simulated RoboSoldier to fight in. We prioritize mental growth, happily 

assuming basic physical capabilities. Specifically, we want to encourage the emergence of 

strategies and tactics in our developmental robot. To this end, we built a simple turn-based, tile-

based environment, with discrete time and space. We felt this provided a streamlined 

environment for our embodied agent, as well as giving us valuable control over the environment 

which was invaluable in the debugging stage. 

The last piece of the puzzle was finding a suitable learning system to serve as the brains 

of our virtual protagonist. This was a fairly simple process, as we only seriously considered two 

different solutions. Our first thought was to use SODA and Queue-Learning. Dylan and I had 

had good luck with it in the past with the tic-tac-toe AI we built. We thought it would be a 

natural fit given our discretized environment. There is also something to be said for being able to 

look under the hood and easily understand how it's working. However, we were concerned with 

the inevitable physical memory limitations of storing a huge state table, as well as the inability to 

dynamically adapt to new environments. This drove us to look at neural networks and the 

NeuroEvolution of Augmenting Topologies (NEAT) method. NEAT is a brilliant mix of neural 

networks and genetic algorithms, applicable to many problems through its user-configurability 

and inherent adaptability. NEAT is effective at finding efficient solutions in very large search 

spaces. NEAT evolves neural networks with minimal human setup required, making the entire 

process very organic. NEAT possesses one feature that is of particular value to our goal of 

observable strategy and tactics - the ability to elaborate on its existing strategies, through 

systematic complexification of current solutions. 

 

2 Related Work 
In the paper Real-Time Evolution of Neural Network, the authors presented the NERO Video 

Game. NERO uses a modified form of NEAT - rtNEAT - that is able to evolve and adapt in real-

time. This version of NEAT is used to build the NeuroEvolving Robotic Operatives (NERO). 

NERO is a new type of machine learning video game where the player is able to train units in 

real-time in order to perform difficult tasks in a virtual environment. The neural networks are 

complexified as the game is played, which makes it possible to have units evolve interesting 

sophisticating behaviors in real-time. The rtNEAT implementation was flexible and robust 

enough to achieve interactive learning in real-time in challenging sequential tasks [2]. 

In another paper, another specialized version of NEAT is presented. Known as cgNEAT 

(content generating NEAT) is used to evolve a game as it’s played based on player preferences. 
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As described in the paper, Evolving Content in the Galactic Arms Race Video Game, cgNEAT is 

used on the video game Galactic Arms Race (GAR) in which players control spaceships in order 

to gather weapons that are evolved by the game to fight enemies. A wide variety of weapons that 

are both new and have been expanded from previous weapon are discovered by the player. 

cgNEAT could allow for games to generate their own content yielding a more immersive, 

personal experience [1]. 

It seems natural to us that someone will incorporate both of these systems in the same 

virtual environment, which has the potential to revolutionize the virtual worlds used today.  

In Cooperative Multi-Step Behavior in an Evolved Robot Team, simulated robots are placed in an 

environment that allows encourages teamwork and societal roles to be evolved. There is a group 

of gathering robots as well as a group of hard-coded predatory robots. The predators can 

eliminate the gatherers by reducing the gatherers’ health, but the reduction in health is limited by 

the allies that the gatherer has around. This mechanism led the gatherers to evolve several 

grouping and herding behaviors that were used in their final strategy for survival. While the 2 

super-NEAT papers were interesting, we were in some ways more inspired from seeing the 

success that Ryan had with his project [3]. 

Overall, we didn't find many papers that seemed super similar to our experiments. We briefly 

looked at papers for adaptive AI systems for Civilization-style games, and game AI in general. 

Adaptive systems aren't that commonly used, with most things be scripted or cheating the system 

to add difficulty. We realized that even though our simulation isn't directly applicable to real 

world systems, we feel safely on the robotics/embodiment side of the scale. 

 

3 Experiment 
 

3.1   Combat Environment 
The combat environment consisted of a 6x6 grid world but only the smaller 4x4 inside the 

6x6 grid can be occupied because the outside consisted of walls. The world was small because 

we expected a lot of encounters would happen between the enemy and the robot, which in turn 

would lead to interesting learning behavior. Once we saw that there was no interesting learning 

behavior occurring then we would increase complexity by making the world. The enemy always 

started in the top left corner while the robot started in the bottom right corner. Figure 1 below 

shows the beginning of each battle.  
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Figure 1: The grid world that served as the combat environment. The white 4x4 grid is the space that 
can be occupied while the colored tiles represent the walls. The robot always starts at the bottom 

right corner while the enemy starts in the top right corner. 

Facing was taking into account in our implementation. The facing of the robot and enemy would 

depend on the last move made. For example if the last movement was left, then the unit would 

face left at the end of its turn. Facing also played a role in the field view of the units. Field of 

view went clockwise starting on the units left. The unit could see a blank tile, a wall, or the 

opponent. Figure 2 shows examples of the field of view of a robot.  

  
Figure 2: These are two examples of the field of view for a robot. The gray outline is what the robot 

can see and the dot represents the facing of the robot. In the left the robot is facing up and in the right 
the robot is facing left. The field of view starts clockwise from the left of the robot which depends on 

the facing. 

 The enemy was hard-coded and implemented the in the following. If it saw the enemy in 

its field of view, then it would shoot, otherwise it would move randomly. The enemy could only 

shoot if it saw the robot and it could never hit a wall. The robot was NEAT controlled and unlike 

the enemy, it could shoot whenever it wanted and can walk into walls. We anticipated that the 

robot would learn to avoid walking into walls and the proper occasion to shoot. Both started with 

a full health of 100 and each unit can shoot 4 times. If a unit got shot then it would lose 25 

health. Collisions between the robot and the enemy can occur and each would lose 10 health. 

These collisions happen by chance and are not done on purpose. The battle was turn based both 

the robot and the enemy can choose to move up, down, right, left, or shoot. The robot always 

went first and a round in the battle consisted of 1 enemy turn and 1 robot turn. The battle would 

continue until one unit died or until 100 rounds have expired. A round would be as follows: 1) 

the inputs would be gathered and passed into NEAT, 2) NEAT would give outputs and the 

maximum output would be applied, 3) the world would be updated, 4) the robot would choose an 

action based on its simple implementation, 5) the world would be updated, 6) check for a winner, 

and repeat. Figure 4 shows a round. 

 

3.2   NEAT 
As it was mentioned above, the robot was controlled by a NEAT controller. A recurrent 

neural network is used in this project meaning that connections between units form a directed 

cycle. There were six inputs into NEAT for the robot: 5 for the field of view and 1 for health. 
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The inputs for the field of view where set as following: 0 is used to denote a blank tile, 0.5 is 

used to denote wall, and 1 is used to denote a tile occupied by an enemy. Figure 3 shows an 

example of the inputs that the robot would have just for a specific field of view. The robot’s 

health was normalized so the input to NEAT would be a float between 0 and 1. The outputs for 

NEAT were up, down, right, left, and shoot and the maximum output was applied. It started with 

0 hidden nodes, but hidden nodes were added as the robot evolved. The probability for addconn 

is 0.07 and the probability for addnode is 0.05. 

 

Figure 3: An example of what the inputs would be for the robot for its field of view. 0 represents a 
blank tile, 0.5 represents a wall, and 1 represents an opponent.  

3.3   Fitness Function 
The fitness function took into account 3 elements: the number of shots hit, the number of 

unique tiles visited, and the amount of health left. The number of shots hit rewards shooting, the 

number of unique tiles visited rewards exploration, and the amount of health left rewards 

survival. We want the robot to be to learn to shoot and kill the enemy, but it will take a while for 

the robot to learn how to perform shooting properly, so the fitness function could not solely 

depend on shooting. As a result other elements besides shooting were rewarded, but shooting 

was still the most rewarded. Survival was the second most rewarded leaving exploration to be the 

least rewarded. The equation below used to calculate the fitness is shown below:  
𝐹 = 0.2𝐻 + 12𝑆 + 2𝑇 

The coefficient where chosen so that the maximum fitness would be 100. Health ranged from {0, 

100}, shots ranged from {0, 4}, and tiles ranged from {0, 16}. Once the coefficients are applied, 

the ranges for health, shots, and tiles changed to {0, 20}, {0, 48}, and {0, 32} respectively. If the 

maximum of these 3 elements are added, then we get a maximum fitness of 100 as mentioned 

above. If important to note that a maximum fitness of 100 cannot be reached because it means 

that every tile must be visited and this is highly unlikely in the combat environment that we have 

as of now. The world is small so the enemy and robot are going to encounter before the robot has 

a chance to visit every tile. We found out that good fitnesses are generally in the range 57-63. 

This means that the robot usually has 25 health left, has fired 4 shots, and has visited 2-5 tiles.  

 Originally the fitness function rewarded survival the most, shooting the second most, and 

exploration the least. Unfortunately with this fitness function, the robot was not learning to shoot 

at the enemy at all. There would be instances where the enemy would be in its field of view and 
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the robot would not shoot at all. After several trials we didn’t see any shoot be fired from the 

robot. Instead, the robot would end up getting killed most of time by the enemy. As a result we 

decided to make the robot more aggressive by rewarding shooting the most.   
 

  
 

Figure 4: A round between the robot and the enemy. The inputs are gathered and passed into NEAT. 
NEAT gives the output and the maximum output is applied. The world is updated and the robot moves 

based on the implementation written. The world is updated once again and we search for a winner. 
This repeats until a unit dies or until 100 rounds have expired.  

 

4 Results 
Before successful results were obtained some changes were made in order to assure ourselves 

that the robot was indeed learning. Some of these changes included changing parameters such as 

the number of rounds, generation size, and population size in order to confirm that the robot was 

actually learning. Other changes included having the robot and enemy start at fixed locations. 

Originally the placement of the units on the world was random because we thought this would 

lead to robust behavior. Unfortunately, no learning was done by the robot so as a result we 

decided to simplify the environment further by having the units start at fixed location.  

 The following options parameters had good fitnesses: a population size of 200, a 

generation size of 200, a species size of 10, 10 battles, and 100 rounds in each battle. Figure 5 

below shows the population’s average and best fitness. 
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Figure 5: The population’s average and best fitness are displayed. The left graph has a population size 
of 200 and the right has a population size of 1000. 

As we can see from the left graph of Figure 5 has a population size of 200 and we see the fitness 

starts to increase. As the population size increases we expect that the average fitness is no longer 

going to increase and level of at some point. This can be seen in the right graph of Figure 5 

which has a population size of 1000. Also in the right graph we can barely see the increase that 

occurs in the left graph. Most of the graphs had this general outline.   

 The following shows a run through of one of the successful battles that occurred. Figure 6 

shows the start of the round and it was stated above the robot starts bottom right corner and the 

enemy starts at the top right corner.  

 

Figure 6: Each battle begins the same with the robot in the bottom right corner and the enemy in the 
top left corner. Information pertaining to the robot and the enemy are displayed. 

We display the initial health of the units as well as their facing and field of view. The robot 

decides to move up and the enemy decides to move and these movements are shown in Figure 7. 
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Figure 7: The results after 1 round. 1 round consists of a robot turn and an enemy turn. 

For next several of turns nothing to interesting happens. The robot and enemy keep moving 

around the environment. Figure 8 shows the movements that the enemy and the robot go through 

until the eventually they see each other and more interesting results happen. In one occasion, the 

7 diagram in Figure 8, the robot moves into wall and loses 10 health. 

  

 

Figure 8: The movements that the robot and the enemy go through until they come into each other’s 
field of view. 

As seen in the last diagram in Figure 8 the units come into the view of each other. It’s the robot’s 

turn the robot decides to shoot the enemy. During the enemy’s turn the robot also decides to 

shoot and a shootout between the two occurs. Whenever a shootout occurs, the unit to shoot first 

is usually the one to win.  Figure 9 shows information pertaining to the health and we can indeed 

confirm that the shooting action occurred with the 25 health decrease that the enemy 

experiences. 
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Figure 9: The robot is the first to fire and the enemy retaliates and thus a shootout occurs.  

Figure 10 shows the end result of the battle and information pertaining to the battle are displayed 

such as the remaining health, shots fired, tiles visited, and fitness for the robot.  

 
Figure 10: The robot wins the shootout. Bimbo is the name of the robot. Information pertaining to the 

battle is displayed.  
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5 Conclusions and Future Work 
 

Overall, we're satisfied with what we've been able to achieve. It certainly wasn't the 

impressive tactical warrior that we had hoped for, but I think our expectations were too high to 

begin with. We were sort of counting on miracles from NEAT, but didn't realize the amount of 

work, experimentation, and luck that goes into finding superb solutions. We momentarily forgot 

that as wonderful as NEAT is, it's still a search algorithm. I wish we could say we have mastered 

NEAT, but I don't think anyone can truthfully claim that. 

Since we presented our results, we've made further progress with our simulator. We changed 

the shooting system to allow the robot to shoot whenever, and implemented an ammunition 

system to go along with this. At first we saw a drop in average and best fitness, but after fiddling 

with things we saw big improvements by reducing our weight_mutation_power from a high 4.5, 

to the normal 1.5. Reducing the species size from 20 to 10 gave us another boost, and brought us 

back to our previous fitness levels. Next, we increased the field of view to much more generous 

14 tiles, made the map much bigger - 10x10 , and decoupled our facing/turning system from our 

movement system. As of now, everything works but the real challenge is finding the optimal 

configuration for NEAT. A few areas that seem promising our minimizing our output nodes by 

mapping many onto one. Something else we want to try is to explore other activation functions. 

Using tangent, all the outputs are likely 1.0 or -1.0. This will require a bit of research as well as 

the good old trial and error. When we added the most recent features, we made things more 

modular and parameterized. 
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