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Abstract 

In the field of adaptive robotics, numerous studies have been concerned primarily with effectively 
simulating biological phenomena in order to take advantage of the many effective approaches to adaptation and 
development present in the world of biology.  In this paper, we discuss an attempt to mimic the psychological 
phenomena of classical conditioning, used frequently in training animals, in robots.  To do this, we trained a robot 
through Q-learning, a reinforcement learning algorithm that creates a Q-table with a row for every state and a 
column for every action, filling the table with the maximum reward possible when executing action a from state s.  
Our robot was trained for two tasks— a Light Training task in which the robot was expected to seek out a light in its 
environment in response to a reward it received for reaching the light, and a Sound Training task in which the robot 
used what it learned in Light Training in combination with sound cues that are predictive of the location of the light  
to reach the light, thus learning to respond to the sound cues in a similar way as the light cues. Overall, our 
experiments were unsuccessful, mainly due to the numerous limitations of the Q-learning algorithm, as the robot 
only managed to find the light with an average of 8.5% success during Light Training, and an average of 
approximately 12% success during Sound Training with an Expected Values light table, a table artificially filled 
with the values we expected to see. 

 
1 Introduction 
 
Much of the field of Adaptive Robotics is concerned with observing and simulating biological 
phenomena in order to make robots capable of developing on their own and adapting to a 
dynamic environment [1]. As Baloch et. al. writes: 
 

Though a great deal of work has been done in mobile robotics, most has 
been algorithmic in its orientation, requiring much hand programmed 
knowledge, and is usually unacceptably slow in performing. Our approach 
begins, instead, from a very different point of view: The robot must be 
adaptive to its environment and learn from experience. [2] 

 
Modern-day robots are expected to operate in constantly changing environments, such as space 
exploration or military tasks, which require the robot to learn and adapt [2]. It would take too 
many resources and too much time to hard-code such a responsive, adaptive robot. Thus, 
adaptive systems are modeled after the mechanisms in biological organisms that exhibit such 
behavior.   

In order to adapt to the environment, a robot must to be able to respond to environmental 
cues. Various experiments have successfully implemented systems that demonstrate robot 
response to environmental cues. For example, Sporns et. al. implement a modifiable value 
system modeled after the nervous system in order to teach a robot to avoid bad-“tasting” objects, 
an inherent value, based on visual cues that predict the taste of the object. The paper showed that, 
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“... initially neutral sensory stimuli that reliably precede other, innately salient sensory stimuli 
can ... become themselves capable of eliciting value system responses.” [3] This study 
demonstrated how robots could be induced to exhibit the responses expected from Pavlovian 
conditioning, a psychological model of biological organisms that illustrates the organism’s 
response to salient environmental cues. 

In Pavlovian conditioning, also known as classical conditioning, there is an 
unconditioned, or natural, stimulus (US), which elicits an unconditioned, or natural, response 
(UR). A second, neutral stimulus (called the conditioned stimulus, CS) elicits no response at all 
[4]. In the Sporns et. al. experiment, the US, UR and CS, are represented by the taste of the 
object, the avoidant behavior, and the visual cues, respectively. When the two stimuli are 
coupled together, with the visual cue (CS) indicating the bad taste (US), the robot learns to use 
the visual cues as a predictor of the bad taste and avoids the bad-tasting object before it even 
tastes it.  

Baloch et. al. demonstrate similar behavior in MAVIN, the Mobile Adaptive VIsual 
Navigator, via neural networks. MAVIN, which associates certain images with certain 
“feelings”, can be conditioned to feel fear or happiness in response to a previously neutral image 
(i.e. an image that elicited no emotional response) when the neutral image is coupled with an 
emotional one [2]. 

One of the challenges of conditioning robots, however, is the issue of delayed reward. As 
Balkenius and Morén state, “the goal of classical conditioning is to establish a temporal gradient 
that represents the distance to the goal event.” [4] In order for the robot to be able to appreciate 
the predictive value of an environmental cue, it must be able to associate something that happens 
in the past with the final reward. 

In this experiment, we attempt to reproduce such conditioned behavior in robots trained 
via reinforcement learning, specifically Q-learning, because it allows for the learning of events 
with delayed reward, or events that are temporally separated from the goal state. We study 
whether Q-learning allows the robot to be responsive to the environment; in other words, we are 
interested in the plasticity of the robot, or the robot’s ability to adapt to the saliency of 
environmental cues, that is afforded by Q-learning. This is accomplished in two parts: The first 
part, Light Training, uses reinforcement learning to condition the robot to seek a light. The robot 
does not know what its task is; it only knows that a series of actions either causes it to receive a 
reward -- when it reaches the light -- or to receive no reward. The experiment observes whether 
the robot learns with experience that heading towards the light, a salient environmental cue, 
gives it the highest reward. 

In the second part, Sound Training, we compare the responses of a robot trained via 
reinforcement learning to the responses expected from Pavlovian conditioning. The 
aforementioned light serves as the US, and a sound cue, which predicts the location of the light, 
serves as the CS. If reinforcement learning allows the robot to respond to the saliency of outside 
cues, the robot will learn to react to and use the sound cue to faster reach the light, for which it is 
rewarded. 

We will provide an overview of Q-learning, followed by a description of the experiments. 
Then we will present and explain the results and discuss future directions.  
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1.1 Q-learning 
    
Q-learning is a form of reinforcement learning, a field of machine learning that operates under 
the principle that given a state, the robot should choose the action that leads to the highest-
reward next state. Q-learning is an example of temporal difference learning, meaning that the 
reward is delayed, so after a trial is completed the resulting reward of that trial is backpropagated 
to all of the actions performed in that trial, rather than the robot receiving an explicit reward after 
each action. 

Q-learning works by creating a Q-table with a row for every state and a column for every 
action. The value of Q(s,a) represents the maximum discounted cumulative reward possible that 
can be attained by executing action a as the first action from state s.  This means the value of Q is 
the reward for executing action a from state s plus the value of performing all subsequent optimal 
actions, demonstrated by the following update rule: 

 
Q(s, a) = Q(s, a) + α(r + γ * maxQ(s’, a’) - Q(s,a)), 

 
where r is the reward, α is the learning rate, and γ is the discount rate [6].   
 
2 The Experimental Framework 
 
 

 
 
Figure 1: The training world, with a size of 10 by 5 units.  The sound source is shown as a blue rectangle on the left 
wall, while the goal is represented as a circular light along the right wall. Shown to the left is the directional key 
used for all geometric calculations. For Sound Training, the robot was always placed at coordinates (6.5, 2.5) with a 
random heading in the range indicated by the blue semicircle.  
 
2.1 Environment 
 
To test our robot, we created a long, rectangular, 10 by 5 unit world in Pyrobot, a simulator 
developed by Doug Blank and Lisa Meeden that models robot interactions in a two dimensional 
world (see Figure 1) [5]. Along the left wall was a sound source, and near the center of the right 
wall was the light source, a circular light at position (14.5, 2.5) with a 1-unit radius. Depending 
on the trial, the robot was placed in different locations in the world, with a random heading either 
between 0 and 360 degrees for Light Training, or 180 and 360 degrees for Sound Training. 
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2.2 Agent 
 
We used Pyrobot’s PyrobotRobot60000 robot, with two light sensors in the front that allowed the 
robot to determine whether it had reached the light, and two artificial sensors used by the robot to 
determine geometrically where the sound and light sources were relative to the robot’s own 
position. These sensors informed the robot whether the light and sound sources were in front of, 
behind, to the left, or to the right of the robot. 
 
2.3 Task 
 
The experiment was divided into two main parts: whether the robot could learn the optimal 
behavior through environmental cues and rewards (Light Training), and whether the robot could 
learn to associate a salient environmental cue (CS) with another, inherently rewarded stimulus 
(US; Sound Training). 
 
2.3.1 Light Training 
 
In the first round of training, which we called Light Training, we intended for the robot to learn 
to seek the light through Q-learning. The robot created the Q-table based on the rewards it 
received when it accidentally hit upon the light. Over time, the robot would learn that certain 
actions (i.e. heading towards the light) would be rewarded and thus learn to seek the light. The 
robot was only able to sense the light source, and not the sound source for this trial.   
 
2.3.2 Sound Training 
 
In the second round, called Sound Training, the robot started training with a modified Q-table 
that we filled with expected values; it was already trained to respond to light. In other words, the 
light acted as the unconditioned, natural, stimulus (US). However, the light source did not appear 
until the robot had already performed a certain amount of steps (5 or 10, depending on the trial), 
meaning the robot had to rely on the sound source at the beginning of each trial.  In this round of 
training, we expected the robot to adjust the Q-table to account for the new information it was 
receiving from the sound sensor so that it would still be able to find the goal quickly despite the 
initial absence of the light source. 
 
2.4 Implementation 
 
To implement Q-learning in our robot, we gave the robot a state that included the direction of the 
sound, the direction of light, and whether or not the robot was stalled.  We simplified and 
discretized the states, using the integers 0-3 to represent whether the sound or light was in front, 
to the left, behind, or to the right of the robot, respectively, and ‘T’ or ‘F’ to represent whether 
the robot was stalled or not, respectively. Using this system, a typical state would look something 
like the string ‘23F’, using a 2 to represent that the sound is behind the robot, a 3 to represent that 
the light is to the right of the robot, and an F to represent that the robot is not stalled.  These 
states were placed in the Q-table with three possible actions to choose from: forward, forward-
left, or forward-right. During execution, the robot chose from these states with decreasing 
randomness.  If it was early on in the experiment, the robot would be more likely to choose a 
random action, in order to explore unknown states, whereas later on in the experiment, with more 
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experience, the robot would be more likely to choose the best action of the three in order to more 
effectively find the light. 

Furthermore, we noticed that the robot sometimes developed a circling behavior in order 
to avoid stalling, which avoided the negative reward of hitting a wall, but also prevented the 
robot from reaching the goal.  To prevent this, we gave the robot a step limit of 175 steps, after 
which the trial would end and the robot would receive the same negative reward it received for 
stalling if it had failed to reach the light.  
 
2.4.1 Implementation of Light Training 
 
In addition to the simplification of the states and possible actions, we added many other 
adjustments to our Q-learning system in order to facilitate learning. After numerous unsuccessful 
trials, we began scaffolding the Q-learning in Light Training by starting the robot closer to the 
light so it would be more likely to reach the light, receive a reward, and learn the appropriate 
action. After every 1500 trials, we increased the distance the robot could start from the light, in 
the hopes that the robot would generalize the results from when it was close to the light to when 
it was further away. This distance increased 10 times by 1 unit increments. 

During Light Training, sound direction values were not used. In order to make the Q-
table created in Light Training usable with the addition of the sound sensor in Sound Training, 
we updated the Q-table in such a way that, given a specific light sensor and stall sensor value, the 
value in the Q-table would be the same regardless of the sound sensor value. This was 
implemented by giving the robot the sound direction value of 0 for all states. Given the state 
‘0#F’, with # representing the direction of the light, the Q-table’s ‘0#F’, ‘1#F’, ‘2#F’, and ‘3#F’ 
rows were simultaneously updated with the same reward value. 
 
2.4.2 Implementation of Sound Training 
 
In Sound Training, the robot started at the same location in the middle of the environment for 
each trial, with heading randomized between 180 and 360 degrees, as shown in Figure 1. 
 We conducted two experiments for Sound Training.  Information on the location of the 
sound source was made available from the beginning of the run. The light, however, was not 
turned on until 5 or 10 steps after the trial had begun, depending on the experiment. A new light 
value, 4, was introduced to indicate when no light source was available.  

In addition, when we attempted Sound Training, we decreased the reward the robot 
received for reaching the light if it took more than 40 steps to do so, in order to encourage the 
robot to use the sound cues to reach the light faster, rather than just waiting for the light cue to 
appear to find the goal. 
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Figure 2: This figure shows the frequency of success, calculated every 500 trials, for Light Training. Success was 
determined by whether the robot reached the light. The initial high values and the downward slope can be attributed 
to scaffolding. Frequency of success was expected to increase with time as the Q-table learned that seeking the light 
correlated with a positive reward. As the results indicate, however, frequency of success did not increase with time. 
 
3 Results and Discussion 
 
3.1 Light Training 
 
By 36000 trials, Light Training displayed an average frequency of success of 8.5%, as indicated 
by Figure 2. As expected, scaffolding allowed for an initially high rate of success and dropped as 
the robot’s starting point was moved further and further away from the light source. However, 
the frequency of success did not rebound with time. 
 The average number of steps taken for successes also stabilized at around 34 steps. 
Neither average frequency or average number of steps taken appear to show any correlation with 
time. These results indicate that the robot was not developing a better method of reaching the 
light. Rather, they indicate that the robot developed a table that allowed it to reach the light 8.5% 
of the time. Had the Q-table enabled the robot to learn to reach the light, we would have 
expected a success frequency closer to the 64-73% range, in accordance with the results we 
obtained when we ran the simulator with a Q-table we filled with expected values (e.g. a high 
reward for turning left if the light is to the left and the sound is to the right). The table we created 
was used as the basis for Sound Training in order to maintain the unconditioned stimulus (US) 
premise. 
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Figure 3. This figure shows the frequency of success, calculated every 500 trials, for the two Sound Training runs. 
The blue line indicates the run where the light went on after 5 time steps, and the red line indicates the run where the 
light went on after 10 time steps. Frequency of success was expected to start lower than the Light Training’s success 
rate, but increase with time as the Q-table learned that moving away from the sound source allowed it to reach the 
light faster, and thus, receive higher rewards. As the results indicate, however, frequency of success did not increase 
with time.  
 
3.2 Sound Training 
 
We conducted 16000 trials in which the light appeared after 5 steps, and 17000 trials in which 
the light appeared after 10 steps. Overall, the results of the two experiments was very similar, 
with the 5-step trial averaging a success rate of approximately 12.5%, and the 10-step trial 
averaging a success rate of approximately 10%, as indicated by Figure 3. Based on these results, 
it appears that the robot did not learn to use the sound cues effectively, as it was trained on the 
light table that produced a 64-73% success rate, and yet with the absence of the light cue in the 
beginning of the trial, the success rate dropped by about 50%. 

As indicated by Figure 4, the average number of steps taken in each experiment is also 
similar, with both averaging close to 46-50 steps per successful trial.  Clearly this is much higher 
than the 36 steps average reached in Light Training using the Expected Values Table we created, 
which is the same Q-table that both Sound Training experiments were initially given. This again 
shows that the robot failed to adequately learn to use the sound cues, as it appears that it made 
little or no progress toward the goal in the 5 or 10 steps for which the light was absent.  
However, as shown in the graph in Figure 4, the 10-step experiment appears to be consistently 
faster by a few steps when it does reach the light, so it is possible that the robot learned to use the 
sound cues a little in the 10-step experiment to allow it to do better than the 5-step experiment. 
This can be accounted for by the fact that the 10-step experiment has longer periods of no-light 
states, giving Q-learning more experience with the no-light states and therefore more opportunity 
to learn. 
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Figure 4. This figure shows the average number of steps, calculated every 500 trials, for successes only. The blue 
line, placed for comparison, indicates the average number of steps taken when using a table filled with expected 
values. The average number of steps were expected to trend towards the blue line as Q-learning learned to minimize 
the number of steps it takes to reach the light by using the sound cue. As the results indicate, however, average 
number of steps did not decrease with time. 
 
 
3.3 Limitations of Q-Learning 
 
As demonstrated by our results, we were largely unsuccessful in implementing classical 
conditioning in our robot.  There are many possible reasons for this, many having to do with the 
limitations of Q-learning.  In general, Q-learning is an effective learning algorithm in situations 
with a small amount of clearly defined, discrete states.  However, in robotics, states are often 
continuous, noisy, and numerous, and so adapting a robotics problem to a Q-learning algorithm 
is generally not an easy, or effective, task. 
 Our main problems with Q-learning arose from the complicated nature of the task we 
were trying to implement.  Initially, we attempted to give the robot states that included 
discretized values for each of the two light sensors, but this proved to be far too many states, and 
so we were forced to instead give the robot a state that simply indicated the direction of the light.  
Even with the 32 states we used in our final experiments, it still seemed the robot had a difficult 
time learning a reliable strategy for each state. 
 In addition, using a temporal difference algorithm such as Q-learning for this task is 
difficult, because for each trial, the reward for all steps in the trial is based on whether or not the 
robot succeeded.  Even if the robot made all the right moves up until the end of the trial, if it fails 
to reach the light in the end all of those moves are negatively reinforced, and so it is less likely to 
perform the correct moves in future trials.  In addition, we noticed that in many trials, the robot 
would approach the light and then turn away from it right before the robot reached the light, 
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when our intention was for the robot to learn to continue straight to the light.  However, because 
it was so close to to the light, the action of turning still caused the robot to enter the goal area, 
and so the incorrect action of turning away from the light received a reward for reaching the goal 
state anyways. This is not a problem in situations where the robot is close to the light, but when 
the robot is further away and has learned to turn away from the direction of the light, its chances 
of success are small. 
 
3.4 Future Work 
 
Overall, it is clear that Q-learning is not the best algorithm for this task; the large amount of 
continuous states are not ideal for this algorithm, and the delayed reward serves to inhibit 
learning in many situations.  For future experiments, we would like to try different methods of 
learning to see if this task is possible with more appropriate methods.  One option would be to 
continue using Q-learning, but with the inclusion of a neural net to determine the states, so the 
continuous nature of the states can be dealt with more adequately.  In addition, we could look 
into using the Modifiable Value System described in Sporns et al. [3], or using other types of 
algorithms, such as categorization, evolution, or a reinforcement algorithm that provides 
immediate reward (perhaps based on the distance from the goal) after each action. 
 Furthermore, upon success, we would like to perform more experiments to test how 
useful these results are.  As an extension of Sound Training, we would like to perform an 
experiment in which the sound cue is no longer salient, to see if the robot is capable of learning 
to ignore this cue and only use the light cue to find the goal.  In addition, we would be interested 
in experimenting with our sound- and light- trained robot in other worlds to see if what it learned 
in the environment we created can be used in other situations. This would especially be 
interesting in a maze-type environment, to see if we could train the robot to get around obstacles 
with strategically placed sound and light sources. 
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