
Hierarchical Attentive Multiple Models for Execution and

Recognition of Actions through Training Inverse and Forward

Models Explorationally

Alex Cannon & Imoleayo Abel

Abstract

We present an extension to Demiris’ and Khadhouri’s Hierarchical Attentive Multiple Models
for Execution and Recognition of actions, which is more honest to the developmental paradigm of
robotics. Specifically, we replace their human-coded prediction models with ones that the robot
learns themselves through exploratory motor babbling guided by Categorical Intrinsic-Based
Motivation.

1 Introduction

1.1 Social Learning

Intelligent biological organisms do not learn everything they know from scratch. Quite to the
contrary, they learn most of what they know from other organisms. A human infant, for instance,
does not learn to speak a language on its own, rather it learns that language through imitating
its use by other humans. Similarly, robots need not learn everything independently. Just as the
infant’s language learning is bootstrapped by the language already learned by its caretakers, a robot
with the ability to learn socially (i.e. with the ability to learn to perform tasks through interactions
with other agents), could bootstrap its learning of tasks with the knowledge of those tasks already
acquired by its counterparts. A robot with the ability to learn socially, that is, would not need
to ”reinvent the wheel”, as the saying goes, to learn a new task. If one of its counterparts had
already learned the task, the robot could, in theory, learn the task much more quickly from this
counterpart.

1.2 Imitation Learning

One such approach to implementing social learning in robots has been through imitation. The idea
here is that a robot can learn to perform a task simply by watching a demonstrator perform this
task. After watching the demonstration, the robot will then be able to imitate the observed task.
One of the main obstacles to imitation learning, however, is representing perceived movement in
motor-based terms. [1] For example, how does a robot map its perception of a human demonstrator
walking forward to its own motor commands for moving itself forward? If it the robot is to imitate

1



the human demonstrator’s forward movement, it must somehow construct this mapping. In other
words, the robot must ask itself: ”Given that I perceive the demonstrator perform some action,
what is that action in my motor terms–the one I must perform to imitate the demonstrator?”).
Biologically such a mapping occurs through mirror neurons, which are active both when an action
is perceived (e.g. when the organism watches a demonstrator move forward) and when that same
action is performed (e.g. when the organism moves forward itself). A large part of imitation
learning, then, is concerned with implementing an artificial representation of these mirror neurons.
This is the problem that Demiris and Khadhouri try to tackle with their HAMMER architecture
as described in their paper ”Hierarchical attentitive multiple models for execution and recognition
of actions”. The work presented in the following sections is a direct extension of the work in this
article.

1.3 Related Work and Motivation

HAMMER

Demiris and Khadhouri’s HAMMER architecture, from which the architecture presented in this
paper (Hierarchical Attentive Multiple Models for Execution and Recognition of Actions through
Training Inverse and Forward Models Explorationally, henceforth referred to as HAMMER-TIME)
get its name, relies on, at its lowest level, pairs of inverse and forward models. Each inverse model
is given a sensory state St and a target state St+1, and outputs the motor action that it thinks
moves the agent form St to St+1. Similarly, each forward model is given a sensory state St and
a motor state Mt, and outputs the target state St+1 that it thinks is produced by St and Mt. In
their paper, Demiris and Khadhouri describe the role of these inverse and forward model couplings
within their HAMMER architecture:

If HAMMER is to determine whether a visually perceived demonstrated action matches
a particular inverse-forward model coupling, the demonstrators current state as per-
ceived by the imitator is fed to the inverse model. The inverse model generates the
motor commands that it would output if it was in that state and wanted to execute this
particular action. The motor commands are inhibited from being sent to the motor sys-
tem. The forward model outputs an estimated next state, which is a prediction of what
the demonstrators next state will be. This predicted state is compared with the demon-
strators actual state at the next time step. This comparison results in an error signal
that can be used to increase or decrease the inverse models confidence value, which
is an indicator of how closely the demonstrated action matches a particular imitators
action.[2]

Although Demiris and Khadhouri go on to describe the attention control system they implemented
on top of these inverse and forward model couplings, this is how the core of the HAMMER archi-
tecture works.

In their experiment, Demiris and Khadhouri test their HAMMER architecture using pre-coded
inverse and forward models. Each inverse model corresponds to a higher level action, and each
forward model is simply based on kinematics.

2



A number of inverse models were implemented including move effector towards object
(in the experiments below objects included a soda can and an orange), pick object,
drop object, and move away from object using the ARIA library of primitives pro-
vided with the ActivMedia Peoplebot, similarly to our previous experiments with these
robots...Forward models were hand- coded for each of the inverse models, using kine-
matic rules to output a qualitative prediction of the next state of the system for each
of these inverse models. For example, given the current position and speed of the hand
and a motor command to move the hand to a certain direction, the predicted next state
would be closer or further away from an object.[2]

Given St, in other words, the inverse model supplies the St+1 that corresponds to the higher level
action it represents, from which it derives the primitive motor action Mt that it believes connects
St to St+1. Each forward model makes qualitative predictions about the sensory state in the next
time step (i.e. derives St+1) based on St, Mt, and the kinematics that Demiris and Khadhouri
had ”hard-coded” into it. This decision of Demiris’ and Khadhouri’s to hard-code the inverse and
forward models that they use within their HAMMER architecture is what motivated the research
presented in this paper.

In our experiment, in contrast to that of Demiris and Khadhouri, we set out to create a simplified
HAMMER architecture based on trained inverse and forward models rather than precoded ones.
Instead of pre-coding the inverse and forward models into the robot, we represent each forward
and inverse model as an artificial neural network that we first have the robot train through an
exploratory, motor-babbling phase.

CBIM

Fortunately, a robot controller that trains forward models through motor-babbling has already
been developed. The CBIM controller (short for Category-based Intrinsic Motivation), developed
by Rachel Lee, Ryan Walker, James Marshall, and Lisa Meeden, was designed as a way of instilling
a robot with a sense of productive curiosity, in which the robot focuses on sensorimotor contexts
in which it is making maximal learning progress:

On each time step the robot consults this memory in order to determine which action
to take. First the robot senses the world. Next, it generates a set of candidate ac-
tions, either by enumerating all possibilities or, if the space of actions is continuous, by
generating a random sample of possible actions. Then it concatenates each candidate
action with the current sensory information and probes the memory to find all matching
regions. With some high probability it selects the candidate action associated with the
region with the maximal learning progress. Otherwise it chooses a random region from
the matched set. It then executes the selected action, observes the outcome, and uses
this data to train the expert associated with the selected region.[3]

The ”regions” Meeden et. al. are referring to above represent nodes in a Growing Neural Gas.
The forward model within each of these regions, therefore, is associated with a node in the GNG.
In our experiment, to have CBIM train inverse models in addition to forward models, we simply
inserted an inverse model into every ”region” as well. The controller still selects actions based

3



on the learning progress of the appropriate forward model, but also trains at each time step the
corresponding inverse model.

2 Experiments

2.1 Training Setup

Using the Pyrobot simulator developed by Douglas Blank, we trained our inverse and forward
models on a simulated robot running this modified CBIM controller. We did this by placing the
robot in a ”playpen” with either a red or a green puck to ”play” with (see Figure 1). The robot
then spends a pre-specified number of time steps motor-babbling (via CBIM), during which it trains
its inverse and forward models to identify predictable relationships between its motor actions and
sensory input (sensory input consists of the robot’s distance from the puck, the robots location and
heading, and the puck’s location and color). If the robot either stalls (i.e. runs into a wall) or loses
sight of the puck in its camera, it is reset to a random position in the top half of the pen facing
south such that it will be able to see the puck. In such a situation the puck is reset as well, to both
a random color (either red or green) and a random location in the bottom half of the pen (such
that it will be in the robots field of view). After resetting the puck and the robot, the modified
CBIM controller takes over once again, dictating motor-babbling actions that continue to train its
inverse and forward models.

Two main criteria were taken into account when constructing this training environment. The first
was simplicity, in the hopes that in a simple environment the robot would train its inverse and
forward models after relatively short training trials. The second criteria was congruency with
Demiris and Khadhouris experiment. In their experiment, to restate what has been described
previously, the robot was given inverse and forward models that corresponded to a set of possible
actions that could be performed on one of two objects (a soda can and an orange). This was our
inspiration for the two differently colored pucks–one was our soda can and the other our orange
(for a more elaborate discussion of the role of puck color in our experiment, see the Results and
Discussion section). Similarly, just as Demiris and Khadhouri used the locations of the object and
the hand (see Figure xx) as input, we passed as our input the locations of the puck and the robot.
In essence, using resources we had available to us, we sought to create an environment that was as
if Demiris and Khadhouris robot had been placed in a pen with first a soda can and then an orange,
and been told to go play (i.e. to learn to interact with the objects through motor babbling).

CBIM Trials

To test the robustness of the CBIM training across small changes in parameters, we ran several
different CBIM trials, each producing its own set of forward and inverse models, and consequently
their own unique (but similar structured) HAMMER-TIME architectures. Of these trials, the three
most relevant are:
(1) The first trial ran for 7,000 steps, during which the robots choice of motor-babbling [translation,
rotation] actions was limited to only the set (-1,-1), (-1, 0), (0,-1), (1,0), (0,1), or (1,1) (7k 1001)
(2) The second trial ran for 25,000 steps, but its choice of motor-babbling actions was expanded to
the set (i, j) for i, j in -1.0, -0.9, -0.8, -0.7, , 0.9, 1.0 (25k)

4



(3) The third and final trial also ran for 25,000 steps with a similar set of candidate actions, only
the error threshold on the controllers GNG was raised from 0.75 to 0.95 to try and discourage
the creation of so many GNG nodes (and the forward and inverse models that accompany them)
(25k errThresh95).

2.2 HAMMER-TIME Evaluation Framework

In Demiris and Khadhouris experiment, they could evaluate the accuracy of their HAMMER ar-
chitecture by looking at which inverse-forward model pair was active, because each of pre-coded
these pairs corresponded with some human-defined action. In the most basic sense, they proved the
efficacy of their architecture by showing that their robots move-actuator towards orange inverse-
forward model pair was active when perceiving a demonstrator move their hand towards an or-
ange.[2] In our experiment, because our inverse-model pairs do not correspond to any easily human-
defined action, we do not have this luxury. Moreover, we do not have the resources to run our
HAMMER-TIME architecture with a human demonstrator. To overcome these two obstacles, we
developed a multi-layered framework with which to evaluate HAMMER-TIME.

The basic idea behind the framework is to record the sensor and motor stream of a robot performing
many slightly different versions (i.e. trials) of the same task; in lieu of Demiris and Khadhouris
pick orange evaluation task, our experiment uses approach and hit puck. For each one of these
evaluation trials (we recorded fifty in our experiment), the sensor stream of that trial is fed through
the HAMMER-TIME architecture, which creates motor stream estimate (aka a set of HAMMER-
TIMED motors) that it thinks is associated with the sensory stream (i.e. every motor Mt is thought
to carry St to St+1).

A more detailed description of this framework is found below:

5



2.2.1 HardBrain

We implemented a hardBrain framework that builds upon a hammer trial class. The hardBrain
scheme generates various puck-approaching tasks as instances of the hammer trial class. Each task
object is initiated with the robot and puck at random initial locations and includes motor actions
performed to accomplish the puck approaching task, the sensor value at each time step, as well as
the initial positions of robot and the puck (in the pen) as object variables. These are the tasks
upon which our implemented hammer architecture was tested (referred to previously as ”evaluation
tasks”). Each hammer trial object also included a dictionary to hold names of CBIM trained sets
of inverse and forward models as keys and their corresponding motor predictions as values.

2.2.2 hammer.py

Here, all trial objects containing demonstrations to be imitated are passed in as input and for
each trial object, all sets of CBIM trained inverse and forward models are used in the hammer
architecture to make predictions on motor values. For each inverse and forward model pair, the
inverse model acts upon sensory states at consecutive time steps in the original demonstration
and generates motor actions with which the corresponding forward model makes a prediction of
the next state of the demonstration. The predicted state is then compared with that of all other
forward-inverse model pairs in the same training set. The inverse model motor actions for the pair
with the least euclidean predicted state distance from the actual demonstration is then saved as the
hammer motor prediction for that time step for that set of CBIM trained models. After predictions
for all time steps are made, the name of the CBIM trained set and the list of motor values are
then saved as key-value pairs in the motorlog object variable of the trial object. This procedure is
repeated for all sets of inverse-forward models with all trial objects. A short pseudocode is provided
below.

for each trial_object:

trial_object.hammerMotors = {}

for each CBIM_set:

for each forward-inverse model pair:

make predictions for next state

predictedMotors.append(motor actions for closest prediction)

trial_object.hammerMotors[CBIM_set] = predictedMotors

3 Results and Discussion

3.1 CBIM Training

Initially we feared that incorporating inverse models into the CBIM controller while still selecting
motor babbling actions based on decrease in the error of the forward model would leave the inverse
models relatively untrained by comparison. Empirically, however, our fears to do not seem to have
been borne out.

6



Fig 2: Forward Models CBIM Training Error.

Fig. 3: Inverse Models CBIM Training Error

7



Fig. 4

Figures 2 and 3 show that error of both forward and inverse models are similar over the course of
the training period.

Moreover, while error rates among the experts seem to vary sporadically throughout the training
period, overall trends indicate a clear increase in the average error reduction for both forward
(green line in Figure 4) and inverse models (red line in Figure 4) across all three CBIM training
trials.

3.2 HAMMER-TIME

After producing the HAMMER-TIMED motor actions explained in the Experimental Setup, we
compared each of them to the motor streams of the evaluation tasks from which they had been
derived (see Figure 1). Figure 5, for example, shows the trail of a robot performing an evaluation
task (a task that HAMMER-TIME is supposed to imitate). Figure 6 shows HAMMER-TIMEs
attempt at an imitation of that task. The green line in Figure 7 shows the error in Euclidean
distance between the two robots at each time step (the other lines correspond to other CBIM
trials—other inverse and forward models).

8



Fig 5. Fig. 6.

Fig. 7
Fig 5. shows the trail of the robot for an actual demonstration while Fig 6 shows the trail of the robot

implementing HAMMER’s predictions for the same task. The inverse and forward models used to make the

prediction shown in Fig. 6. are from the CBIM 25k training set. Fig 7. shows the Euclidean error of all sets of

CBIM models used overall in our experiments. The errors are computed by taking the Euclidean distance between

the predicted and actual position of the robot at every time step in the demonstration

4 Summary and Conclusions

Such similarities such as those between Figure 5 (the evaluation task) and Figure 6 (HAMMER-
TIME’s imitation of that task) were found across the bulk of our evaluation tasks. These results
support our hypothesis that trained inverse and forward models, as opposed to pre-coded ones like
those found in [2] are compatible with the HAMMER architecture.

9



Acknowledgments

We would like to acknowledge the efforts of Professor Lisa Meeden in providing us with the knowl-
edge base with which we performed this experiment. We also acknowledge her helpful suggestions
and support through the implementation process. Our appreciation also goes to all students in the
Adaptive Robotics class of Spring 2012 for their constructive comments during our check point and
final demonstrations.

References

[1] Cynthia Breazeal and Brian Scassellati. Robots that imitate humans. TRENDS in Cognitive
Sciences, 6(11):481–487, November 2002.

[2] Yiannis Demiris and Bassam Khadhouri. Hierarchical attentive multiple modes for execution
and recognition of actions. Robotics and Autonomous Systems, 54:361–369, 2006.

[3] Rachel Lee, Ryan Walker, Lisa Meeden, and James Marshall. Category-based intrinsic motiva-
tion, 2009.

10


