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Back-propagation

The question is how to compute these slopes of an error function, par-
ticularly for multilayer networks. The answer to this question is one of
the major contributions in the history of cognitive science. The discovery,
now known as the back-propagation technique, was apparently inde-
pendently achieved several times (Bryson & Ho, 1969; Parker, 1985;
Rumelhart et al., 1986; Werbos, 1974).

The basic idea of the back-propagation technique is to compute the
slopes for weights going into output units, and then to back-propagate
the results to earlier layers in the network. Readers who may need to re-
fresh their knowledge of slopes and how they are computed may want to
look at appendix A. In the derivations to follow, there are occasional
references to equations from appendix A, each identified by the prefix A.

Generalized delta rule

Sometimes it is necessary to find the derivative of a function that is a
function of some function of the variable x. This is accomplished using
the chain rule for differentiation (equation A.9), which establishes an in-
termediate variable, typically called u. Differentiation is another term for
finding a derivative of a function. The chain rule specifies that the deriv-
ative of f(x) with respect to x is the product of the derivative of f(x)
with respect to # and the derivative of # with respect to x.

In the back-propagation technique, the desired derivative of the error
function with respect to weight is actually computed with two interme-
diate variables: the activation of the unit j (y;) and the net input to unit
j ()
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This is a double application of the chain rule in which the partial deriv-
ative of error with respect to weight is equal to the product of three
terms:

1. The partial derivative of error with respect to the unit’s activity

2. The derivative of unit activity with respect to the unit’s net input

3. The partial derivative of the unit’s net input with respect to weight
p p p g



38 Chapter 2

The chain rule makes sense in this context because errot is a direct
function of output activation (and target activation), unit activation is a
direct function of the unit’s net input, and net input is a direct function
of connection weights.

These three key derivatives are computed from equations that have
already been presented. For example, the partial derivative of error with
respect to output activation is the sum of differences over output units
between actual activations and target activations.
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Equation 2.7 derives from equation 2.4, which defined error as the
squared difference between actual and target activity. A full derivation of
equation 2.7 is provided in appendix B.
Next, the derivative of a unit’s activity with respect to its input is the
product of the activity and 1 minus the activity.

D=y (- 28)
Although derivation of equation 2.8 is typically presented in a somewhat
offhand manner as being “easy” (e.g., Rumelhart et al., 1986), it in fact
requires about nine explicit algebraic steps that not everyone can appre-
hend at a glance. Consequently, this derivation is presented in detail in
appendix C for those readers seeking some degree of demystification.

Finally, the third term used in computing the slope of the error func-
tion with respect to weight is this:
= 2.9)
Equation 2.9 conveys that the partial derivative of net input to a receiv-
ing unit, with respect to changes in weight, is simply the level of activity
in the sending unit. This follows in only one algebraic step from how net
input to a unit is computed (equation 2.1) and the exponent rule for dif-
ferentiation (equation A.5).

Combining our results from equations 2.6-2.9, we get that the slope
of error change with respect to weight change at the output units is the
following;:
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In summary, equation 2.10 indicates that computation of the desired
slope of error with respect to weight can be accomplished via the chain
rule of differentiation. This slope is the triple product of the derivatives
of error with respect to activation, of activation with respect to net input,
and of net input with respect to weight. Derivations of each of these
three component slopes from equations for network error, unit activa-
tion, and net input to a unit ensure that the slope of error for a particular
output weight can be computed from three respective readily available
local values: the output-unit activation (y;), the target activation for that
unit (z), and the activation of the sending unit (y;). Agam, the purpose
of this computatlon is to enable weight adjustment to be some “small

negative proportlon “of the current error slope, as specﬂied in equation
2.5. This serves to > move eaéﬂvelght entering each output unit a tiny
step in the right direction to reduce network error, thus enabling the
network gradually to learn the training patterns.

Another point to note about equation 2.10 is that the results depend
on the particular activation function used for a given unit. Equation 2.8
depends on the use of semilinear activation functions, such as the sig-
moid and asigmoid activation functions specified in equations 2.2 and
2.3. A semilinear activation function is one in which a unit’s output is a
nondecreasing, monotonic, differentiable function of its net input. This
definition applies at least to sigmoid, asigmoid, and hyperbolic-tangent
functions, all of which roughly resemble an S shape.* Different activation
functions could produce somewhat different results. A more general ver-
sion of equation 2.10 is this:
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Here £/ (x;) is the derivative of unit /’s activation function with respect to
net input to the unit. Equation 2.11 would apply to learning in networks
having any sort of activation function (Rumelhart et al., 1986).

When the activation function happens to be linear (y; = x;), the re-
sulting, restricted version of equation 2.11 becomes the following:
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This is because f/(x;) = dy;/ox; = 1. Equation 2.12 was indeed a pre-
cursor of equation 2.11, functioning as a learning rule for simple asso-
ciative networks with linear output units and without any hidden units.
These early neural networks were called perceptrons {Rosenblatt, 1962),
and the learning rule was known under a variety of names: the delta rule,
the adaline rule, the Widrow-Hoff rule, and the least-mean-square rule
(Widrow & Hoff, 1960).5 Later this delta rule was shown to be virtually
identical to Rescorla and Wagner’s (1972) model of classical condition-
ing (Sutton & Barto, 1981).

An even more restricted rule for weight adjustment occurs when there

is no target activation, i.e., when ¢; = 0:

(i — &) X yi = ¥;yi (2.13)
As in the delta rule, the learning-rate parameter r is also typically used
here to modulate the amount of weight change.

Equation 2.13 is also known as the Hebb rule because it was proposed
much earlier in verbal form by Donald Hebb (1949) in specﬁlanon about
how learmng might occur in the brain. “When an axon of cell A is near
enough to cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells
such that A’s efficiency, as one of the cells firing B, is increased” (1949,
p. 62). In neural-network terms, Hebb can be read as recommending that
we strengthen th the connection bet\_zveen units A and B whenever A and B

are srmultaneoueiy active. Equatlon 2.13 is ac actually a bit more general
vation ranges and also decrements in connection strength. Essentially,
equation 2.13 says to adjust a weight between two units in pr@; to
the product of their simultaneous activation. o

Although the Hebb rule is effective in some learning situations, it is
rather severely limited by the fact that the stimulus training patterns
must be orthogonal, that is, uncorrelated with each other, for learning
to be successful. Correlations between patterns introduce contamination
between responses to different patterns, and thus make accurate learning
of partially correlated patterns impossible. A further limitation is that,
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like the delta rule, the Hebb rule cannot cope with hidden units having
nonlinear activation functions. Nonetheless, the Hebb learning rule is
favored by some modelers because of its biological plausibility (e.g.,
Kelso, Ganong & Brown, 1986) and the fact that it does not rely on
the presence of a training target. It does figure in a few developmental
models.

The more general rule derived for equation 2.11 is called the general-

ized delta rule because it can deal with units with nonlinear activation
fun_ctions_ and with networks possessing hidden units (Rumelhart et al.,
1986). So far, we have covered only the @gm&&iﬂ_gﬂoutput units, It
is also necessary to consider how the back-propagation method deals
with the weights entering hidden units.

Propagating error backwards
To propagate weight changes back to the previous layer in a network, it
1s necessary to know the partial derivative of error with respect to the
activity of a hidden unit (y;) in that layer:
o > E % (2.14)
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By the chain rule for differentiation (equation A.8), this is the sum across
j links to output units of the product of two partial derivatives: error
with respect to net input to an output unit j and net input to that output
unit with respect to activity of the sending hidden uni ;.

From equations 2.7 and 2.8 and the chain rule (equation A.8), we can
compute the derivative of error with respect to net input:
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It is the product of the partial derivative of error with respect to activity
of the output unit (y;) and the derivative of activity of the output unit
with respect to net input to the output unit ().

The next derivative term in equation 2.14 is the derivative of net input
to the output unit (x;) with respect to activity of the sending hidden unit
(). This can be obtained in one algebraic step by applying the exponent
derivative rule (equation A.5) to the equation for computing net input to
a unit (equation 2.1).

=) xyx (1—y) (2.15)
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L=y (2.16)

Combining our results from equations 2.15 and 2.16, we get the
following:
aE O0E  dx;
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In Words, the derivative of error with respect to sending activation from
a hidden unit is the sum across links to the output units of the product of
four terms:

1. The difference between output and target activation

2. Output activation

3. 1 minus output activation

4. The connection weight between the hidden unit and the output unit

This is a key step in the back-propagation of error, but still not the
whole story. To obtain the desired derivative of error with respect to
incoming weights for a hidden unit, we use equation 2.10 but substitute
the result of equation 2.17 for the original 0E/dy; and simplify by com-
bining like terms:
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The strategy used in equatlons 2.17 and 2.18 can then be applied
recursively back to each successive layer in the network until an error
slope has been computed for every output and hidden unit and the
connection weights have been adjusted accordingly. Hence the name
back-propagation of error. This works to train a multilayer feed-forward
network, except that the error signal does become a bit diluted with
increasing numbers of layers of hidden units. Please keep in mind that
equations 2.14 to 2.18 refer to error at the hidden-unit layers, unlike
previous equations, which dealt with error at the output units.

Summary of back-propagation
In summary, the back-propagation method for training multilayer feed-
forward networks is conducted in two phases. There is first a feed-
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forward phase in which input patterns are presented and the network
computes output values, producing an error value for each pattern at
each output unit. This is followed by a feed-backward phase in which
error derivatives at each unit are computed and weights are adjusted to
reduce error.

Pattern and batch training

These phases can be conducted once for each and every presentation of
the pair of training vectors that constitute a single example. This is
known as paitern training because weight ad]ustment occurs after each
training pattern. Alternatively, the entire set of training patterns can be
presented and the errors accumulated before any back-propagation and
weight adjustment is done. This is known as batch training because the
patterns are processed in a single batch. In the case of batch training,
the equations would be written with pattern subscripts and the results

summed across patterns,

There is some controversy about the relative merits of batch versus
pattern training in terms of both psychological plausibility and learning
effectiveness. At first glance, it might be thought that pattern training is
more plausible. However, there is some psychological (Oden, 1987) and
physiological (Dudai, 1989; Squire, 1987) evidence for batch learning.
For example, the hippocampus processes information in batch mode in
order to relay its information to relevant cortical areas at some later
time. In terms of learnmg effectiveness, batch  learning is potentlally more
and unrrlai_klﬁg_ _rqdundan_t weight changes that mlght result from the
sequential processing of pattern learning. Even in batch learning, how-
ever, outputs are compared to their targets independently of other pat-
terns. Thus, the learning system never has to process more than one
pattern at a time, although it does need to keep a running sum of net-
work error, which is eventually used to adjust the weights.

Momentum

There is one additional technique that is commonly used to speed back-
propagation learning, and that is the addition of a momentum term.
The basic idea is to give each weight some relative degree of inertia or
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momentum, so that it will change less when its last change was small and
change more when its last change was large. This could perhaps induce
larger weight changes when the weight is far from the minimum error,
and small weight changes when the weight is closing in on the minimum
error. A modification of equation 2.5 shows how this works:

Aw(t+1) = —r—aE— + mAw;(1) (2.19)
awi,-

Here 71 is a momentum parameter between 0 and 1. Typically, m is set
to about 0.9. The new weight change at £+ 1 is negatively related to
slope scaled by learning rat lus the amount of weight change on the
previous time step ¢ scaled by momentum #z. In practice, the use of a
momentum term allows a programmer to increase the learning rate a bit

without increasing the danger of -oscillations across the valley defined by
théei;gg_ minimurm. Indeed, the two main parameters that are ‘manipu-
lated and reported in back-propagation research are learning rate and
momentum.

Evaluating Back-propagation

There are good reasons for the fact that back-propagation is far and
away the most popular algorithm for training neural networks, whether
on developmental problems or more generally. It is basically robust
and often effective in learning a wide variety of problems, it uses only
local computations (which is considered biologically plausible), and it is
widely available in software packages. Despite the fact that there is no
mathematical guarantee that the back-propagation algorithm will find
the global error minimum, it often does a fairly good job of getting
close (J. A. Anderson, 1995). However, it is also apparent that back-
propagation is not a panacea for all applications, because it is plagued by
some significant limitations. Some of these limitations are important and
have led to improvements of various kinds. The basic limitations of
back-propagation have to do with its slowness, the static nature of net-

work design, an inability to learn some difficult problems, occasional
overfitting of training data, catastrophic interference, an inability to scale
up well to large problems, and biological implausibility.
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Learning speed

In terms of learning speed, it is well known that back-propagation can
take many thousands of epochs to learn even fairly simple problems,
even with a momentum term. (An epoch is a pass through all of the
training patterns.) From a psychological point of view, this often seems
far too slow for a plausible model of human learning. There appear to be
two principal reasons for back-propagation being so slow. One is the
step-size problem, and the other is the moving-target problem (Fahlman,
1988; Fahlman & Lebiere, 1990). The step-size problem has to do with
an issue presented earlier: uncertainty about how large a step to take in
making a weight change. After computing the siope of the error surface
at a given size weight, the back-propagation algorithm increases the

weight if the slope is negative and decreases the weight if the slope is
positive (refer to figure 2.7). Large steps might get to the minimum error
faster than small ones, but if they are too large, they might create an
oscillation across the valley that never settled into the right weight for
minimizing error. To avoid such oscillations, back-propagation tends to
take rather small steps, governed by the learning rate parameter, typi-
cally set to a moderate proportion such as 0.5. As noted earlier, these
difficulties are ameliorated to some extent by the use of a momentum
parameter. Other algorithms such as cascade-correlation, try to improve
further on this by using second- as well as ﬁr‘it-order derivatives of the
error surface. More on this later.

The moving-target problem has to do with the fact that each hidden
unit in a back-propagation network is trying to become a feature detec-
tor to contribute to the overall solution of the problem it is trying to
learn The difficulty is that all of of the hldden units are chaqgmg at once in

some useful role in the overall so]utlon, therc isa rathcr comp[ex dancc
among the hidden units, which can take a long time to sort out.

One manifestation of the r-n_o;mg—target problem is the so-called herd
effect. Imagine that there are two subtasks involved in an overall solution
to a hypothetical learning problem. As always, the hidden units must
decide which of these subtasks to solve. If subtask A generates a larger or
more coherent error signal, then the hidden .units initially tend to con-

verge on subtask A and ignore other subtasks. Once subtask A is solved,
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they move on to subtask B, with the result that subtask A reappears as
the major source of error. If you have watched very young children play
hockey or soccer, you know what this is like. The players surround the
puck (or ball) until it finally squirts out of the group and across the ice
(or field). The whole group reconverées on the puck, and the cycle begins
again. Eventually the herd (whether players or hidden units) splits up,
with each one learning to mind its own job, but this can take consider-
able time and effort to achieve. Some newer algorithms, such as cascade-
correlation, have sought to _il'n_proiré_or-l this p;:rforrr_la;rlce___by__ encouraging
hidden units to _s-pecialize in certain parts of the problem from the begin-

ning of learning.

Jrhas also been noted that back-propagation learning slows exponen-
tially with an increasing number of layers of hidden units. This is due to
attenuation of the error signal as it propagates back through the layers of
the network. Algorithms that can adjust weights only one layer at a time,
like cascade-correlation, can avoid this slowdown as depth of the net-
work increases.

Static network design

In classic back-propagation learning, a network is typically designed by
hand, by the programmer, and then remains static as learning proceeds.
The programmer must decide how many layers of hidden units to use,
how many hidden units per layer, and what the weight connection
scheme is like. Some researchers are better at this than others, and so
network design is often more of an art than a science. It has more to do
with intuitions and experience-based rules of thumb than with principles
of mathematics, neuroscience, or psychology. Generally speaking, the
computational power of a neural network is proportional to the number
of hidden units that it possesses. If a network is designed with too few
hidden units, it could fail to learn the training set. But if it is designed
with too many hidden units, it might overfit the training data, essentially
memorizing them by rote and failing to Egmﬂjugxnwbi_géﬁeral-

izations that could help with novel examples of the same problem. This
is somewhat analogous to the preferences expressed by Goldilocks in her
fairy tale. It can’t be too much or too little—it has to be just right. But
how does nature or evolution anticipate the right size and connectivity of
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networks for each of the various problems that a child might confront
over the course of a lifetime, particularly in rapidly changing environ-
ments. Later we consider arguments that, indeed, nature likely cannot
accurately anticipate such things. An alternative, employed by generative
networks such as cascade- correlanon is to start a network in an under-

powered state and recruit as many hidden units as needed to solve the
problem being learned.

Catastrophic interference

A further problem with back-propagation networks is that new learn-
ing catastrophically interferes with old learning (McCloskey & Cohen,
1989; Ratcliff, 1990). In human memory, new learning interferes with
old knowledge a bit, but not catastrophically (e.g., Barnes & Under-
wood, 1959). Ironically, the fact that such interference is catastrophic
in back-propagation networks derives from the same properties that
make neural learning so desirable for modeling, that is, that knowledge
is stored on shared connection weights. Because the problem is created

by overlappmg hidden-unit representations, it is not too surprising to
find that it can be avoided by a variety c_)f techmclues that minimize

representational overlap (French, 1999). These solutions tend to require
extreme changes to back-propagation learning, such as mixing in old

training pairs with new omnes or using two different network modules,
one for new learning and another for long-term storage.

Scaling up

In an updated version of their influential book on perceptrons, neural
networks without hidden units, Minsky and Papert (1988) criticized even
hidden-layered back-propagation networks for not being able to scale up
to large and complex problems. If back-propagation networks do have
difficulty scaling up to large problems, this could be due to the use of a
single, homogeneous network on problems that humans would solve in a
modular fashion, by breaking the overall problem down into natural
subproblems, each solved by a distinct module. Some promising inroads
have been made into modular neural networks. In contrast to larger and
more homogeneous networks, modular networks restrict complexity to
be proportional to problem size, generalize effectively, learn multiple
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tasks, easily incorporate prior knowledge, perform robustly, and are
easily extended or modified (Gallinari, 1995). The solutions of modular
networks should also be easier to analyze than the solutions of homoge-
neous networks.

Biological plausibility
It has become customary to criticize back-propagation for being biologi-
cally implausible because the brain is not known to send error signals back
through a feed-forward network of neurons (Crick, 1989). Activation
does flow in both forward and backward directions in biological networks,
but the backward connections carry activation, not error information.
There have been a number of proposals for building more plausible ver-
sions of back-propagation learning by using activation instead of error
back-propagation (Fausett, 1990; Hecht-Neilson, 1989; O’Reilly, 1996).

From a developmental point of view, there is another sense in which
back-propagation learning is biologically implausible. This concerns the
fact that the brain generates new synapses and even new neurons, and
does so under the pressure of learning, not only in infancy but through-
out life (Eriksson, Perfilieva, Bjork-Eriksson, Alborn, Nordborg, Peter-
son & Gage, 1998; Gould, Tanapat, Hastings & Shors, 1999; Gould,
Reeves, Graziano & Gross, 1999; Kempermann, Kuhn & Gage, 1997;
Quartz & Sejnowski, 1997). These processes of synaptogenesis and neu-
rogenesis may be responsible for the qualitative increases in computa-
tional and representational power shown by children at various points in
their development. Generative algorithms like cascade-correlation make
extensive use of these generative processes by recruiting new hidden units
and new links to access them. Neural algorithms for static networks that
fail to implement such growth processes are not mirroring what goes on
in the brain.

For further discussion of the properties of and suggested improve-
ments to back-propagation, see Haykin (1999, chap. 4).
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