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1 Empirical Research

Physicists ask what kind of place this universe is and seek to characterize its behavior system-
atically. Biologists ask what it means for a physical system to be living. We in AI wonder what
kind of information-processing system can ask such questions.

—Avron B. Barr and Edward A. Feigenbaum, The Handbook of Artificial Intelligence,

Vol. 1,p. 11

Empirical methods enhance our observations and help us see more of the structure of
the world. We are fundamentally empirical creatures, always asking, What is going
on? Isitreal or merely apparent? What causes it? Is there a better explanation? Great
developments were born of microscopes, telescopes, stethoscopes, and other observa-
tional tools. No less important are “datascopes”—visualization methods—and tech-
niques for drawing sound conclusions from data. Empirical methods cluster loosely
into exploratory techniques for visualization, summarization, exploration, and mod-
eling; and confirmatory procedures for testing hypotheses and predictions. In short,

empirical = exploratory + experimental,

Because empirical studies usually observe nondeterministic phenomena, which ex-
hibit variability, both exploratory and experimental methods are based in statistics.
Exploratory statistical methods are called, collectively, exploratory data analysis,
whereas methods for confirmatory experiments go by the name statistical hypothesis
testing. You can find any number of textbooks on the latter, very few devoted to the
former. You might get the impression from these books and from scientific journals
that all empirical work involves controlled experiments and hypothesis testing. But
experiments don’t spring like Athena fully formed from the brow of Zeus: They are
painstakingly constructed by mortals who usually get it wrong first time, who require
lengthy periods of exploration before formulating a precise experimental question,
yet find themselves still amazed at Nature’s ability to confound.
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Even if experiments were easy, you should take a more encompassing view of
empirical work for one reason if no other: experiments and hypothesis testing answer
+ yes-0r-no questions. Youcan reduce all your research interests to a series of yes-or-no
questions, but you'll find it slow work. A more efficient approach is t0 flip back and
forth between exploratory and experimental work, engaging in the latter only when
the former produces & question you really want to answer.
Empirical methods and statistics are worth learning because a handful of each goes
a long way. Psychologists, for example, know perhaps ten major statistical methods
and a similar number of techniques for visualizing and exploring data; and they know
perhaps two dozen important experiment designs.! With these methods they address
thousands of research questions. We are Al researchers, not psychologists, but we
too can expect a few appropriate methods to go along way.
The American Heritage Dictionary” defines empirical and empiricism as follows:

Empirical (1) Relying upon Or derived from observation ot experiment: empirical
methods. (2) Relying solely on practical experience and without regard for system
or theory.

Empiricism (1) The view that experience, €sp- of the senses, is the only source of
knowledge. (2) The employment of empirical methods, as in science.

In this book, you should read empirical in its first sense and empiricism in its second
sense. The other interpretations are to0 exclusive (Cohen, 1991). Down with empiri-
cism (in its first sense); down with the equally exclusive view that theory is the only
source of knowledge. Up with empirical studies informed by theories and theories
informed by observations.

-  —

1.1 AI Programs as Objects of Empirical Studies

Our subject is empirical methods for studying Al programs, methods that involve
running programs and recording their behaviors. Unlike other scientists, who study
chemical reactions, processes in cells, bridges under stress, animals in mazes, and so
on, we study computer programs that perform tasks in environments. It shouldn’t be

1.1 get these numbers from textbooks on statistics for psychologists and from books on exper-
iment design such as Cook and Campbell 1979 and articles such as Bower and Clapper 1990
and Newell 1973.

9. American Heritage Dictionary of the English Language, American Heritage Publishing
Co. Inc. and Honghton Mifflin Company, 1971.
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Figure 1.1 How the structure, task, and environment of an organism influence its behavior.

difficult: Compared with biological systems, Al systems are simple; compared with
human cognition, their tasks are rudimentary; and compared with everyday physical
environments, those in which our programs operate are extremely reduced. Yet
programs are in many ways like chemical, biological, mechanical, and psychological
processes. For starters, we don’t know how they work. We generally cannot say how
long they will take to run, when they will fail, how much knowledge is required to
attain a particular error rate, how many nodes of a search tree must be examined, and so
on. It is but a comforting fiction that building a program confers much understanding
of its behavior. Predictive theories of program behavior are thin on the ground and no
better than predictive theories of chemical, biological, mechanical, and psychological
processes: at best incomplete and approximate, at worst vague or wrong.

Studying Al systems is not very different from studying moderately intelligent
animals such as rats. One obliges the agent (rat or program) to perform a task
according to an experimental protocol, observing and analyzing the macro- and micro-
structure of its behavior. Afterward, if the subject is a rat, its head is opened up or
chopped off; and if it is a program, its innards are fiddled with. Six components are
common to these scenarios: agent, task, environment, protocol, data collection, and
analysis. The first three are the domain of theories of behavior, the last three are in
the realm of empirical methods. Behavior is what we observe and measure when an
agent attempts a task in an environment. As figure 1.1 suggests, an agent’s behavior
is not due entirely to its structure, nor its environment, nor its task, but rather to the
interaction of these influences.

Whether your subject is a rat or a computer program, the task of science is the
same, to provide theories to answer three basic research questions:
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m How will a change in the agent’s structure affect its behavior given a task and an
environment?
m How will achangeinan agent’s task affect its behavior in a particular environment?

m How will a change in an agent’s environment affect its behavior on a particular
task?

e ——————— ____——-_____.—__.__—__.____—-—

1.2 Three Basic Research Questions

The three basic research questions all have the same form, so let's pick one to exam-
ine: How will a change in the agent’s structure affect its behavior given a task and
an environment? Bill Clancey and Greg Cooper asked such a question of the MYCIN
system some years ago (Buchanan and Shortliffe, 1984, p. 219). They asked, how
sensitive is MYCIN to the accuracy of its certainty factors? What will happen if each
certainty factor, very precisely represented on the scale —1000. .. 1000, is replaced
by the nearest of just seven values (— 1000, —666, —333, 0, 333, 666, 1000)? When
Clancey and Cooper ran the modified and unmodified versions of MYCIN and com-
pared the answers, they found essentially no decrement in the adequacy of MYCIN’S
recommendations (see chapter 6 for details).

Clancey and Cooper’s question was exploratory; their answer was descriptive.
They asked, “What will happenif . ..7”; they answered with a description of MYCIN’S
performance. Question and answer belong in the lower left-hand corner of figure 1.2,
the dimensions of which—understanding and generaiily~deﬁnc a space of versions
of the basic research questions and answers. Early ina research project we ask, “What
will happeniif...7” and answer, “Here’s what happens. . _» Later, we ask, “Does this
model accurately predict what happens?” and “Does this model provide an accurate
causal explanation of what happens?” Early in a project we ask short questions
that often have lengthy descriptions of behavior as answers; later, the questions are
lengthy because they refer to predictive and causal models, but the answers are short,
often just “yes” or “no.” This shift in balance characterizes progress from exploratory
studies to experimental studies.

The progression is called “understanding” in figure 1.2 because descriptions—the
low end of the dimension—require no understanding (you can describe leaves turning
color in autumn without understanding the process); whereas prediction requires at
least an understanding of the conditions under which behavior occurs (leaves turn
color in the autumn, or when the tree is diseased, and turn more reliably after a period
of intensely cold weather). In practice, the transition from description to prediction
depends on identifying terms in the description that appear to have predictive power.
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Figure 1.2 Generalization and understanding define a space of basic research questions.

This often involves a succession of descriptions: “leaves turn color in October,” then,
identifying a predictive feature, “leaves turn color when the weather turns cold.” An
importantrole of exploratory studies is to identify predictive features. What we aim for
as scientists, however, is causal explanation: leaves turn color because chlorophyll,
which masks other pigments, disappears. And not only causal explanations, but
general causal explanations—why the leaves of aspen, maple, sumac, and oak (but
not pine) change color in the autumn.

1.3 A Strategy for Answering Basic Research Questions

Clancey and Cooper did, in fact, offer a post hoc, informal causal explanation of their
results. MYCIN’s task was to prescribe therapy for all the organisms likely to have
caused one or more infections. Inaccuracies in certainty factors affected MYCIN’s
judgments about the likelihood of organisms, but because most antibiotics kill many
sorts of organisms, the chances are good that MYCIN will recommend an effective
antibiotic even if it judges the likelihood of each organism incorrectly. Clancey and
Cooper didn’t generalize this explanation beyond MYCIN, but we can imagine how
they might have done it. Here is a generalization in terms of features of a program’s
structure, task, environment, and behavior:

Suppose a program’s task is to select actions to “cover” sets of situations. An instance of the
task is a set S of situations. A Jeature of tie environment is that during problem-solving, S
doesn’t change. A feature of the task is that it provides too little information for the program
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1o be certain whether a hypothesized situation h; is in S. Another task feature is that § is
relatively small. A feature of the progrant is that it can judge Pr(hi € S), the likelihood that by
is in 8. Another program feature is that it can decide to cover only some h's (.8 likely ones).
The program selects actions to cover these. The actions have the interesting property that each
deals with several h's. The only behavior of interest is whether the program selects “good”
actions. A generalization of Clancey and Cooper’s result is this: The program’s behavior is
robust against inaccurate estimates of Pr(hi € 5).

The point of this Jong-winded exercise is to illustrate a central conjecture: General
tljfggies in artificial intelligence ¢ @Mplj@m-g@g;;gmﬁwmﬂpmgmm&
‘M"WMS' Progress toward general theories depends on
finding these features. Empirical methods, in particular, help us find general features
by studying specific programs. The empirical generalization strategy, around which
this book is organized, goes like this:

1. build a program that exhibits a behavior of interest while performing particular
tasks in particular environments;

9. identify specific features of the program, its tasks and environments that influence
the target behaviot;

3. develop and testa causal model of how these features influence the target behavior;

4. once the model makes accurate predictions, generalize the features so that other
programs, tasks, and environments are encompassed by the causal model;

5. test whether the general model predicts accurately the behavior of this larger set
of programs, tasks, and environments.

Chapter 2 on exploratory data analysis addresses step 2. Chapters 3, 4, and 5, on
experiment design and hypothesis testing address the testing part of steps 3 and 5.
Chapters 6, 7, and 8, address the model formation parts of step 3. Chapter 9, on
generalization, addresses step 4,

——— _,_._____——-_._.____.__—-___________——-—__

1.4 Kinds of Empirical Studies

Many researchers in artificial intelligence and computer science speak casually of
experiments, as if any activity that involves building and running a program is exper-
imental. This is confusing. I once flew across the country t0 attend a workshop on
“experirnental computer science,” only to discover this phrase is shorthand for nonex-
perimental, indeed, nonempirical research on operating systems and compilers. We
can distinguish four classes of empirical studies:
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Exploratory studies yield causal hypotheses that are tested in observation or ma-
nipulation experiments. To this end, exploratory studies usually collect lots of data,
analyzing it in many ways to find regularities.

Assessment studies establish baselines and ranges, and other assessments of the
behaviors of a system or its environment.

Manipulation experiments test hypotheses about causal influences of factors by
manipulating them and noting effects, if any, on one or more measured variables.

Observation experiments disclose effects of factors on measured variables by ob-
serving associations between levels of the factors and values of the variables. These
are also called natural and quasi-experimental experiments.

Manipulation and observation experiments are what most people regard as proper
experiments, while exploratory and assessment studies seem informal, aimless, heuris-
tic, and hopeful. Testing hypotheses has the panache of “real science,” whereas ex-
ploration seems like fishing and assessment seems plain dull. In fact, these activities
are complementary; one is not more scientific than another; a research project will
involve them all. Indeed, these activities might just as well be considered phases of
a research project as individual studies.

The logic of assessment and exploratory studies is different from that of manipu-
lation and observation experiments. The latter are confirmatory—you test explicit,
precise hypotheses about the effects of factors. Exploratory and assessment studies
suggest hypotheses and help to design experiments. These differences are reflected in
methods and conventions for analyzing data. Manipulation experiments are analyzed
with the tools of statistical hypothesis testing: ¢ tests, analysis of variance, and so
on. Results are outcomes that are very unlikely to have occurred by chance. Hypoth-
esis testing is also applied to some observation experiments, but so are other forms
of analysis. For example, it’s common to summarize the data from an observation
experiment in a regression model of the form

Yy = wix) + waxg + ... wexy + C,

where y is called the response variable and x; ... x; are predictor variables. Typ-
ically, we’ll appraise how well or poorly the regression model predicts y, but this
is less a conclusion, in the hypothesis-testing sense, than an assessment of whether
X1 ...x explain y. Not surprisingly, there are fewer conventions to tell you whether
a regression model is acceptable. Obviously, a model that accounts for much of the
variance in y is preferred to one that doesn’t, all other things equal, but nobody will
insist that predictive power must exceed some threshold, as we conventionally insist
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Figure 1.3 A frequency distribution.

that a result in hypothesis testing must have no more than a one-in-twenty chance of
being wrong.

Data analysis for exploratory and assessment studies is freer still of conventions
and definitions of significance. The purpose of these studies is to find suggestive
patterns in data. For example, what does the distribution in figure 1.3 suggest to
you? Suppose the horizontal axis represents the time required to complete a plan
in a simulated environment and the heights of the bars represent the number of
plans that required a particular amount of time: roughly thirty plans required 7.5
time units, more than fifty plans required 11 (ime units, and at least twenty plans
required 18 time units to finish. These three peaks, or modes, suggest we are col-
lecting data in three rather different conditions. Are we seeing the effects of three
types of simulated weather? Three kinds of plans? Three different operating sys-
tems? Or perhaps there are just two conditions, not three, and the first “dip” in the
histogram represents a sampling error. Are the modes equally spaced, or increas-
ingly separated, suggesting a nonlinear relationship between conditions and time
requirements? Why are more plans found in the second “hump” than in the first?
Is it a sampling bias? Do fewer plans fail in this condition? These questions are
representative of exploratory studies. They are answered by exploratory data analy-
sis, which includes arranging and partitioning data, drawing pictures, dropping data
that seem to obscure patterms, doing everything possible to discover and amplify
regularities.

The strict standards of statistical hypothesis testing have no place here. Exploratory
data analysis finds things in haystacks (data are rarely as clear as figure 1.3), whereas
statistical hypothesis testing puts them under a microscope and tells us whether they
are needles and whether they are sharp.



