Generalization of the Self-Organizing Distinctive
State Abstraction

Serra Kornfilt and Rachael Mansbach

May 13, 2010

Abstract

The Self-organizing Distinctive State Abstraction (SOC#gorithm was im-
plemented on a new task. The original SODA algorithm was usedder to learn
a navigation task, but the intent of this paper was to ingaesti whether the SODA
algorithm was generalizable to a new task and to the reabwdhis paper inves-
tigates whether the SODA algorithm could be applied to temch robot to learn
to pick up a grippable object, in simulation and in the reatldioThe result was
that several aspects of the SODA algorithm were not well rilgsd in the origi-
nal paper and were not easily translatable to a new task¢plary to one taking
place in the real world.

1 Introduction

One pressing concern in robotics is the idea of generadizathat is, the utility of
experiments and algorithms when moved from the precisdipel conditions of one
experiment to another application which differs in some \rayn the old. The most
useful and important algorithms are those that generalék as they can solve a class
of problems rather than just one specific issue. Therefbigpaper discusses the use
of the Self-organizing Distinctive State Abstraction (S®lgorithm to learn a new
task for a new application. Specifically, experiments wesdgrmed to test whether
SODA could be applied to a new task and whether SODA could pkeabto said task
in the real world, rather than just in simulation, as the atgm becomes much more
useful and valuable if it is generalizable from simulationréality and from task to
task.

In the original two papers on SODA [4],[5], a robot in simudett learned to move
from one place in a T-shaped world to another. This task ipksirand does not involve
many complicated actions on the part of the robot.

In the paper From exploration to Imitation [1], Dearden arehixis describe the
use of imitation and internal object models or IOMs in ordetdach a real robot to
learn to move a grippable object about. Though the way tHewas learned, rather
than the task itself, was the focus of the paper, the task itsa simple, elegant one
which can be easily set up in simulation or in reality. Theref this task was seen as
an appropriate one for testing the generalizability of td8. algorithm.

Simulation versus reality has always been a concern in ichais the real world
is generally messy and therefore things that work in sinedo not always translate
well to reality. This is a distinct problem in a field which, thie end of the day, is
primarily real-world-based. Several papers have adddetse issue, such as [3]. In
their paperFrom Simulated to Real Robotsund and Miglino experiment with the
transition of a simulation-built neural network controssgm being transferred to a real
environment using the Khepera robot. Although the expenirimethis paper proceeded
with a different robot, nonetheless the paper illuminategsvn which simulation and
reality can be compared, and the relevance of using siroual&diimprove performance
in the real world.

The real meat of the experiment, of course, is the SODA alyori The algorithm
was implemented using aspects from both the older [4] anden§sy; although us-
ing just the newer paper would have presumably producedrretsults, some of the
aspects of the older paper were included in order to heigditeplicity.

The SODA algorithm has three distinct phases. [5],[4] Fitisé robot performs
what is known as body-babbling; that is, it spends a certambyer of time-steps per-
forming random actions drawn from predefined primitive@wasi. As the robot babbles,
it learns a Growing Neural Gas (GNG) over the sensor spacdt thees. (see section
1.1)

Once the robot has learnt a GNG on its sensors, it has edsedivéded the world
into different regions; so, for instance, a robot which ek a GNG on its sensor in-
puts in a world where it could pick up and put down an objecthrhigarn that holding
an object and not holding an object correspond to states ondifferent categories.
The idea in SODA of having the robot learn a GNG on its sengoutis to enable
the robot to understand its world prior to learning partéewptions that will eventu-
ally be used in learning the specific task itself. These ostiare behavioral routines
that allow the robot to move between distinctive states.yTdre separated into two
types: hill-climbing and trajectory-following options.ilHclimbing options basically
try to get the robot’s sensors as close as possible to thercehthe current cate-
gory as defined by the GNG, while trajectory-following opisomove the robot from
one category to the next [4],[5]. For example, a robot migiatrh a hill-climbing
option that got it closer to seeing something dead centeisindmera, and it might
then learn a trajectory-following option that allowed itwve from there to a state
in which it was holding the object (so the trajectory-foliog option would consist
of using its primitive actions to pick up the object, in thizse). After the robot has
learned hill-climbing and trajectory following optionscan move within an abstracted
environment for which its behaviors become tailored, iasimeg its performance in
comparison to any attempt it might have made to learn thetliaskd off of the raw
sensor readings it received prior to categorization anchieg. The robot learns hill-
climbing and trajectory-following options by means of anfercement learning algo-
rithm, state-action-reward-state-action (SARSA) (setice 1.2) One hill-climbing
option is learned for each prototype returned for the GNG; @aliows the robot to be
able to get itself into the center of any prototypical sta@ne trajectory-following
option is learned for each prototype-primitive action pgiimce then the robot can con-
tinually perform an action to take itself from one prototyp® another.

While learning these options in the second stage, it becomesssary to specify

a more comprehensive state representation for learnijgisgs a method called the
Top-N state representation in which they measure the distaetween a particular
vector and all of the remaining prototypes, take the topindices with the smallest
distance from the prototype and pool them into a single s&geesentation with which
they learn the hill-climbing and trajectory-following apis.

In the last stage of SODA, the robot learns to perform theifipgask using re-
inforcement learning on the options it has learned in th&iptes stage by combining
them into higher-level actions in which trajectory-follmg options are followed until
termination and then hill-climbing actions are taken in ttesv state. This last stage
enables the robot to learn the specific task from a highetkvategic standpoint in
which the world has been categorized and abstracted reltiits perspective, and
thus more suited to maximizing its performance based onbil#yato navigate and
manipulate its environment.

1.1 GNG

Growing Neural Gas is an algorithm that was first introducgd2) as a method of
categorization. It assumes as its input a set of n-dimeaki@ttors and attempts to
learn a topological structure that matches the set. Theasdie discrete or continuous.
In essence, the GNG tries to learn a model such that if it & lgiven an input it can
return a prototype; that is a the vector which is closestaditiput in its model. In this
way it discretizes continuous spaces as well as categgriaam.

1.2 SARSA

The basic idea behind reinforcement learning is to give ti®t a reward for per-
forming specific actions. The robot then learns a policy Basewhat state it is in by
choosing an action based on the maximum expected rewartidoattion. The TD-
learning algorithm, a precursor to SARSA, uses the maximupeeted reward over
all possible actions:

Q(8¢, as) — Q(st,at) + (s, a¢) * [re1 + ymaz(Q(si41,a) — Q(se, ar))] (1)

whereq is the learning rate andis the discount factor. The SARSA algorithm, on the
other hand, uses only the reward expected for the next siada g particular action;
that is, instead of learning a policy of the states, it learqlicy for the state-action
pairs:

Q(st,at) «— Q(st,at) + afrerr +ymar(Q(sir1, atr1) — Q(st,ar))] (2)

2 Experimental Procedure

Our project revolves around two questions: first, will SODArkwwhen applied to a
task different from the one in [5] and, second, can SODA bdémgented in the real
world? The success of the first question is determined byven€@ODA can be used
to teach a robot in simulation to learn the new task, whileshecess of the second

experiment is determined by whether SODA can be used to taobot in the real
world a similar task.

The task to be investigated was chosen deliberately to bmplesione. A Pioneer
robot was placed in a small environment containing two gaie objects, one red
and one blue, and one green immovable object, and expecleartoto move the red
grippable object in front of the green immovable object. hHe teal world, the red
and blue objects were cubes made of Legos, while the greenwaiofe object was a
bright green drawer. The robot always learned in the cdatstd lighting conditions
of a lab with the lights on and the blackout blinds down. Thleotowas contained
to a small, trapezoidal environment, with the green obj@eictly ahead of it and the
red and blue objects beginning halfway between the robottendreen object, one at
about a forty-five degree angle from the robot, the other atibh negative forty-five
degree angle from the robot (see Fig 1). In simulation, therenment was similar,
except that the red and blue objects were simulated puakgréden immovable object
was a green wall, and the environment was given a cone shapeden to help direct
the robot toward its goal.

The Pioneer robot was chosen for this experiment becausedipped with both
a camera and a gripper, which give it the ability to both malsfe objects in its en-
vironment and to gather information about its surroundihgsugh vision. It also has
the ability to rotate and translate which is useful in intgirgg in its environment.

The Self-Organizing Distinctive State Abstraction (SOAgorithm has been im-
plemented on a single task, staying as true as possible tautters’ outline of the
algorithm in [4] and [5]. For the first stage of SODA, the bdalgbbling stage, the
robot learns a GNG over the primitive actions, which are mimve/ard, move back-
ward, turn left, turn right and pick up and put down (an objed®ick up and put
down were hardcoded in order to simplify the robot’s leagrpnogress. In simulation,
pick up represents the robot performing a store command andqwn represents the
robot performing a deploy command. The GNG phase was rund@titnesteps, 250
timesteps and 500 timesteps (in simulation).

The perceptions the GNG used to learn in the simulated woele \the results of
applying red, green and blue color filters to the camera, whach returned a vector
of 5 numbers:zy, 41, x2 1, and area; however, the GNG was fed only the average

z-value
T+ X2

5 3)
and the area. The GNG was also fed the states of the inner &erdweak beams of the
gripper. These return 1 if the beam is broken and thus inglitett there is an object in
the gripper which could potentially be picked up. The GNG wat® fed information

from a stall sensor. The last input into the GNG was an indicat whether the robot
was holding an object, based on whether the robot attempteerform a pick up

action and ended up with its gripper closed. This was necgasahe simulated robot
would often get confused after being unable to perform amdrekitself as having

performed them even though it was unsuccessful. The iraticdtwhether the robot
was holding an object was added both as a safety measure andhte the pioneer to
gain a better understanding of its environment. We pladeaf #ie above information

into a single 10-unit vector for the GNG to learn from.

The original idea of body-babbling was slightly modified lirat instead of letting
the robot move completely randomly, the robot would autacadly pick up an object
that triggered its inner or outer break beam. This was amgitéo cut down on the
repetition of superfluous states and increase the liketlltbat the robot would see a
state in which the item had been picked up, since that wouliikbly to be quite an
important state to see.

In the real-world environment, the primitive actions rened the same, but the
pick up and put down actions now represented the robot fatfithe commands to
lower its gripper, close its gripper and raise its grippevice versa, respectively. In
the real-world environment, it was quickly discovered timatomparison to the color
precision of the red, green and blue objects in the simulateitonment, the colored
Lego blocks and drawer that we used had colors that, unsurgly, were not exactly
red, green and blue and therefore the blobify filter was wnebivork by simply setting
it to look at pure red, pure green and pure blue. This problerm solved by the addi-
tion of a match filter for each color prior to adding the blgfdifters, which filtered the
image for the color given by the match filter. The experimeas\also modified to ac-
count for the physical limitations the real robot had refato its simulated counterpart.
For example, the robot’s camera can only go low enough taallistegister objects in
the gripper that trigger the outer break beam and not the.ifiine stall sensor and the
indicator for whether the robot is holding an object in itgpoger were applied to the
real-world robot in identical format as in their applicatito the simulated robot since
these challenges were faced by both robots.

In both the simulated and the real-world application of thgpdthm, these as-
sembled vectors of values were fed into the GNG algorithmiciyhas mentioned
previously, by finding a topological structure that matchieel given distribution of
values as closely as possible, returns a series of vectarsltssified the world into
a set of representations that the robot could interprets@ineodel vectors were then
used in the second stage of the SODA algorithm: the learrfitigechill-climbing and
the trajectory-following options. To learn these optionbijch are defined in [5] as a
formal specification of a behavioral routine that can itbelused as an action or oper-
ator in a higher-level behavior, we used the reinforcemstriing algorithm SARSA
(state-action-reward-state-action). (see Introdugtion

When learning hill-climbing, the robot learns an optionéaich prototype while in
trajectory-following the robot learns an option for eacbtptype and primitive action
pair. In implementing SARSA to learn these options, the Retatates for both hill-
climbing and trajectory-following are all of the possiblensbinations of the top-3
lists of prototypes that begin with the chosen prototypee Tdp-3 representation is
a specific case of applying the top-N state representatidhadelogy in which we
calculate the distances between the chosen prototype koithet model vectors. The
experiment used inverse distance [4]

v
(ly = w;ll)?

wherey is the chosen prototype and the’s are the other prototypes, with= 2 rather
than the Gaussian mentioned in [5] in order to keep the imefegation simple.

fily) = (4)

The reward function for learning the hill-climbing optioissthe same as in the
newer Provost paper,
REC = cpiAfi(y) — cro if not terminal (5)

RHAC = f,(y) if terminal (6)

, » Wheref is the inverse distance function [5]; that is, a reward ofitiverse distance
if the robot is in its terminal or goal state, and a reward & thange in the inverse
distance otherwise, balanced by several constants. (lexpgriment, botlez; and
cpro Were set to 1). The reward function for learning the trajgcfollowing options is
(likewise from the Provost paper)

REF(y) = fi(y) if not terminal (7)

REF (y) = 0if terminal (8)

that is, a reward of the inverse distance if the robot is ndtsiterminal or goal state
and a reward of O if it is. The terminal state for hill-climiimvas defined to be when
the current sensor readings were within a certain distahtieeagoal prototype. For
the purposes of this experiment, the distance was definegltiwda The terminal state
for trajectory-following was when the robot moved out of therent state into a new
state.

The actions for the hill-climbing Q-table are move forwambve backward, turn
left, turn right, pick up and put down, whereas the actiomgtie trajectory-following
Q-table are move forward, move backward, turn left and tightr As mentioned
earlier, the robot learns a trajectory-following optiom fach prototype-action pair;
the actions for the Q-table consist of the action plus sonmalgarrective action taken
from the other prototypes. Since one cannot have part oflaypoor put down, the
primitive actions used to generate the actions for thedtajg-following Q-table could
only include the aforementioned move forward, move backiwgurn left and turn
right.

The second phase of the algorithm, in which the robot ledr@®ptions, requires
the robot to visit each prototype once for hill-climbing afiedir times for trajectory-
following (one for each prototype-action pair, as mentabbefore). Only after all of
these requirements are satisfied does the robot move orde fiivae, learning the spe-
cific task, in order to make sure that the robot has learnegtarofor all possibilities.

In order to ensure that the robot did see all the prototypesrdbot first learned
hill-climbing on whatever prototype it happened to be in wiilee GNG finished. It
then learned trajectory-following on this same prototypd anded up in another one
and so on and so forth. How many times a particular prototyselieen visited was
kept track of in a dictionary indexed by the prototype numbarboth hill-climbing
and trajectory-following; so, for instance, if the roboatthad learned a hill-climbing
option and two trajectory-following options for a protogythen the dictionaries would
have stored a one in the hill-climbing visited dictionarydaantwo in the trajectory-
following visited dictionary. If the robot entered a protpe which had nothing left
to be learned (a one in the hill-climbing visited dictionaryd a four in the trajectory-
following dictionary), it would then simply take a random waoto get into another

Figure 1: The simulated world in its initial set-up.

prototype. If the robot stalled, then it would be reset inttaadom location in the
environment.

3 Reaults

The current set of results indicates that, when the GNG idoud00 time-steps, al-

though the algorithm can successfully proceed throughttteetstages outlined in the
previous section, and can learn a GNG on the sensors, iteimumber of prototypes
prevent it from successfully learning a policy over whicleain learn the specific task
that we require. The reason is because with a small numbewntétgpes, the robot

cannot distinguish from its starting state and its goalest&urrently, therefore, the
only visualizations of the experiment are the 2D represimts of the GNGs that it is

learning (See Fig 2). There are no other results becausewses no time to run them
and debug longer runs.

4 Discussion
The most significant result from this investigation lies mam the attempts to im-

plement SODA than in any of the results of running the al@ponit These attempts
highlight several major flaws in the SODA algorithm. Firstatifis the problem of the

Figure 2: A two-dimensional visualization of the GNG retedrby the body-babbling
phase.
] Gnuplot ' A oE X

GHG: time step 101

LL Y

-0, 773676, —0,903303

necessity of visiting all the prototypes in order to learmdiptions. [5] never clearly ex-
plains how this problem was addressed, and it seems diffwatime up with a really
elegant solution. In simulation, in this experiment, thelppem was addressed with a
combination of random moves and hand-of-god teleportatihich, of course, would
not work in the real world. Further, it leads to a very hapmdzhard-to-understand
algorithm, which can easily lead to infinite loops, partaly if the GNG is not pruned
properly, since the GNG starts with two random prototypegtvimay, for instance,
never be visited again in the course of learning. During tlittal phases of the GNG,
other spurious prototypes may be generated that may achelisited several times
before being discarded but not erased, with the resulttisadifficult to say for certain
which prototypes should be pruned in order to ensure thahpbysical prototypes are
passed into the second phase of SODA.

Another major problem was that while learning hill-climbioptions, it was easy
for the robot to accidentally overshoot and wind up in a netestwhich threw off the
learning algorithm, since such a state would not be in thalf)et This problem was
never addressed in [cite paper] and it did cause some rdalgons in terms of throwing
off visited counts and such and deciding whether an optioitddoe considered learned
if it overshot at some point. Eventually for the purposesxgfegliency, the option was
defined to be learned even if the learning algorithm exitezltduwan overshoot, because
the alternative could again easily lead to infinite or semfirite loops if the robot
always overshot in a particular hill-climbing option.

Clearly, from observations of the GNG (see Fig 2), the atharineeds to be run
for a larger number of time-steps than one hundred. The GNGibkentirely fitted to
the data, and it can be seen that the robot is seeing perhams three broad groups
of prototypes spread out over a spectrum. Probably the dimga@n the spectrum
is due to the continuous nature of the changing sizes of thleskof different colors,
whereas the broadly different categories probably comegdpo the discrete variables;
in all likelihood stalled and not stalled would be most likéd be seen most often and
therefore to create broadly different groups. Also, pdgsitolding object and not
holding object might conceivably create discrete groups.

41 FutureWork

The main focus of any future work would be improving the aecyrof the results and
manipulating the algorithm so that its individual compotserould be better specified.
The primary concern that arose was that due to the small nuaflgrototypes pro-
duced by the GNG for use in the second and third stages of ¢jogitim, the robot
could not distinguish its starting state from its goal stated could not learn a policy
by which to complete the task. To increase the number of ppé&s returned by the
GNG in future work, the number of steps specified in selffictiuld be increased so
that that the first phase of the algorithm would have more ingtmore data on which
to build topologies. Alternatively, the simulated worldut® be adjusted to encour-
age the discovery of prototypes when exploring, and haggetatistinctions between
states, thus making it easier for the robot to distinguidtvben them.

Due to the difficulties we had with implementing SODA in simtihn, the second
and third phases of the algorithm were not tested on the pioAs mentioned before,

the paper did not address the issue of the robot visitinghallprototypes leading to
a solution that was specific to the conditions allowed by theukated environment.

Future work with the algorithm with regards to the pioneemulgoinclude adapting

the algorithm to enable the real-world robot to visit all bétstates, thus allowing the
algorithm to progress to the point of learning a policy anoving data to compare
with the results of running the algorithm in simulation.

Another step, once the algorithm is improved, might be togeghe body-babbling
step to a hard-coded routine to allow the robot to see all tssiple necessary states.
On the one hand, this might allow the robot to learn more ately the states that
are actually important, but on the other hand, such sugervéan be detrimental to a
robot’s learning capability.

References

[1] Anthony Dearden and Yiannis Demiris. From Explorationliitation: Using
Learnt Internal Models to Imitate Othe®Broceedings of the Society for the Study
of Artificial Intelligence and Simulation of Behavj@&007.

[2] Bernd Fritzke. A Growing Neural Gas Learns Topologigsdvances in Neural
Information Processing Systen(g), 1995.

[3] Henrik Hautop Lund and Orazio Miglino. From SimulatedReal Robots.Pro-
ceedings of IEEE, Third International Conference on Eviohary Computation
1996.

[4] Jefferson Provost, Benjamin J. Kuipers, and Risto Miildinen. Self-organizing
Distinctive State Abtstraction for Learning Robot Navigat University of Texas
Artificial Intelligence Lab Technical Repe2005.

[5] Jefferson Provost, Benjamin J. Kuipers, and Risto Miildinen. Self-organizing
Distinctive State Abstraction Using OptionBroceedings of the Seventh Interna-
tional Conference on Epigenetic Roboti2807.

10

