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Abstract

In this paper we will discribe a system that motivates robots with a combination of in-
trinsic and extrinsic sources of motivation. The system is based on reinforcement learning,
and uses neural networks to predict the effects of the robot’s actions on the environment
and rewarding it for improvement in predictions, while also granting other extrinsic rewards
for specific actions. We then test the system in a simulated environment to see whether the
combination of different sources of motivation can allow a robot to learn about its environ-
ment while also avoiding potentially dangerous actions and keeping its battery charged. We
find that robots with extrinsic motivation are able to avoid harm and keep their battery
charged successfully, even when intrinsic motivation is also present. However, intrinsically
motivated robots are only slightly better at learning about the environment than extrin-
sically motivated ones, and robots with a combination of both types of motivation do not
do any better than those with only extrinsic motivation. Furthermore, robots that choose
actions randomly learn about the environment better than those with either intrinsic or ex-
trinsic motivation. From these results, we conclude that the addition of intrinsic motivation
does not stop a robot from achieving extrinsic goals, but that flaws in either our system or
environment prevent intrinsic motivation from yielding any benefits in the tests performed.

1 Introduction

Motivation is an important concept in the field
of artificial intelligence and machine learning.
If we want a computer to learn a task or learn
about an environment, rather than telling it to
directly (which tends to be infeasible for any
sufficiently complicated task or environment),
we can give it some sort of motivational sys-
tem. This reflects how human psychology of-
ten works: we are motivated to do a variety of
different things by different sources, and our ac-
tions are usually determined by these different
motivations.

In the field of developmental robotics,
where the goal is not to create a robot that can
perform a specific task or operate in a specific
environment, but rather one that is versatile

and can adapt to any environment it is put in
and learn any task presented to it, the empha-
sis is often placed on intrinsic motivation. In-
trinsic motivation is motivation that inherently
comes from performing an action, rather than
coming from some sort of external source. The
source of intrinsic motivation most commonly
used in developmental robotics is the motiva-
tion to discover novelty and learn about the
environment.

Intelligen Adaptive Curiosity (IAC) and
Category-Based Intrinsic Motivation (CBIM)
are examples of such intrinsically motivated
systems (Oudeyer et. al, 2007 and Lee et. al,
2009). With these systems, the robot uses var-
ious mechanisms to predict both the results of
its actions and how much its prediction will im-
prove, and is rewarded for improving its predic-



tions. Thus, the robot is motivated to gain a
better understanding of how its actions affect
its environment. The data from both systems
shows that a robot guided by them can learn
to better predict the results of its actions as it
explores its environment,

With TAC and CBIM, this intrinsic reward
is the robot’s only source of motivation. Thus,
it has no other goals besides learning about its
actions and the environment this is in. At first
glance, this seems appropriate to the goal of de-
velopment robotics. Intrinsic motivation is uni-
versal and applies to any envrionment: you can
put the robot anywhere, and it will still try to
learn about how its actions affect its surround-
ings. Extrinsic sources of motivation, rewards
for the robot based on the environment, seem
inherently more task- or environment-specific.
Since extrinsic rewards are dependent on the
environment and not purely on the robot’s own
learning, they appear narrow and add a level of
supervision to the system that goes against the
primary goal of development robotics.

However, there are still reasons that adding
extrinsic sources of motivation to intrinsically
motivated systems could be a good idea. Con-
sider an intrinsically-motivated robot placed on
a table. The robot wanders around for a bit,
learning about its surroundings, and then falls
off of the table. This likely damages the robot,
and it would probably be preferable for it not
to fall off again. If the robot has only intrin-
sic sources of motivation, however, falling off
the table is a very novel experience, and the
robot may be motivated to continue walking off
of tables whenever it gets the chance in order
to gain a greater understanding of what hap-
pens when it does. In the process of doing so
the robot may end up breaking itself, which is
certainly an undesirable result. Having an ex-
trinsic source of motivation punishing the robot
for getting damaged could solve this problem.
Although the robot may be attracted to the
novelty of falling off of the table, the punish-
ment for the damage that occurs when it does
so could be enough to counteract this desire.

Another example of how extrinsic moti-
vation could benefit intrinsically motivated
robots is the potential for granting a reward for
recharging batteries. A battery-powered robot
with only intrinsic sources of motivation may
initially find the act of recharging its battery
novel and worth doing, but once it has done
it enough times and understands exactly how
it works, it may get “bored” of recharging its
battery and explore other aspects of the envi-
ronment until it runs out. This is clearly an
undesirable result, and it might be possible to
prevent it by giving the robot an extrinsic re-
ward for recharging its battery when it gets low.

Thus, even looking at things from the de-
velopmental robotics perspective, with the goal
being to create a robot that can adapt to any
environment and is not designed for specific
tasks, there are clear ways that the addition of
extrinsic sources of motivation to intrinsically
motivated systems could be beneficial.

Some research into the idea of combining
intrinsic and extrinsic motivation has already
been done. Intrinsically Motivated Reinforce-
ment Learning (IMRL) is a system that incor-
porates both types of motivation (Singh et. al,
2004 and Stout et. al, 2005). IMRL is based
on the principles of reinforcement learning, but
the robot can receive both extrinsic rewards
for achieving certain states in the environment,
and intrinsic rewards for learning to predict
certain “salient events,” changes in the envi-
ronment deemed particularly significant such
as changes in lighting and sound. The robot
was placed in a simulated environment contain-
ing various objects that it could interact with
that had reactions of various complexity (some
objects would always do something like change
the lighting or make a noise, while others would
only do something if specific conditions were
met and the robot interacted with them in a
particular matter). The results showed that
when the robot was both intrinsically moti-
vated to learn to predict salient events and ex-
trinsically motivated to successfully trigger one
of the most complicated objects in the environ-



ment, it learned how to trigger that object sig-
nificantly more quickly than when it was only
motivated extrinsically.

The results with IMRL demonstrate how
combining intrinsic and extrinsic motivation
can be useful, but not necessarily from a devel-
opmental robotics perspective. The nature of
both the extrinsic and intrinsic sources of mo-
tivation was environment-specific, since the ex-
trinsic reward was based on the task the robot
was trying to perform, and the intrinsic reward
depended on what events constituted salient
events, something that could easily vary from
task to task (it is easy to imagine an environ-
ment where changes in sound are not impor-
tant but other changes that were previously ig-
nored are). Furthermore, the results show that
inttrinsic motivation helps the robot perform a
specific task, but do not clearly show how ex-
trinsic motivation impacts the robot’s ability
to learn about the environment.

Huang and Weng (2007) created a sys-
tem that combines intrinsic and extrinsic mo-
tivation from the perspective of developmen-
tal robotics. Like IMRL, the system is based
on reinforcement learning, and the robot re-
ceives both intrinsic rewards for actions that
yield novel states (different from what was ex-
pected) and extrinsic rewards. In this case,
however, the intrinsic rewards are applied to all
actions, not just salient events, and the extrin-
sic rewards are applied manually by a human
(the GUI for the system features buttons the
user can press to reward or punish the robot
for its actions). The system was tested with
a robot in a sumulated environment where it
could turn its head at fixed intervals and look
around the environment with a camera. In-
tially, when placed in a static environment (so
looking in a given direction would always yield
the same image), the robot looked at differ-
ent angles, learning about each one, then began
choosing its actions randomly once none of the
actions were novel any more. The robot was
then run in the same environment only with a
positive reward being issued for one action and

a negative reward for another, and the robot
was found to favor the positively rewarded ac-
tion once the novelty of all of the actions ex-
pired. Next, the robot was put in an envioron-
ment where the image it saw would contain a
random picture of a toy whenever it was look-
ing all the way in one direction. In this case,
the toy was very novel, and the robot generally
favored looking at it with no extrinsic motiva-
tion. However, when the robot was punished
for turning its head in the direction of the toy
and rewarded for turning its head away from
the toy, it favored the rewarded action even
though the toy was more novel.

Huang and Weng’s research shows how the
addition of extrinsic rewards can alter the be-
havior of intrinsically motivated robots, but it
does not directly demonstrate the benefits of
doing so. Furthermore, the fact that the ex-
trinsic rewards and punishments were applied
to the robots manually can be seen as a level of
supervision that is undesirable for the goal of
developmental robotics, and the impact of the
external rewards on the robot’s ability to learn
were not explored at all.

Thus, in this paper we wish to look at how
combining intrinsic and extrinsic rewards can
benefit developmental robotics even with min-
imal levels of supervision. We have already de-
scribed hypothetical situations in which an in-
trinsically motivated robot could benefit from
the addition of extrinsic rewards that can be
applied automatically and are relatively general
and would not need to be altered for different
environments. Now we will describe a system
we have designed to test these situations and
observe whether these theoretical benefits can
be seen in simulation.

2 The System

The system used is essentially a variation of
standard Q-Learning reinforcement algorithm.
The robot exists in a world with distinct states
and actions, and performing an action in a state



changes the state and gives the robot some sort
of reward. The reward the robot receives is
a weighted sum of two distinct components:
an intrinsic component, representing how much
the robot learned from the action, and an ex-
trinsic component, which is dependent on the
environment.

2.1 Intrinsic Motivation

In order to predict the results of its actions,
the robot has one neural network for each ac-
tion it can perform. These networks have just
two layers each, an input layer containing the
parameters of the robot’s current state, and an
output layer representing the state the robot
expects to be in after performing the action.

When the robot performs an action, it pre-
dicts the state that will result, and then calcu-
lates the error in its prediction as the square
of the euclidian distance between the predicted
and actual states and adjusts the weights of the
neural network using back-propogation. It then
compares the error to the lowest previous pre-
dicted error it has had when performing that
action in that state (kept track of in a table).
If the new error is lower, it receives an intrinsic
reward equal to the improvement. Otherwise,
the robot receives no intrinsic reward.

2.2 Extrinsic Motivation

The robot’s extrinsic reward is determined by
two inputs the robot receives: pain and plea-
sure (these are not considered part of the state,
since they are unrelated to the environment and
are not predictive of the results of the robot’s
actions, both in terms of their effect on the
environment and the reward received). Pain
represents events that the robot should avoid
(such as things that damage it), while pleasure
represents things it should seek out (such as
recharing a low battery). The extrinsic reward
the robot receives when performing an action is
equal to the pleasure received minus the pain.

For the purposes of this specific system, the
pain-pleasure model of extrinsic motivation is
largely irrelevent to the implementation, but
from a conceptual standpoint it is helpful in
considering the eventual extension of this sys-
tem to general uses. Extrinsic rewards are in-
herently environment-dependent, but the pain-
pleasure model allows them to be treated as
essentially internal. Different objects of the en-
vironment may cause different amounts of pain
and pleasure, but the actual way the sensor
readings of the robot are converted to extrin-
sic rewards are not environment-dependent (al-
though how general pain and pleasure sensors
could be practically implemented is a matter
beyond the scope of this paper).

2.3 Reinforcement Learning

Similar to a normal Q-Learning system, the
robot keeps track of expected rewards with two
tables, one for extrinsic rewards and one for
extrinsic rewards. These tables work in essen-
tially the same way as the reward table in a
standard Q-Learning algorithm, with one entry
for each action-state combination containing
the reward the robot expects to receive (taking
into account future actions, too) for performing
that action in that state. The main difference
is that the two types of rewards are tracked in
separate tables, with the total reward expected
for performing an action in a state being the
weighted sum of the corresponding entries in
the two tables.

The tables are both expanded as the simu-
lation goes along: instead of each one starting
with entries for every state, it contains only
entries for states the robot has seen, with new
entries being added for new states as the robot
encounters them. This is done to accomodate
the long term goal of making a robot that can
adapt to any environment, because it elimi-
nates the need to know every possible state that
can be encountered by the robot before beggin-
ing.

When a new state is added, the intrinsic ta-



ble entries are initialized with a default value
equal number of parameters in the state. Since
the inputs and outputs for the neural network
are normallized, this is equal to the maximum
possible error that a prediction can possibly
have, and thus represents the maximum pos-
sible intrinsic reward the robot can get from a
single action. In other words, the robot always
assumes that it will learn a significant amount
from doing something it has never done before,
which is clearly a reasonable assumption. The
table used to track the minimum prediction er-
ror that has been achieved for each state and
action (used to calculate the intrinsic reward re-
ceived for an action) also defaults to this value,
the idea being that the robot should assume its
error for something it has never done before is
always worse than something it has done (so it
always learns something the first time it does
something new).

The entries for the extrinsic reward table,
meanwhile, all default to zero, meaning the
robot assumes there will be no positive or nega-
tive extrinsic consequences for something it has
not done before. This is somewhat arbitrary,
but since the system’s parameters should not
depend on the environment it is operating in
(because ideally we would like it to be able to
learn about any environment with no super-
vised knowledge about the environment), this
assumption seema to be the most neutral one
that can be made about the environment with
regard to extrinsic rewards.

When the robot receives an intrinsic or ex-
trinsic reward for an action, it updates the cor-
responding entry in the corresponding table by
the formula

Q(sg,ar) +—  Q(sy,ar) + learningrate

X [reg1 + discount

x maxQ(st+17 a) - Q(8t7 G,t)],
where Q(s¢, at) is the table entry for the current

action and state, 7(t+4-1) is the reward received,
mazrQ(si+1,a) is the maximum reward the can

be received by the next action based on the ta-
ble, and learningrate and discount are both
constants. The learning rate affects how fast
the robot adjusts the table in response to new
rewards, and the discount controls how heav-
ily the robot weigts the reward that can be re-
ceived by future actions after the current one.
The extrinsic and intrinsic reward tables each
have their own learning rate and discount that
can be adjusted individually, if desired.

When choosing an action, there is a small
chance (the rate of exploration) that the robot
will choose a random action, in order to ensure
that the robot explores different states and does
not get stuck in some local maximum of reward.
Otherwise, the robot will pick the action that
yield the best total reward, determined from a
weighted combination of internal and external
rewards from the table.

3 The Environment

The experiment used to test this system in-
volved placing the robot in the simulated world
shown in Figure 1. The environment is a sim-
ple five-by-five square grid, with various items
in the different squares. The robot has four ac-
tions in can carry out. It can move forward,
which advances the robot one square in the di-
rection it is facing if that square exists and does
not contain an item. The robot can turn left
or right, which changes its direction to the left
or right. Finally, the robot can interact with
whatever object is in front of it, which does
different things depending on the object.
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Figure 1: The simulated world the system was
tested in.

There are three types of objects the robot
can interact with. If the robot interacts with
a toy, then the toy moves to the square behind
the robot, if the square exists and does not al-
ready contain an item. If the robot interacts
with a fire, it receives pain (and a negative re-
ward). Meanwhile, the robot also has a battery
level represented by an integer that starts at
100 and decreases by one each time the robot
takes an action, and interacting with a battery
resets the robot’s battery level to 100 and gives
the robot pleasure if its battery level was low.

The robot’s state is comprised of the inputs
from seven sensors. The first three sensors are
sonar sensors, which tell it the distance to the
nearest object or wall to the front, left, and
right of the robot. The next three are object
sensors, which have a value of one if the robot
is facing a fire, toy, or battery, respectively, and
are zero otherwise, allowing the robot to iden-
tify the object in front of it. Finally, the robot
has a battery meter sensor that has a value of
1.0 if the robot’s battery level is high (above
70), 0.5 if it’s in the middle (between 30 and

70), and 0.0 if it’s low (below 30).

For extrinsic rewards, the robot receives
a pain value (punishment) of 0.5 for bump-
ing into an object or wall (failing a move for-
ward action) and 1.0 for interacting with a fire.
When the robot recharges its battery, it re-
ceives no reward if the battery level was high,
a pleasure value (reward) of 0.4 if the battery
level was in the middle, and a pleasure value of
1.0 if the battery level was low.

4 Results

The robots were tested in the environment us-
ing five different configurations. One test was
run with the robots moving completely ran-
domly (with a rate of exploration of 1.0), and
four were done with a rate of exploration of
0.2 and different types of motivation: one with
only intrinsic motivation, one with only extrin-
sic motivation, one with both types of moti-
vation weighted equally, and one with intrinsic
motivation given five times the weight of ex-
trinsic motivation. Five trials were run for each
configuration, and each trial lasted 40,000 time
steps. All trials were run with the discount set
to 0.3 and the learning rate set to 0.5 for both
the intrinsic and extrinsic reward tables.

Once every 200 time steps, the robot’s to-
tal knowledge of the environment was measured
by having it perform each action once for ev-
ery available location and direction and three
different battery levels (100, 70, and 30) and
finding the average error in its predictions for
all of these. Figure 2 is a graph of the aver-
age total error accross all five trials for each
setup done. As can be seen, the robots learned
the environment fairly well within about 1,000
time steps and had mostly stopped improving
their prediction error for the environment af-
ter about 5,000 time steps. All of the robots
initially learned the environment at approxi-
mately the same rate, but after learning the
environment, the results varied. Although the
total error of the robots with no motivation



stayed roughly constant over time, the error
for the other robots is very noisy and actually
increased over time. The robots with only in-
trinsic motivation seem to generally be slightly
better overall than those with only extrinsic
motivation or both types of motivation, even
when intrinsic motivation was weighted signifi-
cantly more strongly than extrinsic motivation,
with a lower error fairly consistently, but all of
the robots with some form of motivation still
had consistently higher errors than the random
robots.

Because previous results with intrinsically
motivated systems indicate that intrinsic moti-
vation can be beneficial to a robot’s ability to
learn about its environment (Lee et. al, 2009
and Oudeyer et. al, 2007), it semes likely that
the inferiority of intrinsic motivation to ran-
dom actions in this case is due to some flaw
with the system or the environment, and not
indicative that intrinsic motivation in general
does not work. One possible explanation for
these results is that, once the motivated robots
have learned the environment, they tend to fo-
cus on specific actions in specific states, such
as recharging the battery for extrinsically mo-
tivated robots or especially complicated actions
that still yield some intrinsic reward for in-
trinsically motivated ones. In the process of
focusing on these actions in these states, the
neural networks used may become overly spe-
ciallized for predicting these specific situations
and become less effective at predicting other
ones the robot experiences less often. Since
the robot with no motivation just wanders the
environment randomly, it continues to see an
even ditribution of different situations and thus
never becomes too specialized.

The total pain received by the robots over
time (which translates directly to negative re-
ward for robots with extrinsic motivation and
has no effect on the behavior of ones that
don’t), once again averaged over all five trials
for each configuration, can be seen in Figure
3. Since both of the actions that gave pain to
the robot (bumping into an object or wall and

interacting with a fire) are things that could
conceivably be harmful to a real robot, this can
be interpreted as a measure of the total dam-
age done to the robot over the course of the
trial. As can be seen, the robots that received
extrinsic punishment for these actions typically
suffered less than two-thirds the damage of the
robots with only intrinsic motivation and less
than half of that suffered by the robots that be-
haved randomly. The robots with both types
of motivation performed only marginally worse
than the ones with only extrinsic motivation,
indicating the addition of intrinsic motivation
interfered very little with the robots’ ability to
avoid danger.

Figure 4 shows the battery levels of the
robots each time they recharged their battery.
These graphs are not averages, but taken from
one arbitrary trial for each setup. In all cases,
the robots frequently recharged their battery
when it was already almost full, likely becuase
it was already there and easily accessible after
having been just charged. However, aside from
these times, the robots that were extrinsically
rewarded for recharging their battery when it
was mid-level or low, whether they also had
intrinsic motivation or not, were very good at
recharging their battery. The battery levels of
these robots rarely dropped below zero after
10,000 timesteps. Most often, they recharged
their battery shortly after it dropped below 70,
the minimum value for which they received a
reward, but even when they let the battery
drop lower the extrinsically motivated robots
almost always recharged it before it dropped
below zero. The results for the extrinsically
motivated robots are roughly the same regard-
less of whether the robot had any intrinsic mo-
tivation, even when it was weighted much more
strongly than extrinsic motivation, indicating
that, as with avoiding danger, intrinsic moti-
vation did not interfere with the robots’ abil-
ity to recahrge their batteries when necessary.
On the other hand, the battery levels of the
robots with no extrinsic motivation to recharge
their battery regularly dropped below zero and
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Figure 2: A graph of the average error for the robots in each setup over all actions in all possible
states in the environment over time. All robots learned the environment at about the same rate,
but for all robots other than the random ones the error rate actually increased over time after
that, especially for ones with extrinsic motivation.

went quite far before being recharged (both tri-
als contain several points where the battery
level dropped so far that the point is not vis-
ible on the graph). Although these robots re-
ceived no explicit penalty when their battery
reached zero, if we imagine that the robots
were actually battery powered and the battery
dropping below zero meant the robot would
cease to function until its battery was manu-
ally recharged by someone else, this is clearly
an undesirable result.

5 Discussion
In this paper, we created a system that gives

a robot both intrinsic and extrinsic rewards,
and observed the way these rewards can be

beneficial to a robot. In particular, we tested
the robot’s ability to learn about an environ-
ment while also avoiding harmful actions and
recharging its battery periodically.

The results in Figures 3 and 4 clearly show
the benefits of extrinsic motivation. Extrinsi-
cally motivated robots were able to avoid dan-
ger and recharge their battery when necessary
significantly better than ones that did not re-
ceive any sort of extrinsic punishment or re-
ward for such actions. Furthermore, these re-
sults show that the presence of intrinsic moti-
vation did not interfere with the robots’ ability
to do these things, with the robots that were
both extrinsically and intrinsically motivated
performing barely worse, if at all, than those
that were exclusively extrinsically motivated.
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Figure 3: The average total pain received over time by robots in each setup. Robts that were
extrinsically punished for receiving pain received significantly less than those that were not.

The benefits of intrinsic motivation, on the
other hand, remain unclear. The robots seemed
to learn about the environment at the same
rate regardless of their motivation, and the
robots that had no motivation and just moved
randomly were actually able to maintain their
understanding of the environment better than
those that were motivated either intrinsically
or extrinsically, even though previous research
has indicated that intrinsic motivation should
be effective on its own (Lee et. al, 2009 and
Oudeyer et. al, 2007). The robots that were
only intrinsically motivated did still maintain
a slightly better understanding of the environ-
ment than those that had extrinsic motivation,
although the robots that were motivation both
intrinsically and extrinsically had roughly the
same performance as those that were motivated
only extrinsically. Overall, the experiment did

not demonstrate a clear benefit (and possibly
even a detrement) to the robot’s ability to learn
from intrinsic motivation, especially when it
was combined with extrinsic motivation.

If the problem with the motivated robots’
ability to learn is that they become too special-
ized after initially learning the environment, as
speculated, one possible solution would be to
modify the way the robots predict the results
of their actions. The system currently in place—
one neural network per action with no hidden
layers in any networks—is very primitive, and
not very well suited to more complex environ-
ments or ones where the same action can pro-
duce a variety of different results, since it only
allows for the states resulting from an action
to be a linear function of the initial state. One
way to possibly solve this problem is to add
hidden layers to the networks, but perhaps a
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Figure 4: The times and battery levels at which the robots recharged their battery in each setup.
Robots that were intrinsically rewarded rarely let their battery drop below zero.

better way is to increase the number of neural
networks used.

One way to do this could be to categorize
states and use a different network for each cat-
egory, in a manner similar to CBIM (Lee et.
al, 2009). The networks could take both the
state parameters and the action parameters as
inputs, and the robot would begin with just one
network for predicting everything. A condition
could be created for when to create new state

categories based on the existing network’s er-
ror, and when a new state category is created
a new network could also be created for it. If
the categorization system were successfully de-
signed in such a way that every sensorimotor in-
put in a given category could be accurately pre-
dicted using the same neural network, then spe-
cialization would not be a concern. If the robot
focused on only a small set of situations, the
networks for those situations would improve,

10



but any situation different enough that those
improvements would not help would be using a
different network anyway.

In addition to using state categorization to
potentially improve the robot’s ability to pre-
dict the results of its actions, it could also be
used to categorize states for the purposes of cal-
culating rewards. States could be grouped into
categories based on the expected intrinsic and
extrinsic rewards from those categories (so two
states in the same category would give close re-
wards for the same action). This would have
to potential to improve the system’s perfor-
mance in larger environments significantly. Al-
though it was not directly tested in very large,
complex environments, it seems likely that, as
currently implemented, it would struggle with
them, since the number of entries in the reward
tables would get too large. If the robot catego-
rized states based on the rewards recieved (pos-
sibly with separate categorizations for intrinsic
and extrinsic rewards), it would need fewer en-
tries in the tables for larger environments.

Perhaps even more importantly than help-
ing the robot function in large environments,
using state categorization for both predicting
states and tracking expected rewards would al-
low the system to function in continuous envi-
ronments. Right now, the need for a separate
table entry for every possible state means the
system can only operate in environments where
the states are discrete. If states were catego-
rized, however, then table entries would only
be necessary for each category, so it would be
okay for the states to be continuous since the
categories would still be discrete. This possi-
bility of extending the system to work in con-
tinuous environments is very important, since
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it is necessary for the system to be used on real
robots.
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