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The goal of our study was to determine whether the implementation of sensory and motor 
constraints on a developing robot would significantly improve learning progress. 
Developing robots were initiated in a rectangular hallway facing a wall whose color was 
dependent on the robot’s movement and position. Throughout the developmental process, 
the robot had to predict future sensorimotor vectors based on past experiences and report 
the error in this prediction. Experiments were run on both constrained and unconstrained 
robots. A comparison was made between the prediction successes in the final stages of 
development in both the constrained and unconstrained robots. We found no significant 
evidence showing that the addition of constraints led to lower prediction error. We also 
found no significant evidence of decrease in prediction error in the unconstrained agents. 
The data collected led us to believe that neither the constrained nor unconstrained 
experimental groups were successful in learning to predict their environment and that the 
designed world was too difficult for the robot to learn with the given parameters and 
developmental architecture.

1. Introduction

Human infants are born with poor mastery over their muscular-skeletal 
locomotive functions. Further, physical maturation and the emergence of fine coordinated 
muscular control follows a developmental pathway shared among all infants. For 
example, rolling precedes crawling, which in turn precedes standing and walking. In 
developmental biology and robotics literature, the freezing and release of degrees of 
freedom in movement has been speculated as a phenomenon that contributes to this 
developmental pathway. It has been suggested that freezing and freeing degrees of 
freedom facilitates development by reducing a large range of potential movements that 
may overwhelm an infant. A baby learning to coordinate its body has heavy coupling in 
many joints, which effectively constrains the degree of freedom. These couplings are then 
relaxed as the infant masters its rudimentary locomotive action sets and explores more 
complex movements which require increased joint freedom. (Lungarella et. al, 2003).

Developmental robotics experiments have been run to test the effect of 
constraining degrees of freedom within a developing robot. Lungarella and Berthouze 
experimented with the freezing and freeing of degrees of freedom in a robot learning to 
swing in situations with environmental disruptions (2002). They found that the steady 
unfreezing of joints allowed the robot to exhibit swinging behavior, but it was necessary 
to refreeze and unfreeze degrees of freedom when environmental disruptions effected the 
swinging oscillations. 

Less obvious but of equal importance to constraints in movement present in 
infants is the fact that an infant's sensory organs are less acute than that of an adult. 
Three-month-old infants see in very poor resolution, and are roughly fifty-times less 
sensitive to contrast (Brown, 2009). Lungarella explains that these sensory inhibitions are 
advantageous for the infant, because abridging extensive sensory information prevents a 
premature brain from being overwhelmed by sensory overload. It naturally follows from 
these observations that a developing robotic agent may benefit from visual constraints as 
well; the principles applicable to the development of humans may be transferable to 
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artificial learning systems. Our study aimed to address this question by imposing similar 
constraints on a simulated robot and contrasting its learning success with that of an 
unconstrained control robot.

Artificial learning was modeled using Category Based Intrinsic Motivation 
(CBIM) (Lee et. al, 2009). Both constrained and unconstrained learning robots attempted 
to predict the coloring of a wall, which operated on a rule-based system dependent on the 
robot’s movement and position. Should constraint-facilitated learning be transferable to 
artificial systems, we would expect the agent developing under constraints to learn to 
predict its environment more successfully, and consequently, show less prediction error 
than a robot developing free from constraints.

2. Methods

2.1 Developmental Architecture
Artificial development in our experiments was implemented using CBIM. CBIM 

is a hybrid method that combines Intelligent Adaptive Curiosity (IAC) (Oudeyer et al, 
2007) and Growing Neural Gas (GNG) (Fritzke, 1995) to produce a system in which a 
developing agent searches situations that will maximize its learning process. IAC acts by 
storing all situations previously experienced by the robot in a model vector memory. 
These vectors are split into regions of similar sensorimotor space and contain experts 
trained to predict outcomes of actions taken based on current sensory data. At each time 
step, IAC takes in a sensory vector and makes predictions for the sensory vector of the 
next time step based on generated candidate actions. On the next time step, an action is 
chosen and error in prediction is calculated and stored in the expert. These stored errors 
are used to evaluate potential learning progress in choosing future actions. Actions with 
the highest determined learning progress are chosen and carried out. An additional 
parameter is used to determine when a random action is chosen instead. In this way, the 
system can be considered curious but still exhibit random behavior that can lead to the 
discovery of new situations. CBIM implements IAC using a GNG model to categorize 
vectors into regions. GNG is a topology learning algorithm that consists of connected 
units containing vectors. In CBIM, each GNG unit represents a region of IAC. These 
regions are connected by edges. At each time step, the GNG distribution is adjusted based 
on Euclidean distance between a sensorimotor vector from the environment and the 
nearest GNG unit. When error within the GNG units exceeds a given threshold, new units 
are added to accommodate the sensory data that does not fit the current distribution. 
Implementation of a GNG error threshold ensures that IAC regions are only added when 
the robot's environment presents significantly new situations. Otherwise, the GNG 
regions are dynamic enough to adapt to and learn slight variances in the sensorimotor 
space. In our experiment, the GNG error threshold was set to 0.60 and the probability of 
choosing a random action to carry out on the following time step was 15%. At each time 
step, the potential learning progress is evaluated for 20 candidate actions per possible 
color focus output.
 
2.2 Data Analysis

Over the course of our experiments, we collected data on prediction error and 
color focus. The color focus data were broken into fifty step epochs in which the 
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percentage of time the robot chose to focus on a color over the course of the epoch was 
recorded. Percentage of time when the focus color matched the wall color was also 
recorded. The correlation between these two percentages were then compared over the 
course of the development. Developmental regions in which matched wall color 
percentage fell close to the color focus potential corresponded to periods when the robot 
was correctly predicting the color it would see in the next step. Regions where the 
percentages differed suggested incorrect color predictions.

In CBIM, the prediction error is calculated as the Euclidean distance between a 
vector prediction of the sensory data of the next step in development and the actual 
sensory data collected at that next step. At each time step, a list of candidate actions is 
generated and evaluated to determine learning progress. The majority of the time, the 
action with the highest learning progress is chosen. From this action, a sensorimotor 
vector is generated and passed into the GNG region that is closest in Euclidean distance. 
The exemplar in this GNG unit makes a prediction of the resulting sensory space. Once 
this prediction is made, the chosen action is taken and Euclidean error is calculated 
between the prediction vector and the resulting sensory vector. In our experiment, these 
prediction errors were averaged over 125 step epochs throughout the development. 
Graphical analysis was run on these average errors in an attempt to observe trends in the 
data.

Qualitative analysis was also run on the GNG models created by both the control 
group developments and the experimental group developments. The number of GNG 
units created was compared as well as their general fit to the sensorimotor data over the 
course of each experiment.
 
2.3 Developmental World

The simulations were run in an elongated hallway (figure 1). All walls in the 
world were black except for the wall directly in front of the developing robot. The color 
of this wall varied depending on the robot's speed, direction, and location. The 
developing robot was initiated halfway down the hallway centered between the two side 
walls and facing the colored wall. In order for the robot to continue facing the wall 
throughout the experimental run, its movement was limited to forward and backward 
translation. At each time step, the wall color changed based on the robot's movement and 
position. When the robot was within a distance of two units of the wall, the wall color 
changed to red. Outside of this distance, the color was only dependent on the robot's 
speed and direction. If the robot was moving away from the wall, the color was blue. At 
slow forward speeds in the range [0.0, 0.33], the color changed to cyan. With translation 
outputs in the range [.34, .66], the wall color was yellow. Forward speeds within the 
range [0.67, 1.0] caused the wall to become green. In total, there were five possible wall 
colors accessible to the robot. These colors and the robot behavior triggering them are 
summarized in Table 1. If at any time the robot stalled against either the colored wall or 
the wall opposite it, the robot would be reset at a random point in the hallway centered 
between the side walls.
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        Figure 1. Simulation Environment

     Table 1. Summary of wall coloring conditions

2.4 Robot Sensorimotor Space
The developing robot was fitted with the Pyrobot camera device. Color match 

filters were implemented to detect the presence or absence of each possible wall color. 
The sensorimotor space of the robot in our experiments was designed based on that of the 
original CBIM experiment. The developing agent was given six inputs and two outputs. 

The two outputs corresponded to values of color focus and translational 
movement. Movement was scaled to a value between 0.0 and 1.0, where values less than 
0.50 corresponded to backward movement and values greater than corresponded to 
forward movement. The color focus output value was implemented in the original CBIM 
experiment and kept for our experiments. It provided a way for the robot to predict the 
presence and size of objects of specific colors within its field of vision. In our 
experiment, it was used to focus on and predict the presence of particular colors during 
development. Ideally, the robot would choose to focus on colors that were easier to 
predict earlier in development and move on to focus on harder colors later in 
development. The color focus output was a value in the range [0.0, 1.0]. This range was 
split into five equal intervals corresponding to possible colors: [0.0, 0.20] corresponded 
to red, [0.2, 0.4] to yellow, [0.4, 0.6] to green, [0.6, 0.8] to cyan, and [0.8, 1.0] to blue. 

The first five inputs corresponded to the five possible wall colors that the robot 
was able to see. They were entered in the order [blue, cyan, red, yellow, green]. These 
inputs were entered as Boolean values; a value of 0.0 meant that the color was not seen 
and a value of 1.0 meant that the color was seen in the camera view. The sixth input value 
corresponded the area of the color being seen. This area was given as input only if the 
color present matched the robot's color focus. Otherwise, the input value was 0.0. As a 
result, the robot would only be given a wall area if it was focusing on the correct color. 
This gave the robot the ability to autonomously differentiate between situations where it 
was predicting the correct wall color and situations where its predictions were incorrect. 
The overall sensorimotor vector contained eight values:
SM(t) = {blue, cyan, red, yellow, green, wallArea, colorFocus, translation}
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2.5 Experimental Process
Both the control and the experimental agent were run for 10,000 time steps. 

During the last 2,500 steps of development, neither the control nor the experimental agent 
were constrained. Prediction error was compared only during this period to determine 
which had better learned to predict the environment. The main developmental period 
occurred during the first 7,500 steps of each experiment. The control experiments were 
run with no constraints on sensors or motors. The  robot was capable of experiencing all 
five possible wall colors and able to translate at any speed and direction for the entire 
development.

The first 7,500 steps of the experimental agent's development was subdivided 
simultaneously into three motor-restrictive stages and five visual-restrictive stages. In 
order to eliminate confusion between the robot's chosen movement output and its 
constrained output, motor constraints were implemented by modifying the candidate 
actions before they were fed into the regional GNG vectors for determination of learning 
progress. Since the regions only received candidate actions that were already constrained, 
the robot was able to learn based on already scaled sensorimotor vectors at each stage of 
the development. The constraints on motors were divided into three stages of 2,500 steps 
each. In the first stage, the robot could only move one-third of its maximum speed in the 
forward or backward direction. In the second stage this constraint was eased to allow the 
robot to move two-thirds of maximum speed. The constraint was fully released in the 
third stage.

Colors were distinguished using a combination of the pyrobot camera's match and 
blobify filters. If the robot was in a stage of development where it was able to see a 
particular color, its camera would be modified with a match filter that took in RGB 
values specific to that color and passed any instances of the color within the camera's 
view into the blue color channel. This channel was picked up by a blue blobify filter in 
order to determine the area of the wall. To ensure that a blue wall color is not incorrectly 
identified after previous match filters are implemented, the blue match sensor was the 
first color sensor passed. The vision constraints were divided into five stages of 1,500 
steps each. In the first visual constraint stage, the robot could only distinguish the color 
blue. If the wall was any other color, the robot was unable to see any color and each color 
sensor read a value of 0.0. In the second stage, the robot gained the ability to see cyan. In 
the next three successive stages, it gained the ability to distinguish the colors red, yellow, 
and green until it reached the final stage in development where vision constraints were 
effectively released. A summary of the stages of constraints can be seen in Table 2.

    Table 2. Summary of visual and motor constraints
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3. Results

3.1 Trends in Prediction Error
Prediction error data was averaged over intervals of 125 steps throughout the 

experiments. Analysis of the prediction error data revealed a few general trends in the 
robot's ability to predict its environment in both the constrained and unconstrained 
development. In both the control and experimental developments, prediction error in the 
final steps of development was lower than prediction error in the first several steps in 
development. This occurred only as a result of the addition of more GNG units to fit the 
sensorimotor space of the world. Despite the ultimate decrease in prediction error 
between beginning and end of development, there were no outstanding trends seen in the 
change in prediction error over the course of development for either the constrained robot 
or the unconstrained.

In each unconstrained experimental trial, The prediction error consistently 
dropped within the first 2,000 steps of development to a value between 0.30 and 0.50 
(figure 2). After this period of sharp decrease, the prediction error oscillated between 
these two values for the remainder of the experiment, showing no further overall decrease 
in error.

        Figure 2. Prediction errors for an unconstrained development

The periods of constraints for the trials run on the experimental agent all showed 
similar prediction error trends (figure 3). Within the first 1,500 steps of development, The 
prediction error showed a sharp decline from between 0.60 and 0.90 to between 0.20 and 
0.40. Once the development hit step 1,500, a sharp peak in prediction error was observed 
followed by another general decline. The peak at step 1,500 was seen in every 
constrained development run and was the most noticeable change in prediction error 
throughout each development. Similar but less conspicuous peaks were observed in each 
constrained trial at time steps in which either a motor or a vision constraint was released. 
These peaks were generally less noticeable and, like the peak at step 1,500, followed by 
overall decreases in error. As with the control group, the experimental agent development 
trials all showed a lower prediction error between the end and the beginning of the 10,000 
step developments. In the final unconstrained 2,500 steps of development, the 
experimental trials showed an oscillatory trend similar to that of the control group 
developments. Prediction error varied between the values of 0.10 and 0.50 with no 
significant decreasing trend.
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        Figure 3. prediction errors for a constrained development

3.2 Statistical Analysis of Prediction Error
A linear regression was fitted to the prediction error of the control agent. Analysis 

of the regression slope showed no evidence of a non-zero slope. The linear fit residual 
plot showed a pattern of decreasing residuals to around step 6000, and then consistently 
increases until the end of the trial. Quadratic fit residuals show a much more even spread 
(figure 4).

Figure 4. Linear and quadratic fit for prediction error in unconstrained 
development. 

3.3 Comparison of Control and Experimental Groups
In the final 2,500 steps of the experiment, developmental trials in both the control 

and experimental group showed oscillations in prediction error between the values of 
0.10 and 0.60. Trials in the experimental group tended to oscillate closer to the lower 
boundary of this range while trials in the control group showed peaks approaching the 
upper bound of this range. There were no consistent trends in prediction error between 
trials of either the experimental or the control group (figure 5). Some experimental trials 
performed very well and showed relatively low prediction errors. Others performed 
poorly and showed increases in prediction error even in the last 500 steps of their 
development. Similar trends were seen in the control group trials. Through graphical 
analysis, it was revealed that prediction error in the experimental trials was not 
consistently lower than prediction error in control group trials; there were regions where 
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the control groups seemed to exhibit lower values of prediction error than the 
experimental groups.

Fi
gure 5. Comparison of prediction error over the last 2500 steps of experiment between 
constrained and unconstrained development.

3.4 GNG Models
Comparison of the GNG models made by the control and experimental 

developments showed both similarities and discrepancies. Models in both groups fit the 
experienced sensorimotor regions well. There were usually either five or six 
distinguishable regions present. Each region was well represented by a group of 
connected GNG units, but units between regions were generally not connected. There 
were exceptions in this trend: in some GNG models, a few units were dispersed randomly 
outside of experienced sensorimotor regions and some defined sensorimotor regions 
exhibited small amounts of edges connecting units between one another.

A discrepancy was seen in the amount of GNG units created in the constrained 
experimental developments versus the unconstrained control developments. Robots in the 
experimental group consistently produced less GNG regions over the course of their 
lifetime than robots in the control group. Robots in the experimental group generally 
ended their development with between 22 and 24 GNG units, while robots in the control 
group generally ended development with between 26 and 35 GNG units. Despite having 
less units, however, the experimental GNG models were still sufficient in representing 
the experienced sensorimotor space in the final 2,500 steps of the development.

3.5 Color Focus
Analysis of the color focus data collected in both groups of experiments showed 

similar trends in the developing robot's ability to predict and focus on the correct wall 
color. In the unconstrained agents, the colors cyan, yellow, and green were rarely both 
focused on and seen. By graphical analysis, it was shown that over the course of 
development, the percentage of time in which these colors were correctly predicted was 
often below 5% over a fifty step epoch and rarely exceeded 15% (Figure 6). Further 
exploration of the focus data reveals that the percentage of time in which the robot chose 
to focus on these colors usually greatly exceeded the percentage of time in which the 
robot actually saw these colors.
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Figure 6. example of color match data for cyan, yellow, and green 
during an unconstrained development experiment.

The unconstrained robot showed higher prediction successes for the colors red 
and blue. Analysis of the blue color focus data showed regions in which the color focus 
matched the wall color between 40% and 65% of the time within a fifty step epoch. 
Graphical comparison of the percentage of time the robot chose to focus on blue and the 
percentage of time blue was actually seen showed a close correlation between blue focus 
and blue presence. Analysis of red color focus data revealed the same trends, but the 
trends occurred sporadically throughout different developments; different spans of time 
in each development showed correct matching between focus on the color red and the 
presence of red, and the length of these spans varied between trials.

 
Figure 7. Color Focus and Match Data for Red and Blue in a Constrained Development

In the trials run on the experimental agent, similar red and blue color focus data 
was seen (figure 7). In addition, the same trends were seen in the color match rates of the 
colors yellow and green. Cyan showed the same trends for the majority of the 
development with the exception of a brief period of time. Between the time steps of 1,500 
and 3,000 in each constrained development, there is an increase in correct color matching 
and prediction data for the color cyan. The percentage of time in which cyan focus and 
presence was correctly matched slightly increased to a consistent value above 5% over a 

9



fifty step epoch, and the percentage exceeded 15% at least twice in each trial between 
these time steps (figure 8).

Figure 8. example of color match data for cyan in a constrained 
development.

4. Discussion

4.1 Prediction Error and Experimental Comparison
In their developmental robotics survey, Lungarella et. al. state that constraints are 

advantageous to a developing agent because they reduce the complexity of the 
sensorimotor space for immature systems and prevent sensory overload (2003). In our 
experiments, we hypothesized that the implementation of visual and motor constraints on 
a developing robot would allow it to exhibit more successful learning progress than a 
robot developed without constraints. Our results were inconsistent with our expectations. 
In one of the three trials, the constrained robot consistently outperformed the 
unconstrained (figure 5). However, for the other two trials, there is no clear evidence that 
the constrained robots out-performed the unconstrained robots. Furthermore, prediction 
error collected from both control and experimental groups showed high variance in all 
three trials. From this data it was concluded that there was no significant difference in 
learning between the unconstrained and constrained robots.

To perform statistical analysis on prediction error, we plotted error against step 
range in the unconstrained robot (figure 4). A linear regression on this data showed no 
statistically significant evidence of a non-zero slope. That is, there was no evidence of a 
decrease in prediction error over the course of the experiment. No regressions were 
calculated on the experimental group’s development data because the constrained robot’s 
sensorimotor capabilities were not held constant throughout the trial.

The residual plot for the linear fit on the unconstrained data demonstrated a 
downward trend approaching a minimum around step 6,000. From here, the residual plot 
showed an upward trend. This pattern suggested that a linear model is not the best 
approximation of the data distribution. The quadratic fit residual plot showed an even 
spread. The data showed that as the development progressed, prediction error would 
initially decrease, but then after a certain stage in development the pattern would reverse 
and prediction error would increase. It is possible that our data was confounded by the 
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curiosity mechanism built into the CBIM system. Because robots implemented with the 
CBIM model are intrinsically curious, situations that are easier to predict become boring 
to the system. As this occurs, the robot begins to choose candidate actions that are harder 
to predict. That is, The robot chooses actions that have higher prediction errors. If this is 
the case, The non-decreasing trend in our prediction error data was an artifact of CBIM’s 
intrinsic motivation.

4.2 GNG Distributions
The GNG units in both the control and experimental trials were able to separate 

into distinct regions in sensorimotor space as a result of the sufficiently large Euclidean 
distances between vectors containing boolean values for the presence or absence of 
colors. Once the GNG units were spread into these regions, the edges connecting units 
between different regions were mostly removed through aging. The few that remained at 
the end of the experiment were the result of insufficient aging; since edge age is 
dependent on visits to the GNG units connected by the age, ages were not updated unless 
these units were nearest to the sensorimotor vector at a given time step. Edges between 
regions were the result of few visits to the units connected by these edges. Despite the 
presence of lingering edges, however, the GNG distribution fit the distribution of 
experienced sensory vectors in both the constrained and unconstrained developments. 
Each cluster of GNG units in the distribution roughly corresponded to a specific color 
seen in the environment. Figure 9 shows how the colors correspond to the sensory 
regions.

 
Figure 9. GNG model for an example constrained development.
Sensory regions are labeled with colors active in their corresponding 
vectors.

The discrepancy seen between the number of GNG units created in the control 
experiments and the number created in the constrained experiments is related to the 
relative abundance of sensory states available to the developing systems early 
development. Since GNG units were only made when the error threshold was exceeded, 
new units were only added when new sensory states were discovered. In the constrained 

11



trials, GNG units were added at time steps when constraints were released and new colors 
were seen. Since these instances were spread over time, the GNG model had time to fit to 
sensorimotor data before new experiences occurred. 

In the unconstrained developments, the robot started with the ability to see every 
color and move at full speed. Because of this abundance of sensory information, all of the 
GNG units in these developments were created within the first 1,000 steps. Since there 
was no time for the distribution of increasing numbers of units to fit to the data before 
error threshold was again exceeded, more GNG units were made early these trials. The 
constrained developments produced GNG distributions that fit the sensorimotor space 
with less units because their sensory space was slowly incremented. The large amount of 
sensory data available to the control group throughout development led to the production 
of larger numbers of GNG units to deal with the initial sensory overload.

Aside from the differences in the number of GNG units created to fit the 
sensorimotor space of the environment, there was no significant difference observed 
between the models made during the constrained and unconstrained developments. 
Models for both experiment groups showed similar GNG distributions fitting the sensory 
states experienced throughout development. Since the final GNG models for both 
unconstrained and constrained developments were so similar, it can be concluded that 
there was no difference in the way the two types of developments categorized their 
sensorimotor space at the end of their lifetime.

4.3 Color Focus
The trends in the color focus data resulted from a combination of the artificial 

curiosity built into CBIM and the complexity of the world in which the robot was 
developed. In both the control and experimental trials, the color blue was consistently 
focused on and correctly predicted to be within camera’s field of vision. The color blue 
was predicted frequently because it was the easiest color to predict. When the robot was 
outside of two units from the wall, the wall changed to blue with any backward 
movement regardless of speed. 

The next easiest color to predict was the color red; when the robot was within a 
two units of the wall, the wall remained red regardless of movement. As a result, 
prediction of the color red was almost entirely dependent on the wall area input. In both 
the control group and the experimental group, the color red showed signs of 
predictability. Because the wall only turned red when the robot was within a small 
specific region of the world, the robot was only able to learn situations with the color red 
during short periods in its development. This is why correct prediction of the color red 
was only sporadically seen in the developments. The time steps in which the robot 
entered this region during development differed between trials. The resulting color focus 
data showed varying spans of time in which the robot was able to see and correctly 
predict the color red corresponding to the brief spans of time in which the robot was 
within the region close to the wall and able to explore this region.

The remaining three colors were harder for CBIM to predict because these colors 
were dependent on both direction and speed. Because these colors were harder to predict, 
they showed significantly lower color match percentages in the color focus data. The only 
exception was the match percentage increase in the color cyan between step 1,500 and 
3,000 in the constrained developments. Because the robot's movement was constrained to 
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one-third maximum speed in either direction, the only two wall colors accessible to the 
robot between these time steps were blue and cyan. As a result, cyan became as easy to 
predict as blue within this brief time period. This is shown by the higher percentages in 
the matched cyan focus data in this stage.

The absence of clear transitions between successful color focus predictions that 
were seen in the original CBIM paper is a result of the complexity of our world. Instead 
of three colors, our robot had to choose from five colors to focus on. The size of the 
robot's sensorimotor space may also be a factor in the difficulty of color prediction. The 
number of boolean values within the vector may have made it hard to effectively train 
GNG exemplars to correctly predict wall color. Because of the difficult sensorimotor 
vectors, the CBIM brain may have found it harder to categorize situations than it would 
have given a smaller sensorimotor space.

5. Conclusion

From the data we gathered from our experiments, we were unable to provide 
conclusive evidence that constraint-facilitated development is more conducive to learning 
in artificial systems than unconstrained development. If a developing system were 
learning about its environment, it would be expected to be able to better predict its 
environment at the end of its developmental phase. From the prediction error data 
collected in both control and constrained developments, we were unable to see a 
significant decreasing trend in prediction error over the course of the robot’s lifetime. 
From this data we can conclude that neither the constrained nor the unconstrained robot’s 
showed significant learning progress.

Apart from a difference in the number of units created and the time at which units 
were added, the GNG models of the unconstrained and constrained developments showed 
no outstanding differences. Both groups of experiments showed that the sensorimotor 
space in the developmental world could be well represented with between 20 and 35 
GNG unit exemplars. Two conclusions can be drawn from the lack of difference in GNG 
architecture between the two sets of developments. The first is that a development 
exhibiting slow incrementation of sensorimotor capabilities resulted in the creation of a 
smaller number of representative units than a development in which all capabilities are 
always present. Secondly, because GNG units are able to adapt and move to fit changes 
in sensorimotor space, the presence of a stage in development of both constrained and 
unconstrained robots where each have the same capabilities will result in a similar GNG 
distribution to fit similar sensory environments.

Color focus data from both sets of experiments suggest that neither constrained 
nor unconstrained robots tended to learn to predict wall color more successfully than the 
other. It can be concluded that the colors blue and red were both easy to predict within 
our experimental world. Cyan, yellow, and green were harder to predict for both the 
control group robots and the experimental robots. The relatively large sensorimotor 
vector available to our robots may have been at fault. The difficulty may also have been a 
result of the unforeseen complexity of the learning task.

Each set of data analyzed in this paper shows no conclusive evidence for a 
difference between the developmental progress of a constrained robot compared to that of 
an unconstrained robot. In fact, the data suggests that neither constrained nor 
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unconstrained robots showed learning progress over the course of development. Since 
CBIM has already been shown to work as an intrinsically motivated developmental 
system, we believe that our results were caused by the complexity of the task. An 
extended analysis of the effect of variation in parameters such as GNG error threshold 
may produce more effective results. It may also be effective to reduce the amount of 
colors possible in the environment or to reduce the sensorimotor vector to include only 
three color inputs corresponding to combinations of red, green, and blue color values.
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