
An Application of NEAT:
Recurrent Neural Networks and a Communication Task

Final Project Paper
CS 81: Adaptive Robotics

May 13, 2010

1. Abstract
This paper explores the role of recurrent, NEAT derived neural networks as well

as the role of communication in a team-based robot task where knowledge of time is
important. For the purposes of this work, the task was implemented in simulation using
Pyrobot a robot simulator written and developed in Python by Douglas Blanks and Lisa
Meeden [5]. The task requires a team of two robots to first collide with a red circular
puck object and then a blue circular puck object. It is complicated by the fact that all
members of the team must collide with a red object before any member may collide with
a blue one. Unfortunately, the results obtained from the experiment do not demonstrate
that robots with recurrent neural networks perform any better than robots with feed-
forward networks. In particular, robots in the population as a whole do not learn to
reliably perform the task, implying that the task may be too difficult to evolve a fit
population within 100 generations. This is most likely due to the fact that fitness is
awarded in a very discrete way such that networks learn to avoid blue and pursue red
but never to make the transition from colliding with red pucks to colliding with blue
pucks. These problems were not resolved within the window of possible experimentation.

2. Motivation
The primary motivation for this experiment is to provide further evidence to show

how neural networks can solve complex problems geared towards real-world applications.
As such, the task was devised to illustrate that through the utilization of network
recurrence and communication, NEAT evolved neural networks could not only be applied
to robotic team tasks but also quickly and effectively learn to solve them. Learning for
robotic teams is a necessity because many challenges that cannot be easily overcome by a
single robot are solved with greater facility by a team. Thus a large area of neural
network research has been in its application to robotic teams, as this serves as an area
with great promise for future scientific advancement [2].

3. Related Work
In his paper A comparison of approaches to the evolution of homogeneous multi-

robot teams, Dr. Matt Quinn demonstrates that in some nontrivial applications, a team of
robots with homogeneous morphologies perform better with heterogeneous neural networks
as brains. For his experimental setup, he uses two Khepera robots in simulation, each
separated by a distance on the order of the diameter of a single robot. For the first
task, robot teams start in one of 45 predefined configurations specified by discrete
heading values in combination with their distances from one another. The brains of each
robot are recurrent neural networks with eight inputs and four outputs.

In his paper, the author presents two distinct approaches for the creation of the
teams: clonal and aclonal. In the context of the clonal approach, namely the one where
both robots share an instance of the same brain, fitness is the average of the team's
score for each of the 45 possible configurations. For the the aclonal approach, the one in
which robots in the team have heterogeneous brains, each individual is evaluated twice
for every configuration for a total of 90 evalutions, each one with a distinct partner. An
individual's fitness is thus the average of the fitnesses obtained from each of the 90
teams of which it participated. This provides a good heuristic for evaluating an
individual's performance because every robotic brain is tested not only in every possible
configuration but serves as a team member with usually a statistically representative
portion of the population.

The task itself was intuitively very simple but far from trivial. Both robots were
given 10 simulated seconds to move 25 centimeters from their original positions.
Although one would expect robots with homogeneous neural networks to on average

achieve higher fitness, as has been almost universally postulated and shown
experimentally, this was not the case. Aclonal teams on average performed much, much
better than clonal teams. Approximately twice as many aclonal teams scored greater than
95 percent of the maximum possible fitness score when compared to clonal teams.

A second task was then presented in which aclonal teams performed worse. This
task required the two robots to turn in the same direction. Because this task does not
require any specialization, Quinn argues that neural network heterogeneity was a
detriment. He then concludes the paper by hypothesizing that for tasks that require
different kinds of behavior, specialization of robots is helpful. Thus since heterogeneity
between team members' brains allows for such specialization, he argues that the aclonal
approach is indeed useful and should be used in cases where there are distinct subtasks
[4].

The article Recurrent neuronal circuits in the neocortex by Douglas and Martin
discusses the nature of recurrence within the neocortex, a part of the brain used heavily
in social interaction and in processing sensory stimuli. Douglas and Martin find that
neurons of similar types tend to be located close to one another and that almost all
recurrent and excitatory connections are between neurons that are in relative proximity to
one another. Consequently, the authors conclude that the majority of computation occurs
within local, recurrent, neuronal circuits. They also suggest that the connections between
individual circuits most likely serve as a means of information transfer but do not
directly affect the lower level computation that occurs in the local recurrent circuits.

This article is of importance because it suggests that real brains make use of
recurrent subnetworks that have specialized to form a specific type of computation.
Therefore, the use of application specific, recurrent neural circuits in artificial neural
networks will almost certainly allow for more complex computation than that that occurs
in purely feed-forward networks. Since the neocortex is used for processing both
auditory and visual stimuli, using a recurrent neural network to process information
originating from the sensory inputs of a developing robot seems like the natural artificial
analog. Although this article addresses primarily the underlying structure of biological
neuronal circuits, it is also of significant importance to the field of artificial intelligence.
In particular, it is quite conceivable that a synthetic adaptation of many of these
biological networks could be beneficial in many robotic applications [1]. For these
reasons, the next reviewed paper describes the genetic algorithm NEAT, which allows for
the evolution of recurrent neural networks in conjunction with other appealing features
[2].

Probably one of the best papers on NeuroEvolution of Augmenting Topologies
(NEAT) is Competitive Coevolution through Evolutionary Complexification by Stanley and
Miikkulainen, its creators. In their work, they give a very detailed description of the
NEAT genetic algorithm and give strong experimental support for its superiority over
fixed topology approaches. Through their comparison of the best neural network with
fully connected, recurrent fixed topology neural networks with the same number of
nodes, they demonstrate the superiority of NEAT. Specifically, even though the fully
recurrent networks contain as a directed subgraph the network evolved by NEAT,
mutation on the weights of the connections never produces an individual who is as fit as
the winning genotype evolved using NEAT.

NEAT works primarily on a process of elaboration. At the start, all genotypes of
a given population start off as feed-forward networks with random connection weights
linking every input unit to every output unit. The population is then evaluated for a
given task, each individual receiving a fitness score determined by the user-defined fitness
function. From this point, several forms of mutation can occur, changing both the
weights of the artificial synapses and additionally the structure. For instance, between

any two unconnected nodes a new connection may be added as a mutation.
Additionally, a new node may be added between two existing nodes. The old
connection is disabled and two new connections are formed.

Another form of innovation in NEAT is through sexual recombination, in which
two brains that are represented as genetic chromosomes are crossed over to form a new
one. This also presents a form of mutation because there is a chance that disabled
genes may become re-enabled. In addition to artificial meiosis, NEAT makes use of
speciation as a means of protecting innovation. Genotypes that are within a parameter-
defined genetic neighborhood define a species. When an individual mutates and become
sufficiently genetically dissimilar from its parent species, a new species is defined. As a
result, NEAT benefits from the fact that members of a species compete primarily against
one another. This allows new species to become refined and encourages genetic diversity.

The algorithm is also useful because the presence of recurrent connections allows
for a conception of time and hence memory. Stanley and Miikkulainen argue that for
the task of dueling robots, having a memory of the past is necessary because much of
the information relating to the task is rooted in past events and actions. Thus for a
robot player to maximize its success, it must remember what it has done and additionally
its opponents actions. Only given this information, can a robot realistically make the best
decision as to the course of action it should take. This is intuitive given the fact that
almost all competition-based strategy centers around reacting to and countering an
opponent's actions. Without memory, a robot can only respond to its opponent's
behavior at the current time step. Consequently recurrent connections are a necessary
part of sophisticated interaction between robots [2].

4. The Task, its Implementation and How it Relates
On the lowest level, the task is done in simulation. This is because there are

number of complications that arise when using actual robots. Real robots have a certain
degree of uncertainty about them in that experimental parameters are much more difficult
to control and modulate. Of further note, experiments run in simulation do not risk
damaging the equipment and can be run much faster and in much greater number. This
allows for rapid prototyping and evolution that would be infeasible in the real world
where time and resources would be at a premium. As such, the design decision was
made to use Pyrobot, a two dimensional robot simulator which allows users to model
robot interactions with a planar environment.

Pyrobot has many, nice, built-in features that allow for easy design and testing of
robot-based scenarios. For the purposes of the experiment, many of these key features
proved invaluable. This included built-in support for cameras including the use of
blobify and match filters as well as support for sonars. Pyrobot also permits simulation
with multiple robots, which is essential for the task as it is related to communication, an
activity involving more than one individual. By using Pyrobot, the experimenter
managed to focus more of his efforts on the experimental setup and its execution and
less on the low-level, hardware-dependent details [5].

The task itself is rather intuitive and has a simple setup. Two purple Pioneer
robots are placed at opposite corners of a square box which is approximately ten times
longer and wider than the length of a single robot. In the world, there are additionally
four circular pucks which have a diameter approximating a fifth of the length of a single
robot. Two of the pucks are red and two are blue. At the start of each trial, pucks
spawn randomly at points of a two dimensional lattice which occupies the bulk of the
central part of the world. In this way, pucks are sufficiently distant from one another
that rudimentary robotic sensory can distinguish them from one another. Robots are then
given 100 time steps to work together as a team in order to collide with all of the

pucks. However, there are some minor caveats. In particular, once a robot collides with
a red puck, it may no longer collide with any other red pucks if it and its partner are
to continue to accrue fitness. Instead its partner must collide with the remaining red
puck. Once this happens, both robots may proceed to collide with blue pucks. Yet as
before, each robot can collide only with one blue puck. When this happens, the robots
achieve the maximum fitness (See Figure 1 for a screenshot of the world).

Although this task sounds simple at first, it presents some major challenges. If the
neural network is the control model of choice, then several design issues immediately
arise. Firstly, one must decide the inputs and outputs of the network and then select a
genetic algorithm. For the purposes of this experiment, a relatively rich set of sensors
were chosen in order to give the robot the most information possible. This was a design
decision based on research by Nolfi and Floreano in [3], strongly supporting the claim
that an increase in the complexity of the sensory inputs leads to an associated increase in
the complexity of behavior that the neural network can evolve. Thus since this task
requires substantial knowledge of the domain at the current time step, the robots were
given both cameras and sonars.

The robots each had a front sonar input unit and six additional units related to
color perception using the camera. Front sonars were given to the robot to allow it to
determine the distance to pucks and to reduce the amount of collisions with walls. The
units related to color consisted of three grouping of two units for each of the colors red,
blue and purple. These inputs fed in the area of the bounding box for largest blob of
each color and their positions in the horizontal direction with respect to the midpoint of
the field of view. These two kinds of color inputs would allow robots to get an idea of
the proximity of the largest blob of a certain color and also its heading relative to the
robot. In this way, a robot would be able to adeptly maneuver its way to a puck of a
certain color to make the required collision. (See Figure 2 for a description of the
robot's sensors).

 Figure 1: Shown here are the two robots at their starting positions in the upper left

and lower right hand corners. The pucks spawn randomly in the rectangular region
between the robots. In this example, the blue pucks spawn a distance of 1 from each
other, which is the closest they can be. The gray lines emanating from the robots
represent sonar sensors and the purple lines represent the farthest extent of the field of
view for the camera.

 Figure 2: The above left graphic shows the sonar sensors available to the Pioneer
robot. For the purposes of clarification, the two front sonars have been highlighted in
red. The minimum sensor reading from sonars 3 and 4 is fed into the neural network's
sonar input unit. The right graphic shows how the camera data is first sent through a
match filter that matches red to red, purple to green, and blue to blue. Then a blobify
filter is applied to each of the matched colors, and the areas of the biggest blobs of the
colors red, green (purple) and blue each go to an input unit in the neural network
(represented by the units labeled A). The H input units receive as input the scaled
horizontal midpoint of the largest bounding box for a given color. This is computed as
(xMin + xMax)/(2 * w), where this is the midpoint divided by w, the width of the
viewing window of the camera.

Additional inputs were added to enable communication. Each robot in the team
received an input from the other robot, allowing robots to pass messages. The goal of
this feature was to allow each robot to let the other one know if it had already collided
with a red puck or if it still needed to do so. Ideally, the robots would develop a
dialogue, allowing them to coordinate their collisions with the pucks, an integral part of
completing the task and achieving maximum fitness. In later experiments where network
recurrence was permitted, robots were given an additional sensor input which told them
whether they had already collided with a red puck. In the opinion of the experimenter,
this sensor models real-world sensors which tell robots if they have successfully stored an
object. Consequently its addition is perfectly legitimate.

The outputs of the each homogeneous robot's neural network were much simpler.
There were two motor outputs, one for the left motor of the robot and one for the right
motor as well as the aforementioned communication unit to the other member of the
team. Sending values directly to the left and right motors to control the robot is a

practical choice because it makes interpretation of movement simple and it can be used to
describe essentially any possible translational and rotational action undertaken by a car-
like robot. As far as the communication output, only one unit was deemed necessary.
This is because a single output unit can emit multiple values, each of which potentially
mapping to distinct semantics for a given message (See Figure 3 for a generalization of
the neural network).

 Figure 3: Illustrated above is general mock-up of the neural network. It contains
nine input units, and three output units. For part one of the experiment, recurrent
connections are disabled and for part two they are turned on. Thus there can be
circuits between inputs, outputs and the hidden layer. This will be further explained in
the next section.

NEAT was chosen as the genetic algorithm. This is because NEAT efficiently
searches the domain space by incrementally building on already existing solutions.
Additionally, NEAT allows for the evolution of recurrent connections. The benefit of the
evolution of recurrent loops, as hinted to previously, is that it mimics some of the
computational centers within actual brains. Since Douglas and Martin infer recurrence
increases the computational capacity of biological neuronal circuits, the synthetic analog is
the class of recurrent neural networks. Thus by using NEAT, the robots will be able to
increase the computational power of their neural networks via recurrent circuits and thus
ideally develop more interesting behavior. Additionally, NEAT was selected as the
evolutionary algorithm of choice because it allows for multiple species, which has been
shown to be beneficial when attempting to reduce the number of generations it takes to
evolve a fit population.

Of perhaps equal importance was the choice to use clonal teams over aclonal teams
of robots. The main reason for doing this was not based on merit but unfortunately
based on limitations to the existing NEAT library implementation inclued with Pyrobot.

Specifically, the current version does not support the evolution of multiple populations.
As such, an aclonal implementation as Quinn advocates is not a practical option.
However, the forced use of clonal teams should not be seen as too much of a detriment.
Since all robots must perform the same kinds of actions, e.g. finding red and blue lights
and synchronization, it makes sense for them all to have an instance of the same brain.
So even though it would be interesting to evaluate the use of heterogeneous brains for
control of the two robots, hopefully the use of homogeneous brains would not
significantly affect the results.

5. Evaluation of Fitness
Each team of robots which are clones of the same individual from the population

is given five trials of 100 time steps to gain fitness. Total fitness is the summed fitness
from each trial. In this way, a fitter chromosome is more likely to have a more
consistent level of fitness, as total fitness is a measure of performance from five separate
trials. Max fitness is defined as 60, 12 being the max subscore from each of the five
trials.

For fitness evaluation, the following metric is used for each trial:
 When there is a collision between a robot and a puck:

if there are still red pucks left at the time of the collision:
 if robot1 collides with a red puck and robot2 has yet to do so:
 award the team one point
 else if robot2 collides with a red puck and robot1 has yet to do so:
 award the team one point
 else: # One robot has collided with two pucks or a blue puck
 award no additional fitness and start the next trial

 else if there are still blue pucks left at the time of the collision:
 if robot1 collides with a blue puck and robot2 has yet to do so:
 award the team two points
 else if robot2 collides with a blue puck and robot1 has yet to do so:
 award the team two points
 else:
 award no additional fitness and start the next trial

 else: # The robots have completed the task, give them a bonus
 double the current fitness for the trial

Although this fitness function is relatively discrete, i.e. fitness is linked to the
number of red and blue pucks, it should promote the evolution of fit individuals.
Individuals that manage to correctly collide with more of the pucks in the right order are
given more fitness than those that do not. Additionally, by awarding teams a bonus for
completing the task (doubling the fitness they receive from a trial), means that robots
that complete the task some of the time will be more fit than robots that never complete
the task. This is ideal because completion of the task is the desired outcome, and so
robots that take some risk to complete the task should be rewarded. Otherwise robots
that take no risk but finish the bulk of the task will become the dominant members of
the population, regardless of whether they are ever able to achieve the actual objective.

6. Experimental Setup to Measure the Effects of Recurrence on Behavior and Hypotheses
The task was designed to test the role of recurrence in neural networks and its

effect on behavioral complexification. As such, neural networks will be evolved using

NEAT in two ways, first with the evolution of entirely feed-forward networks and second
with the evolution of recurrent networks. In the former, one would expect that robots
will not be able to learn the task, as they will not know anything about previous time
steps. Consequently, they will most likely only learn to pursue the red pucks but will
not learn to wait for their teammate to collide with the other red puck. This is because
the action of waiting requires a notion of time, and entirely feed-forward networks only
have knowledge of their current inputs.

For the latter case where recurrence exists, the robots should be able to learn the
task within a time window of 50 generations. Once useful, recurrent subnetworks
evolve, the two robots should be able to develop a notion of past sensory inputs. This
will permit the team members to evolve the tactic of waiting for one another and to
make better use of their communication. Additionally since the team-based problem of
synchronized collisions is related to past events, namely collisions, the ability to store this
task relevant information would be invaluable. Consequently, it is the opinion of the
experimenter that the robots with recurrent networks should drastically outperform teams
evolved with recurrent neural networks.

7. Analysis of Preliminary Results
Initial results do not support the hypothesis of the author that recurrent networks

would drastically outcompete feed-forward networks. This was unfortunate because it
meant both types of neural networks performed poorly, not just the feed-forward
networks as predicted. After 100 generations of evolution with a population totaling 50
neural networks, the individuals in the feed-forward networks failed to learn the task
well. This result was not unexpected because, as mentioned previously, the task requires
knowledge of prior time-based events. However, the recurrent network population
managed to learn the task only marginally better. These results at first seem
counterintuitive, but there are a number of factors that could have contributed to the
stagnation of learning that occurred within the recurrent neural network population. An
explication will be provided in the subsequent subsections 7.1 and 7.2.

7.1 Analysis of Feed-Forward Network Population
Figure 4 shows the average and max fitness for a run of the experiment for a

total of 30 generations. In this case, the networks are feed-forward. Although the
experiment was run for longer than 30 generations a number of times, this graph is
representative of the behavior found in previous runs. As one can see, average fitness,
shown as the blue line, plateaus after about five generations. The fitness achieved by
the fittest individual of the population for each generation, shown by the red line,
exhibits very noisy behavior. This is due to the fitness function because members of the
population that chance on completing the task successfully achieve much higher fitness
than members of the population who only manage to learn to collide with red. With a
population of 50 individuals, this occurrence happens on average with approximately one
individual during each generation. As predicted, these data show that the team members
were unable to learn the task. Neither the average nor the best fitness curves have an
upward trend but appear purely noisy.

Figure 5 shows the genotype of the most fit member of the feed-forward population
from generation 29. As one can see, the network topology is simple. Since this network
outperforms other more complex networks, it is likely that given no capacity for memory,
additional complexification through the expansion of connections and nodes is not
beneficial. However, one does note that in the winning neural network that both
hidden nodes are related to additional processing of information related to the color blue.
This fact makes sense because the evasion of blue pucks followed by the active pursuit

of blue pucks requires complex behavior. Additionally, the hidden unit which receives
its input from the blue bounding box position input unit is connected to the
communication output. From this, it makes sense to conclude that communication
between robots in the team is driven largely by the color blue, as blue pucks present
both a danger and potential bonus depending on where the team finds itself in the
execution of the task.

 Figure 4: This graph illustrates the average and best fitnesses of the clonal, feed-
forward network controlled teams. As one can see, there are spikes at generations 12
and 26 where the robots almost manage to finish the task every time. However, this
achievement is merely a coincidence and when reevaluated, said genotypes attain on
average fitnesses between 15 and 25.

Figure 5: The above neural network represents the most fit individual from the
feed-forward population. Input units 1, 2 and 3 feed in the relative positions of the
largest red, blue, and purple bounding boxes in that order. Units 4, 5, and 6 feed in
the areas of the largest red, blue, and purple bounding boxes. Number 7 is the
minimum reading from the two front sonars. Units 8 and 9 are the communication input
units. Robot 1's messages are relayed through input 8 and robot 2's messages are
relayed through input 9. The output units 10 and 11 are the signals to the two motors,
and unit 12 is the communication output which is fed into either input 8 or 9 of both
robots, depending on the robot's identifier of 1 or 2. The network has two hidden
units 13 and 14.

7.2 Analysis of Recurrent Network Population
As previously stated, the recurrent network population did not perform much better

than the feed-forward network population. This was unexpected as the evolution of
recurrent connections should have allowed the robots to develop the ability to store
information from previous time steps. Thus they should have been able to better
understand their environment and hence the task. Even when the experiment was run
for 100 generations with a population of 100 individuals, no species managed to master
the task.

There were some results which were superior to those of the feed-forward
networks. Networks with recurrence were more consistent in the fitnesses they obtained.
Within each generation, a large minority of the individuals (approximately 30 percent)
performed relatively well, consistently completing the first part of the task (colliding with
the red pucks). However, the average fitness was not much better than the average
fitness from the feed-forward population (See Figure 6 for the graph of average and best
fitness for individuals of the recurrent network population for a representative run). This
illustrates the fact that the feed-forward population produced more individuals that
received outstanding fitness but additionally many more individuals with far worse fitness.
The reason why this happened was that robot teams that attempted to collide with any
puck received on average better fitness than those that chose only to collide with red.
Robots that chose only to collide with red pucks achieved at best a fitness of 10 out of
the maximum of 60, and more often than not obtained a fitness score of 6 to 8.
However, robots that collided with any puck were able to occasionally receive points for
correctly completing the task. Since the fitness function is heavily weighted towards
rewarding task completion, this allowed robots with chaotic movement to outcompete
robots that only went after red pucks. As a result, approximately 20 percent of species

adopted this strategy. These results were consistent across runs.

 Figure 6: The above shows the average and best fitnesses for individuals in the
evolving recurrent neural network population of 100 individuals. As in the previous
graph, red represents the fitness score of the fittest individual from the population for a
given generation The blue curve is the mean fitness score for the entire population. It
is quite evident that the max fitness is quite noisy, suggesting that much of this high
fitness was obtained via luck.

 Figure 7: This is the winning phenotype from generation 29 of 29 for the
recurrent network population evolved above. As one can see, there are recurrent

connections between the output nodes. However, it is difficult to conclude if these
connections actually cause the network to obtain greater fitness.

8 Conclusions and Future Directions
It is the opinion of the author that the initial hypothesis of whether recurrence

would aid in the solving of this task cannot be verified given the data collected from
the experiments. If one could determine if a longer evolution of the neural networks
would be helpful, it would be logical to rerun the experiments for more generations.
Unfortunately, it is the conclusion of the author that this is not a reasonable option.
This is because there is no clear method for determining the number of time steps the
evolution would require, as it is difficult to determine the size and dimensionality of the
domain space. However, the experiments are useful because they demonstrate some of
the difficulties with neural evolution and genetic algorithms. Specifically, there was no
way for the author to know how many generations he would have to evolve the
population for. It is quite possible that NEAT would evolve recurrent neural networks to
accomplish the task in much shorter time frame than if it were to evolve simple feed-
forward networks. Thus in the opinion of the author, it is quite conceivable that had it
been plausible to evolve the populations of neural networks over many more generations,
there would have been data supporting the hypothesis. However, due to the
computational cost of running robots in simulation using Pyrobot, it was only feasible to
run populations of 100 individuals for 100 generations of 100 time steps. These problems
could have been resolved by using a simulator written in a compiled language (faster) or
a simulator that would not require explicit rendering of the simulation. The result would
be that it would have been plausible to run the evolution for many more time steps and
with a larger population. Yet due to the rapid prototyping nature of Python and the
Pyrobot simulator, it was an obvious first step to use this set of tools, even with their
associated costs.

Another possible problem could have been with relation to how fitness is awarded.
In particular, the design choice to stop the current run when a robot hits a puck out of
order could have made the task much more difficult to learn. Robots that go for the
approach of colliding with blue and red under this scheme are severely penalized, and
therefore robots that only pursue the color red have a competitive advantage from an
early stage. The result was that after a few generations of evolution, robots were
observed to avoid blue at all costs even after all red pucks had been removed through
collisions. Therefore it is the opinion of the author that the task would have been more
doable if the robots gained fitness for colliding with pucks in the right order but were
allowed to continue if they made a mistake. This would have hopefully created
individuals that could have consistently solved large portions of the task if not complete
it in its entirety.

In the future, the author looks to attempting to implement these two changes
(changing the fitness function and perhaps then the platform) and verify that more
definitive results are indeed obtained. Although the experimenter could not explicitly
answer the initial question, this experiment illustrates one of the major difficulties of
developmental robotics: namely that current algorithms frequently fail to yield anticipated
results. Consequently, it is the view of the author that this experiment and other failed
experiments like it are important because they drive further research into the
improvement of the fundamental algorithms which aim to create artificial intelligent
systems. Further scientific inquiry into this discipline is bound to produce more efficient
and effective forms of neural evolution. The more the better.

References

[1] Douglas, Rodney J., and Kevan A.C. Martin. "Recurrent neuronal circuits in the
neocortex." Current Biology 17.13 (2007): 495-500. Web.

[2] Mikkulainen, Risto, and Kenneth O. Stanley. "Competitive Coevolution through
Evolutionary Complexification." Journal of Artificial Intelligence. 21. (2004): 63 - 100.
Print.

[3] Nolfi, Stefano, and Dario Floreano. "Co-evolving predator and prey robots: Do 'arms
races' arise in artificial evolution?." Artificial Life 4.4 (1998): 311 – 335.

[4] Quinn, Matt. "A comparison of approaches to the evolution of homogeneous multi-
robot teams." Evolutionary Computation 1. (2001): 128 - 135.

[5] Pyrobot. http://pyrorobots.org.

