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1. Abstract
This paper explores the role of recurrent, NEAT derived neural networks as well 

as the role of communication in a team-based robot task where knowledge of time is 
important.  For the purposes of this work, the task was implemented in simulation using 
Pyrobot a robot simulator written and developed in Python by Douglas Blanks and Lisa 
Meeden [5].  The task requires a team of two robots to  first collide with a red circular 
puck object and then a blue circular puck object.  It is complicated by the fact that all 
members of the team must collide with a red object before any member may collide with 
a blue one.  Unfortunately, the results obtained from the experiment do not demonstrate 
that robots with recurrent neural networks perform any better than robots with feed-
forward networks.  In particular, robots in the population as a whole do not learn to 
reliably perform the task, implying that the task may be too difficult to evolve a fit 
population within 100 generations.  This is most likely due to the fact that fitness is 
awarded in a very discrete way such that networks learn to avoid blue and pursue red 
but never to make the transition from colliding with red pucks to colliding with blue 
pucks.  These problems were not resolved within the window of possible experimentation.

2. Motivation
The primary motivation for this experiment is to provide further evidence to show 

how neural networks can solve complex problems geared towards real-world applications. 
As such, the task was devised to illustrate that through the utilization of network 
recurrence and communication, NEAT evolved neural networks could not only be applied 
to robotic team tasks but also quickly and effectively learn to solve them.  Learning for 
robotic teams is a necessity because many challenges that cannot be easily overcome by a 
single robot are solved with greater facility by a team.  Thus a large area of neural 
network research has been in its application to robotic teams, as this serves as an area 
with great promise for future scientific advancement [2].

3. Related Work
In his paper A comparison of approaches to the evolution of homogeneous multi-

robot teams, Dr. Matt Quinn demonstrates that in some nontrivial applications, a team of 
robots with homogeneous morphologies perform better with heterogeneous neural networks 
as brains.  For his experimental setup, he uses two Khepera robots in simulation, each 
separated by a distance on the order of the diameter of a single robot.  For the first 
task, robot teams start in one of 45 predefined configurations specified by discrete 
heading values in combination with their distances from one another.  The brains of each 
robot are recurrent neural networks with eight inputs and four outputs.  

In his paper, the author presents two distinct approaches for the creation of the 
teams: clonal and aclonal.  In the context of the clonal approach, namely the one where 
both robots share an instance of the same brain, fitness is the average of the team's 
score for each of the 45 possible configurations.  For the the aclonal approach, the one in 
which robots in the team have heterogeneous brains, each individual is evaluated twice 
for every configuration for a total of 90 evalutions, each one with a distinct partner.  An 
individual's fitness is thus the average of the fitnesses obtained from each of the 90 
teams of which it participated.  This provides a good heuristic for evaluating an 
individual's performance because every robotic brain is tested not only in every possible 
configuration but serves as a team member with usually a statistically representative 
portion of the population.  

The task itself was intuitively very simple but far from trivial.  Both robots were 
given 10 simulated seconds to move 25 centimeters from their original positions. 
Although one would expect robots with homogeneous neural networks to on average 



achieve higher fitness, as has been almost universally postulated and shown 
experimentally, this was not the case.  Aclonal teams on average performed much, much 
better than clonal teams.  Approximately twice as many aclonal teams scored greater than 
95 percent of the maximum possible fitness score when compared to clonal teams.  

A second task was then presented in which aclonal teams performed worse.  This 
task required the two robots to turn in the same direction.  Because this task does not 
require any specialization, Quinn argues that neural network heterogeneity was a 
detriment.  He then concludes the paper by hypothesizing that for tasks that require 
different kinds of behavior, specialization of robots is helpful.  Thus since heterogeneity 
between team members' brains allows for such specialization, he argues that the aclonal 
approach is indeed useful and should be used in cases where there are distinct subtasks 
[4].

The article Recurrent neuronal circuits in the neocortex by Douglas and Martin 
discusses the nature of recurrence within the neocortex, a part of the brain used heavily 
in social interaction and in processing sensory stimuli.  Douglas and Martin find that 
neurons of similar types tend to be located close to one another and that almost all 
recurrent and excitatory connections are between neurons that are in relative proximity to 
one another.  Consequently, the authors conclude that the majority of computation occurs 
within local, recurrent, neuronal circuits.  They also suggest that the connections between 
individual circuits most likely serve as a means of information transfer but do not 
directly affect the lower level computation that occurs in the local recurrent circuits.  

This article is of importance because it suggests that real brains make use of 
recurrent subnetworks that have specialized to form a specific type of computation. 
Therefore, the use of application specific, recurrent neural circuits in artificial neural 
networks will almost certainly allow for more complex computation than that that occurs 
in purely feed-forward networks.  Since the neocortex is used for processing both 
auditory and visual stimuli, using a recurrent neural network to process information 
originating from the sensory inputs of a developing robot seems like the natural artificial 
analog.  Although this article addresses primarily the underlying structure of biological 
neuronal circuits, it is also of significant importance to the field of artificial intelligence. 
In particular, it is quite conceivable that a synthetic adaptation of many of these 
biological networks could be beneficial in many robotic applications [1].  For these 
reasons, the next reviewed paper describes the genetic algorithm NEAT, which allows for 
the evolution of recurrent neural networks in conjunction with other appealing features 
[2].

Probably one of the best papers on NeuroEvolution of Augmenting Topologies 
(NEAT) is Competitive Coevolution through Evolutionary Complexification by Stanley and 
Miikkulainen, its creators.  In their work, they give a very detailed description of the 
NEAT genetic algorithm and give strong experimental support for its superiority over 
fixed topology approaches.  Through their comparison of the best neural network with 
fully connected, recurrent fixed topology neural networks with the same number of 
nodes, they demonstrate the superiority of NEAT.  Specifically, even though the fully 
recurrent networks contain as a directed subgraph the network evolved by NEAT, 
mutation on the weights of the connections never produces an individual who is as fit as 
the winning genotype evolved using NEAT.   

NEAT works primarily on a process of elaboration.  At the start, all genotypes of 
a given population start off as feed-forward networks with random connection weights 
linking every input unit to every output unit.  The population is then evaluated for a 
given task, each individual receiving a fitness score determined by the user-defined fitness 
function.  From this point, several forms of mutation can occur, changing both the 
weights of the artificial synapses and additionally the structure.  For instance, between 



any two unconnected nodes a new connection may be added as a mutation. 
Additionally, a new node may be added between two existing nodes.  The old 
connection is disabled and two new connections are formed.

Another form of innovation in NEAT is through sexual recombination, in which 
two brains  that are represented as genetic chromosomes are crossed over to form a new 
one.  This also presents a form of mutation because there is  a chance that disabled 
genes may become re-enabled.  In addition to artificial meiosis, NEAT makes use of 
speciation as a means of protecting innovation.  Genotypes that are within a parameter-
defined genetic neighborhood define a species.  When an individual mutates and become 
sufficiently genetically dissimilar from its parent species, a new species is defined.  As a 
result, NEAT benefits from the fact that members of a species compete primarily against 
one another.  This allows new species to become refined and encourages genetic diversity.

The algorithm is also useful because the presence of recurrent connections allows 
for a conception of time and hence memory.  Stanley and Miikkulainen argue that for 
the task of dueling robots, having a memory of the past is necessary because much of 
the information relating to the task is rooted in past events and actions.  Thus for a 
robot player to maximize its success, it must remember what it has done and additionally 
its opponents actions.  Only given this information, can a robot realistically make the best 
decision as to the course of action it should take.  This is intuitive given the fact that 
almost all competition-based strategy centers around reacting to and countering an 
opponent's actions.  Without memory, a robot can only respond to its opponent's 
behavior at the current time step.  Consequently recurrent connections are a necessary 
part of sophisticated interaction between robots [2].

4. The Task, its Implementation and How it Relates
On the lowest level, the task is done in simulation.  This is because there are 

number of complications that arise when using actual robots.  Real robots have a certain 
degree of uncertainty about them in that experimental parameters are much more difficult 
to control and modulate.  Of further note, experiments run in simulation do not risk 
damaging the equipment and can be run much faster and in much greater number.  This 
allows for rapid prototyping and evolution that would be infeasible in the real world 
where time and resources would be at a premium.  As such, the design decision was 
made to use Pyrobot, a two dimensional robot simulator which allows users to model 
robot interactions with a planar environment.  

Pyrobot has many, nice, built-in features that allow for easy design and testing of 
robot-based scenarios.  For the purposes of the experiment, many of these key features 
proved invaluable.  This included built-in support for cameras including the use of 
blobify and match filters as well as support for sonars.  Pyrobot also permits simulation 
with multiple robots, which is essential for the task as it is related to communication, an 
activity involving more than one individual.  By using Pyrobot, the experimenter 
managed to focus more of his efforts on the experimental setup and its execution and 
less on the low-level, hardware-dependent details [5].

The task itself is rather intuitive and has a simple setup.  Two purple Pioneer 
robots are placed at opposite corners of a square box which is approximately ten times 
longer and wider than the length of a single robot.  In the world, there are additionally 
four circular pucks which have a diameter approximating a fifth of the length of a single 
robot.  Two of the pucks are red and two are blue.  At the start of each trial, pucks 
spawn randomly at points of a two dimensional lattice which occupies the  bulk of the 
central part of the world.  In this way, pucks are sufficiently distant from one another 
that rudimentary robotic sensory can distinguish them from one another.  Robots are then 
given 100 time steps to work together as a team in order to collide with all of the 



pucks.  However, there are some minor caveats.  In particular, once a robot collides with 
a red puck, it may no longer collide with any other red pucks if it and its partner are 
to continue to accrue fitness.  Instead its partner must collide with the remaining red 
puck.  Once this happens, both robots may proceed to collide with blue pucks.  Yet as 
before, each robot can collide only with one blue puck.  When this happens, the robots 
achieve the maximum fitness (See Figure 1 for a screenshot of the world).

Although this task sounds simple at first, it presents some major challenges.  If the 
neural network is the control model of choice, then several design issues immediately 
arise.  Firstly, one must decide the inputs and outputs of the network and then select a 
genetic algorithm.  For the purposes of this experiment, a relatively rich set of sensors 
were chosen in order to give the robot the most information possible.  This was a design 
decision based on research by Nolfi and Floreano in [3], strongly supporting the claim 
that an increase in the complexity of the sensory inputs leads to an associated increase in 
the complexity of behavior that the neural network can evolve.  Thus since this task 
requires substantial knowledge of the domain at the current time step, the robots were 
given both cameras and sonars.  

The robots each had a front sonar input unit and six additional units related to 
color perception using the camera.  Front sonars were given to the robot to allow it to 
determine the distance to pucks and to reduce the amount of collisions with walls.  The 
units related to color consisted of three grouping of two units for each of the colors red, 
blue and purple.  These inputs fed in the area of the bounding box for largest blob of 
each color and their positions in the horizontal direction with respect to the midpoint of 
the field of view.  These two kinds of color inputs would allow robots to get an idea of 
the proximity of the largest blob of a certain color and also its heading relative to the 
robot.  In this way, a robot would be able to adeptly maneuver its way to a puck of a 
certain color to make the required collision.  (See Figure 2 for a description of the 
robot's sensors).

     

   Figure 1:  Shown here are the two robots at their starting positions in the upper left 



and lower right hand corners.  The pucks spawn randomly in the rectangular region 
between the robots.  In this example, the blue pucks spawn a distance of 1 from each 
other, which is the closest they can be.  The gray lines emanating from the robots 
represent sonar sensors and the purple lines represent the farthest extent of the field of 
view for the camera.  

  

     Figure 2:  The above left graphic shows the sonar sensors available to the Pioneer 
robot.  For the purposes of clarification, the two front sonars have been highlighted in 
red.  The minimum sensor reading from sonars 3 and 4 is fed into the neural network's 
sonar input unit.  The right graphic shows how the camera data is first sent through a 
match filter that matches red to red, purple to green, and blue to blue.  Then a blobify 
filter is applied to each of the matched colors, and the areas of the biggest blobs of the 
colors red, green (purple) and blue each go to an input unit in the neural network 
(represented by the units labeled A).  The H input  units receive as input the scaled 
horizontal midpoint of the largest bounding box for a given color.  This is computed as 
(xMin + xMax)/(2 * w), where this is the midpoint divided by  w, the width of the 
viewing window of the camera.

Additional inputs were added to enable communication.  Each robot in the team 
received an input from the other robot, allowing robots to pass messages.  The goal of 
this feature was to allow each robot to let the other one know if it had already collided 
with a red puck or if it still needed to do so.  Ideally, the robots would develop a 
dialogue, allowing them to coordinate their collisions with the pucks, an integral part of 
completing the task and achieving maximum fitness.  In later experiments where network 
recurrence was permitted, robots were given an additional sensor input which told them 
whether they had already collided with a red puck.  In the opinion of the experimenter, 
this sensor models real-world sensors which tell robots if they have successfully stored an 
object.  Consequently its addition is perfectly legitimate.  

The outputs of the each homogeneous robot's neural network were much simpler. 
There were two motor outputs, one for the left motor of the robot and one for the right 
motor as well as the aforementioned communication unit to the other member of the 
team.  Sending values directly to the left and right motors to control the robot is a 



practical choice because it makes interpretation of movement simple and it can be used to 
describe essentially any possible translational and rotational action undertaken by a car-
like robot.  As far as the communication output, only one unit was deemed necessary. 
This is because a single output unit can emit multiple values, each of which potentially 
mapping to distinct semantics for a given message (See Figure 3 for a generalization of 
the neural network).  

  Figure 3:  Illustrated above is general mock-up of the neural network.  It contains 
nine input units, and three output  units.  For part one of the experiment, recurrent 
connections are disabled and for part two they are turned on.  Thus there can be 
circuits between inputs, outputs and the hidden layer.  This will be further explained in 
the next section.

NEAT was chosen as the genetic algorithm.  This is because NEAT efficiently 
searches the domain space by incrementally building on already existing solutions. 
Additionally, NEAT allows for the evolution of recurrent connections.  The benefit of the 
evolution of recurrent loops, as hinted to previously, is that it mimics some of  the 
computational centers within actual brains.  Since Douglas and Martin infer recurrence 
increases the computational capacity of biological neuronal circuits, the synthetic analog is 
the class of recurrent neural networks.  Thus by using NEAT, the robots will be able to 
increase the computational power of their neural networks via recurrent circuits and thus 
ideally develop more interesting behavior.  Additionally, NEAT was selected as the 
evolutionary algorithm of choice because it allows for multiple species, which has been 
shown to be beneficial when attempting to reduce the number of generations it takes to 
evolve a fit population.  

Of perhaps equal importance was the choice to use clonal teams over aclonal teams 
of robots.  The main reason for doing this was not based on merit but unfortunately 
based on limitations to the existing NEAT library implementation inclued with Pyrobot. 



Specifically, the current version does not support the evolution of multiple populations. 
As such, an aclonal implementation as Quinn advocates is not a practical option. 
However, the forced use of clonal teams should not be seen as too much of a detriment. 
Since all robots must perform the same kinds of actions, e.g. finding red and blue lights 
and synchronization, it makes sense for them all to have an instance of the same brain. 
So even though it would be interesting to evaluate the use of heterogeneous brains for 
control of the two robots, hopefully the use of homogeneous brains would not 
significantly affect the results.

5. Evaluation of Fitness
Each team of robots which are clones of the same individual from the population 

is given five trials of 100 time steps to gain fitness.  Total fitness is the summed fitness 
from each trial.  In this way, a fitter chromosome is more likely to have a more 
consistent level of fitness, as total fitness is a measure of performance from five separate 
trials.  Max fitness is defined as 60, 12 being the max subscore from each of the five 
trials.  

For fitness evaluation, the following metric is used for each trial:
        When there is a collision between a robot and a puck:

if there are still red pucks left at the time of the collision:
    if robot1 collides with a red puck and robot2 has yet to do so:
        award the team one point
    else if robot2 collides with a red puck and robot1 has yet to do so:
        award the team one point
    else: # One robot has collided with two pucks or a blue puck
        award no additional fitness and start the next trial

     else if there are still blue pucks left at the time of the collision:
   if robot1 collides with a blue puck and robot2 has yet to do so:
        award the team two points
   else if robot2 collides with a blue puck and robot1 has yet to do so:
        award the team two points
   else:
        award no additional fitness and start the next trial

    else: # The robots have completed the task, give them a bonus
   double the current fitness for the trial
     

Although this fitness function is relatively discrete, i.e. fitness is linked to the 
number of red and blue pucks, it should promote the evolution of fit individuals. 
Individuals that manage to correctly collide with more of the pucks in the right order are 
given more fitness than those that do not.  Additionally, by awarding teams a bonus for 
completing the task (doubling the fitness they receive from a trial), means that robots 
that complete the task some of the time will be more fit than robots that never complete 
the task.  This is ideal because completion of the task is the desired outcome, and so 
robots that take some risk to complete the task should be rewarded.  Otherwise robots 
that take no risk but finish the bulk of the task will become the dominant members of 
the population, regardless of whether they are ever able to achieve the actual objective.

6. Experimental Setup to Measure the Effects of Recurrence on Behavior and Hypotheses 
The task was designed to test the role of recurrence in neural networks and its 

effect on  behavioral complexification.  As such, neural networks will be evolved using 



NEAT in two ways, first with the evolution of entirely feed-forward networks and second 
with the evolution of recurrent networks.  In the former, one would expect that robots 
will not be able to learn the task, as they will not know anything about previous time 
steps.  Consequently, they will most likely only learn to pursue the red pucks but will 
not learn to wait for their teammate to collide with the other red puck.  This is because 
the action of waiting requires a notion of time, and entirely feed-forward networks only 
have knowledge of their current inputs.

For the latter case where recurrence exists, the robots should be able to learn the 
task within a time window of 50 generations.  Once useful, recurrent subnetworks 
evolve, the two robots should be able to develop a notion of past sensory inputs.  This 
will permit the team members to evolve the tactic of waiting for one another and to 
make better use of their communication.  Additionally since the team-based problem of 
synchronized collisions is related to past events, namely collisions, the ability to store this 
task relevant information would be invaluable.  Consequently, it is the opinion of the 
experimenter that the robots with recurrent networks should drastically outperform teams 
evolved with recurrent neural networks.

7. Analysis of Preliminary Results
Initial results do not support the hypothesis of the author that recurrent networks 

would drastically outcompete feed-forward networks.  This was unfortunate because it 
meant both types of neural networks performed poorly, not just the feed-forward 
networks as predicted.  After 100 generations of evolution with a population totaling 50 
neural networks, the individuals in the feed-forward networks failed to learn the task 
well.  This result was not unexpected because, as mentioned previously, the task requires 
knowledge of prior time-based events. However, the recurrent network population 
managed to learn the task only marginally better.  These results at first seem 
counterintuitive, but there are a number of factors that could have contributed to the 
stagnation of learning that occurred within the recurrent neural network population.  An 
explication will be provided in the subsequent subsections 7.1 and 7.2.

7.1 Analysis of Feed-Forward Network Population 
Figure 4 shows the average and max fitness for a run of the experiment for a 

total of 30 generations.  In this case, the networks are feed-forward.  Although the 
experiment was run for longer than 30 generations a number of times, this graph is 
representative of the behavior found in previous runs.  As one can see, average fitness, 
shown as the blue line, plateaus after about five generations.  The fitness achieved by 
the fittest individual of the population for each generation, shown by the red line, 
exhibits very noisy behavior.  This is due to the fitness function because members of the 
population that chance on completing the task successfully achieve much higher fitness 
than members of the population who only manage to learn to collide with red.  With a 
population of 50 individuals, this occurrence happens on average with approximately one 
individual during each generation.  As predicted, these data show that the team members 
were unable to learn the task.  Neither the average nor the best fitness curves have an 
upward trend but appear purely noisy.

Figure 5 shows the genotype of the most fit member of the feed-forward population 
from generation 29.  As one can see, the network topology is simple.  Since this network 
outperforms other more complex networks, it is likely that given no capacity for memory, 
additional complexification through the expansion of connections and nodes is not 
beneficial.   However, one does note that in the winning neural network that both 
hidden nodes are related to additional processing of information related to the color blue. 
This fact makes sense because the evasion of blue pucks followed by the active pursuit 



of blue pucks requires complex behavior.  Additionally, the hidden unit which receives 
its input from the blue bounding box position input unit is connected to the 
communication output.  From this, it makes sense to conclude that communication 
between robots in the team is driven largely by the color blue, as blue pucks present 
both a danger and potential bonus depending on where the team finds itself in the 
execution of the task.

 Figure 4:  This graph illustrates the average and best fitnesses of the clonal, feed-
forward network controlled teams.  As one can see, there are spikes at generations 12 
and 26 where the robots almost manage to finish the task every time.  However, this 
achievement  is merely a coincidence and when reevaluated, said genotypes attain on 
average fitnesses between 15 and 25.



Figure 5: The above neural network represents the most fit individual from the 
feed-forward population.  Input  units 1, 2 and 3 feed in the relative positions of the 
largest red, blue, and purple bounding boxes in that order.  Units 4, 5, and 6 feed in 
the areas of the largest red, blue, and purple bounding boxes.  Number 7 is the 
minimum reading from the two front sonars.  Units 8 and 9 are the communication input 
units.  Robot 1's messages are relayed through input 8 and robot 2's messages are 
relayed through input 9.  The output units 10 and 11 are the signals to the two motors, 
and unit 12 is the communication output which is fed into either input 8 or 9 of both 
robots, depending on the robot's identifier of 1 or 2.  The network has two hidden 
units 13 and 14.

7.2 Analysis of Recurrent Network Population 
As previously stated, the recurrent network population did not perform much better 

than the feed-forward network  population.  This was unexpected as the evolution of 
recurrent connections should have allowed the robots to develop the ability to store 
information from previous time steps.  Thus they should have been able to better 
understand their environment and hence the task.  Even  when the experiment was run 
for 100 generations with a population of 100 individuals, no species managed to master 
the task.  

There were some results which were superior to those of the feed-forward 
networks.  Networks with recurrence were more consistent in the fitnesses they obtained. 
Within each generation, a large minority of the individuals (approximately 30 percent) 
performed relatively well, consistently completing the first part of the task (colliding with 
the red pucks).  However, the average fitness was not much better than the average 
fitness from the feed-forward population (See Figure 6 for the graph of average and best 
fitness for individuals of the recurrent network population for a representative run).  This 
illustrates the fact that the feed-forward population produced more individuals that 
received outstanding fitness but additionally many more individuals with far worse fitness. 
The reason why this happened was that robot teams that attempted to collide with any 
puck received on average better fitness than those that chose only to collide with red. 
Robots that chose only to collide with red pucks achieved at best a fitness of 10 out of 
the maximum of 60, and more often than not obtained a fitness score of 6 to 8. 
However, robots that collided with any puck were able to occasionally receive points for 
correctly completing the task.  Since the fitness function is heavily weighted towards 
rewarding task completion, this allowed robots with chaotic movement to outcompete 
robots that only went after red pucks.  As a result, approximately 20 percent of species 



adopted this strategy.  These results were consistent across runs.  

      Figure 6: The above shows the average and best fitnesses for individuals in the 
evolving recurrent neural network population of 100 individuals.  As in the previous 
graph, red represents the fitness score of the fittest individual from the population for a 
given generation  The blue curve is the mean fitness score for the entire population.  It 
is quite evident that the max fitness is quite noisy, suggesting that much of this high 
fitness was obtained via luck.  

       Figure 7: This is the winning phenotype from generation 29 of 29 for the 
recurrent network population evolved above.  As one can see, there are recurrent 



connections between the output nodes.  However, it is difficult to conclude if these 
connections actually cause the network to obtain greater fitness.

8 Conclusions and Future Directions
It is the opinion of the author that the initial hypothesis of whether recurrence 

would aid in the solving of this task cannot be verified given the data collected from 
the experiments.  If one could determine if a longer evolution of the neural networks 
would be helpful, it would be logical to rerun the experiments for more generations. 
Unfortunately, it is the conclusion of the author that this is not a reasonable option. 
This is because there is no clear method for determining the number of time steps  the 
evolution would require, as it is difficult to determine the size and dimensionality of the 
domain space.  However, the experiments are useful because they demonstrate some of 
the difficulties with neural evolution and genetic algorithms.  Specifically, there was no 
way for the author to know how many generations he would have to evolve the 
population for.  It is quite possible that NEAT would evolve recurrent neural networks to 
accomplish the task in much shorter time frame than if it were to evolve simple feed-
forward networks.  Thus in the opinion of the author, it is quite conceivable that had it 
been plausible to evolve the populations of neural networks over many more generations, 
there would have been data supporting the hypothesis.  However, due to the 
computational cost of running robots in simulation using Pyrobot, it was only feasible to 
run populations of 100 individuals for 100 generations of 100 time steps.  These problems 
could have been resolved by using a simulator written in a compiled language (faster) or 
a simulator that would not require explicit rendering of the simulation.  The result would 
be that it would have been plausible to run the evolution for many more time steps and 
with a larger population.  Yet due to the rapid prototyping nature of Python and the 
Pyrobot simulator, it was an obvious first step to use this set of tools, even with their 
associated costs. 

Another possible problem could have been with relation to how fitness is awarded. 
In particular, the design choice to stop the current run when a robot hits a puck out of 
order could have made the task much more difficult to learn.  Robots that go for the 
approach of colliding with blue and red under this scheme are severely penalized, and 
therefore robots that only pursue the color red have a competitive advantage from an 
early stage.  The result was that after a few generations of evolution, robots were 
observed to avoid blue at all costs even after all red pucks had been removed through 
collisions.  Therefore it is the opinion of the author that the task would have been more 
doable if the robots gained fitness for colliding with pucks in the right order but were 
allowed to continue if they made a mistake.  This would have hopefully created 
individuals that could have consistently solved large portions of the task if not complete 
it in its entirety.  

In the future, the author looks to attempting to implement these two changes 
(changing the fitness function and perhaps then the platform) and verify that more 
definitive results are indeed obtained.  Although the experimenter could not explicitly 
answer the initial question, this experiment illustrates one of the major difficulties of 
developmental robotics: namely that current algorithms frequently fail to yield anticipated 
results.  Consequently, it is the view of the author that this experiment and other failed 
experiments like it are important because they drive further research into the 
improvement of the fundamental algorithms which aim to create artificial intelligent 
systems.  Further scientific inquiry into this discipline is bound to produce more efficient 
and effective forms of neural evolution.  The more the better.
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