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Abstract

In this paper a experiment is presented in which two simulated robots evolved a form of

communication to allow one of the robots to complete the task of finding a light placed in the

world. The robots are constrained so that one has inputs about the world, seeing robot, and

the other, blind robot, has no sensors besides an input from the seeing robot. The evolved

communication allowed the seeing robot to develop an algorithm in which it told the blind robot

to rotate until in was in front of the light and then the communication told the robot to move

forward until it hits the light

1 Background

1.1 NEAT

Like most evolutionary robotics algorithms the NEAT algorithm has two parts, the evolution of the
phenotype and search for weights between neurons [3]. The NEAT algorithm starts with the simplest
configuration possible, input neurons directly connected to output neurons with random weights. This
basic configuration is then modified with new nodes, connections, and deletions to grow the phenotype.
There are three ways in which the NEAT algorithm differs from other evolutionary methods. The
first is the manner in which crossover is conducted. Instead of random crossover the NEAT algorithm
keeps track of all gene’s creation points with an innovation number. During crossover only genes
with the same innovation number are allowed to swap. Another problem of evolution is that complex
individuals, which may produce better results after more development time, are eliminated too soon
due to lower fitness scores against simpler individuals. To prevent this, the NEAT algorithm divides
the population into different species based on topological similarity and only similar species are allowed
to compete against each other for a certain number of generations. Lastly NEAT prevents overly large
and poorly performing topologies through complexification. Complexification allows large topologies
but only if they are better, by allowing evolution to add nodes but only topologies in which the added
node is helpful are allowed to survive. Neat was chosen to evolve the neural network because it is able
to generate its own phenotype and concurrently adjust the neural networks weights.

1.2 The emergence of communication in evolutionary robots

“The emergence of communication in evolutionary robots” is a paper in which two parts of research in
communication in robots are discussed [2]. In the first part evolving neural nets send basic signals as
to the value of objects. In the second part of the research the idea is extended to examine components
of language such as verbs. In regards to our project the first part of their paper was most interesting
and similar. Their experiment consisted of a robotic arm with 6 DOF in a 3D world with simulated
gravity. The arm had touch sensors and in the world were a sphere and a cube. The parents of
each evolving neural net had two output nodes which fed into the inputs of the childrens neural net.
The fitness of the child was calculated based on the amount of time spent touching the sphere vs
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touching the cube. The interesting part was that the parent received no fitness for the childrens
action. Only the child received fitness. But because of the evolutionary process only children who
outputted correct values to their children would continue after a few generations. In the paper the
robots were able to evolve a form of communication. The interesting question posed and answered
in the paper was whether or not the communities that evolved communication were better off. Some
robots evolved simply to poke around and if they found the cube stay away from it. In the paper they
found that indeed communication did mean a more fit population. In our case we did not consider
this point because it is obvious as we have set it up that the blind robot will never find the light, other
than randomly, without communication. This paper however posses the interesting idea of perhaps
giving the blind robot light sensors and determining whether communication in fact creates a fitter
population.

1.3 The emergence of language in an evolving population of neural net-

works

In the paper “The emergence of Language in an evolving population of neural networks,” a world is
created in which evolving neural nets roam among ten healthy and ten poisonous mushrooms [1]. Each
net has the ability to output a one or zero to the other nets. The individual fitness is calculated for
each net depending on the number of healthy and poisonous mushrooms eaten. The interesting point
about this paper was that there was no evolutionary pressure for the individual robots to communicate.
In that they did not receive any increase in fitness for correct outputs. However the paper notes that
a language of identifying mushrooms as good or bad did evolve and more impressively it was able
to increase the performance of the robots so that communicating improve the general fitness of the
population. In regards to our robot we thought it would be required for us to give the same fitness for
both robots depending on the eating results of the blind robot. This may not have been necessary. In
fact it may have been better if in stead we had somehow correlated the fitness function of the blind
robot with how well it adopted to the outputs from the seeing robot instead of how many lights it ate.
In this way we might have isolated exactly what we wanted which was for the seeing robot to guide
the blind robot to the light. The example in the paper was different in that their robots hadthe same
brain and the same task, however the interesting points suggested ways in which we could change our
approach to the problem.

2 Experimental Procedure

The world used in this experiment consisted of two robots and one light, as shown in Figure 1. One
robot, referred to as the blind robot and colored blue, had only one input node and two output nodes.
The input nodes was the communication link between the two robots. The output nodes where linked
to the blind robot’s left and right motors. The other robot, referred to as the seeing robot and colored
red, had three inputs and one output. The three inputs consisted of, the distance from the blind robot
to the light, the cosine of the angle from the blind robot to the light, and the sine of this same angle.
The only output from the seeing robot was the communication link to the blind robot, whatever value
the output node had was passed to the input node of the blind robot.

Both robots were controlled using genomes coevolved through the use of NEAT. The NEAT pro-
gram used in this paper had been modified to allow for simultaneous coeveolution of two separate
agents. The modification set the current generation to evolve with the best genome from the previous
generation of the other brain. For example, if two robots A and B are coevolving, and robot A is on
generation 25, then it uses the best genome from generation 24 of robot B. A hall of fame was not
implemented in this experiment because for each generation, its evolution affects the communication.
Even if one generation may have a more effective communication, if the two robots had not evolved
to associate the same meaning to the numbers, the trial would fail. In order to begin the coevolution,
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Figure 1: The world used throughout the experiment. The seeing robot is red and the blind robot is
blue.

a random genome was initialized for both the seeing and the blind robots, so that in each generation
0 there was a genome for the other robot’s brain.

In order to use NEAT, or any variant of a genetic algorithm, a fitness function needs to be defined.
If the blind robot moved closer to the light in a given time step, then the score was increased by one.
If the blind robot moved away, the genome’s score was decreased by one. The purpose of this was
to encourage movement towards the light without requiring the blind robot to randomly pass over it.
The key aspect of the fitness function was increasing the score of the genome by 1000 whenever the
blind robot passed over the light.

A trial of a genome would run as follows. First, the program would determine the distance from
the robot to the light. Then the program determines the angle the robot needs to orientate itself
towards the light. The value of the distance, and the sine and cosine of the angle are then set as input
to the seeing robot. The output from the seeing robot is then passed, by the program, to the sole
input of the blind robot. The output from the blind robot’s neural net was then used to control the
left and the right motors. If the blind robot ran over the light, the light was then randomly positioned
elsewhere in the room.

3 Results

After the evolution was finished, four trials were made using the best chromosome in each generation.
The fitness values of those trials are recorded in Figure 2. The last column indicates the average
of the four trials. There number of trials was decided taking into consideration the amount of time
that it took to run them, and the usefulness to normalize random behavior. The data indicates that
generation 29 was able to achieve the highest average. Figure 3 plots the trial averages of the 40
generations.

4 Discussion

This section explores how the language evolved between the two robots over time. The example
outputs presented below are for only one trial however it is illustrative of the majority of trials.

At generation 2 a trial is mapped in Figure 4 with the inputs to the seeing robot, which translate
into the blind robots movements, over the length of the trial. In generation two the seeing robot
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Figure 2: Fitness of the Best Individual in the Generation
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Figure 3: Fitness of the Best Individual in the Generation

Figure 4: Generation 2

outputted a value of -1 for the entirety of the trial with no variation. The blind robot turned right in
a constant radius circle for the entire length of the test. It is important to note however that the turn
was to the right. This will be important in subsequent tests.

The graph of generation 5 is shown in Figure 5. While the graph looks very complicated it is
simply a pattern which is repeated. The robots start in the ends of the straight section, for instance
rotation 1.5 and distance 3.7. The robot rotates in place until a certain point, -2.5 rotation and 3.5
distance. At this point the robot travels straight towards the robot and the rotation angle appears to
stay approximately the same with the distance decreasing. Throughout the trials the seeing robot is
outputting one of three values, either a 1, -.5, or -1. In the case of of 1 the robot goes straight, -.5
the robot takes a sharp right, and -1 a medium right turn. However there are large sections of the
graph which are hard to decipher due to the large number of points close together. The action the
robots are taking as they near the light is causing the mass of points. The pattern which happens
is the robot turns in place, -.5, until it is almost facing the light. Then it advances and periodically
adjusts course by alternating between a medium right, -1, and straight,1. This alternating produces
the zig zagging motion. However the motion is ineffective because it causes the robot to spend many
steps zig zagging very close to the light.

The graph of generation 25 is shown in Figure 6. In it is evident the same pattern of turning in
place until a certain point and then advancing. However there is no zig zagging present in the robots
motion. This is confirmed by examining the output of the seeing robot which has only two outputs -1,
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Figure 5: Generation 5

Figure 6: Generation 25

which is a hard right turn, and 1, which is travel forward. The results are much better than generation
5, the robot turns until is facing the robot and then travels straight right to it. There is no need for
correction and none is taken. The robot reaches the target faster than does generation 5.

In the previous three graphs the language is shown evolving. At first there is no language designed
to achieve the goal. However there is agreement or conjunction in action and signal because only one
output is sent, -1, and only one action is taken, turn right. Interestingly by generation 5 when the
robots are achieving the task they are building upon the agreement achieved in generation 2 that is,
-1 means turn right. In generation 5 the robots have achieved the task however the method is much
more complicated then it has to be and therefore does not work as well. Lastly the final example,
generation 25, shows the language which is the last developed and is never replaced in subsequent
generations.

The interesting characteristic of the language evolution is that the language appears as if a more
complicated language is evolved first before the simpler language. From an adaptive robotics point it
is expected that the evolution technique will find the simplest method possible. In addition in adaptive
techniques care must be taken, through speciation, to give more complicated genotype a chance to
evolve. Hence more complicated techniques are expected to evolve slower and require more time to
reach good operation. However in this example we see a simple solution evolve after the more complex.
We believe this is due to the communication required. The added necessity of communication we feel
added another variable which prevented the simplest solution from being developed first. Because
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there was co-evolution which required two randomly evolving neural nets we believe this was enough
to prevent the easiest solution from evolving first.

Looking at the data, we are able to discern that the robots were able to evolve a strategy to
achieve the objective. Generation 5 shows fitnesses that were not due to random behavior. The
highest possible fitness if no light is reached is 600. Generation 5 was able to achieve an average
of 7000, which means that it reached 7 lights. Since there are only three trials per run, this means
that it was able to reach about 2 lights per run. To do this, the seeing robot should be able to issue
a signal depending on the location of the light in relation to the blind robot. The blind robot, in
turn, should be able interpret the signal and move accordingly. As the generations progressed, their
behavior got better and we were able to achieve fitness scores higher than 10000. Generation 29, the
best generation, had an average of 14000, meaning that it was able to reach more than 4 lights per
200 steps.

The variation of the fitness in the trials is due to the random placement of the light. The light
could potentially be very far or very close to the location of the robot, thus, taking it a variable number
of steps to reach it. We can especially see this in generations two and three, where the light probably
appeared close enough to the robot that it was able to reach it using its rudimentary strategy. This
could have affected the evolutionary runs since an individual could have had many of the lights placed
near it, and a better one might have had to travel further to reach its objectives. This would create
the false sense that the first individual was better than the second and more of that species would be
carried over to the next evolutionary run. We can infer this a couple times. Looking at the results of
the best individual in generation 11, we can see that its average behavior was clearly better than that
of the next few generations. Even though in three of the experimental trials it was able to achieve
values higher than 10000, we can also observe that it had one trial with a fitness of 8000. If we look
at the other generations, we can see that each of them was able to achieve a value higher than the
lowest score for generation 11. Although this is a very possible scenario, a better strategy would be
able to achieve higher values consistently, making it easier for it to survive the future generations.
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