Incremental Evolution of Complex Light Switching Behavior

Megan Schuster
Swarthmore College
500 College Avenue

Swarthmore PA 19081

megan@cs.swarthmore.edu

Abstract

Evolving a robot to perform a specific
simple task has been shown to be effective
(Stanley and Miikkulainen, 2004) (Harvey
et al., 1994) (Marocco and Nolfi, 2006).
What eludes most artificial evolutionary
robotics systems is the next step: how can
we make task-specific intelligence ‘boot-
strap up’ to harder tasks and higher lev-
els of intelligence? In this paper, we
use an incremental evolutionary approach
to evolve complex behaviors in a fixed-
topology neural network control structure.
Our robot is given the static task of maxi-
mizing the amount of light seen in its envi-
ronment by locating and flipping on light
switches. We use four environments of
varying complexity in terms of the num-
ber and locations of the light switches. We
evolve robots from scratch in the complex
environments and compare their perfor-
mance to robots which were evolved first
in simpler environments and then moved
to the more difficult environments. We
show that pre-evolving robots in simpler
environments can sometimes improve per-
formance in more complex environments.
However, we find that it is not always ob-
vious what kinds of pre-evolution steps
will be most helpful in evolving more
complex behaviors.

Chris Harman
Swarthmore College
500 College Avenue

Swarthmore PA 19081
charmanl@cs.swarthmore.edu

1 Introduction

Evolutionary robotics is a rapidly-growing field
which takes a cue from biology in its efforts to create
intelligent artificial agents. Rather than trying to de-
sign complete, robust, and adaptive agents by hand,
evolutionary robotics instead allows these agents to
emerge over time through gradual mutation and the
reproduction of successful agents. Typically, the en-
tity being evolved is a neural network controller for a
robot body, and mutation operates by making small,
random changes to the network’s “genes”, which
are the weights that define the network’s behavior.
The evolutionary process begins with a population
of robots whose neural network brains are initialized
with randomly selected weights. Some fitness func-
tion must be defined to quantify how well any given
agent behaves. Robots that behave well according to
this fitness function may then pass their genes on to
the following generation, with some probability that
those genes will be mutated. Over time, robots that
behave poorly will be weeded out of the population,
and the behaviors of the more adept robots will be
fine-tuned by the mutation process.

The evolutionary approach is appealing because
it allows desirable behaviors to emerge without the
need for intensive engineering of the robot’s control
structures. Instead, we simply design a fitness func-
tion that will favor the kinds of behaviors we would
like to see and wait for evolution to take its course
and produce agents that behave appropriately. How-
ever, for very complex tasks, the time required to
evolve agents with the desired behavior may become
prohibitive, and in some cases we might never see

evolution lead to a good solution.

Stanley and Miikkulainen (2004) have designed
the NEAT architecture to deal with precisely this
problem. They point out the difficulty of choosing
an appropriate network architecture that will best
solve a given task. Their system allows robots to
evolve complex behaviors by starting with very sim-
ple networks and gradually, over evolutionary time,
increasing the complexity of those networks. While
a simple network may be able to come up with sim-
ple strategies to solve the task, by allowing the net-
work topology to become increasingly more com-
plex, their robots have the ability to evolve increas-
ingly sophisticated solutions to the problems they
have been asked to solve.

In this paper, we too seek to evolve robots
which are capable of completing increasingly dif-
ficult tasks, effectively bootstrapping their abilities
from simpler tasks. Unlike Stanley and Miikku-
lainen, however, we choose to use a fixed-topology
network and gradually increase the complexity of
the task the robot is asked to solve. Our hope is that
robots which are evolved to solve easier tasks before
they are evolved to solve more complex tasks will
find more effective solutions for the complicated
tasks and do so in less evolutionary time than robots
which begin evolving immediately on the compli-
cated tasks.

Harvey et al.(1994) have previously applied a
similar incremental approach to evolving a vision
system. Their robot is given the task of tracking a
white target in an otherwise dark environment. They
begin by using a large target and evolving robots
which can successfully complete the task. They then
give these evolved agents a smaller target, and once
the robots have evolved to find that , they give them
a small, moving target. Harvey et al. succeed in
evolving robots that can track the moving target us-
ing this incremental technique. However, the ques-
tion of whether the incremental approach provides
any advantage over simply evolving the robot from
scratch on a moving target is left unanswered. In
this paper, we attempt to address this question of the
relative advantages and disadvantages of an incre-
mental evolutionary approach.

2 Methods

We conduct several experiments in which we seek to
evolve robots with the ability to intelligently turn on
light switches. We have four environments contain-
ing one or two light switches which can be placed
either toward the center of the environment or in the
corner (Figure 1). The difficulty of the environment
increases with the number of switches it contains,
and we consider switches in the corner to be more
difficult to find and turn on than switches in the mid-
dle of the room. We evolve robots in each of these
environments, beginning “from scratch”, using ran-
domly initialized neural network weights. For the
more complicated environments, we then also allow
robots to pre-evolve in a simpler environment before
placing them in the more complex environment. We
hope to see that, for more complex environments,
allowing the robots to pre-evolve on a simpler task
allows them ultimately to evolve more sophisticated
solutions in less time for the more complex tasks.

2.1 Experimental Setup

For our experiments, we used a simulated Pioneer
robot within the Pyrobot simulator !. There is some
degree of simulated noise in the robot’s sensors,
helping to maintain a degree of simulated realism.
We borrowed code from several of Pyrobot’s preex-
isting modules for our project as well: the Simple
Recurrent Network (SRNBrain.py) and the Genetic
Algorithm control code (GA.py).

The environment is very simple for each of our
experiments: a walled box along with one (or two)
light switches (Figure 1). We defined a light switch
to be a square tile on the floor of the environment
with a light inside. When the robot rolls onto the
tile, the light is toggled depending on the light’s cur-
rent state (on to off or vice-versa). It is important to
note that the light does not change state if the robot
leaves the light switch; only the robot entering the
light switch has an effect on the light. This setup
is intended to produce interesting reentry avoidance
behavior from the robot. 2

"http://pyrorobotics.org

2The structure of our environments was inspired by previous
work by Marocco and Nolfi (2006), who also sought to evolve
robots to visit tiles on the floor of their environment in an intel-
ligent way. Marocco and Nolfi, however, use auditory signals
between multiple robots in the environments to signal which

Figure 1: The four simulated environments. Light switches are represented as the square tiles on the floor. In these images, all
lights are turned on, as indicated by the yellow circles at each light switch.

The simulated Pioneer robot is equipped with 16
360 degree range sensors oriented radially outward
from the robot. These 16 range sensors were con-
flated into four (front, left, right and back) by group-
ing them appropriately and taking the minimum of
each group at every time step. Also, the simu-
lated robot has two front light sensors that detect
the amount of light in the environment. We added
a switch sensor to the robot as well that allows the
robot to tell if it is standing on top of a light switch
or not. The robot’s initial placement in the environ-
ment is random for each run.

2.2 Recurrent Neural Network Brain

We chose to use a recurrent neural network brain for
our robot controller after initial experiments with a
standard feed-forward network failed to produce any
complex behaviors. A recurrent neural network has
connections between the output nodes and hidden
nodes, so there is a degree to which the hidden nodes
‘remember’ their previous action. The input layer
for our robots consists of seven nodes and takes as
input one value for each of the range sensor group-
ings (front, left, right and back), one value for each
of the two front light sensors, and one value for the
switch sensor. The hidden layer consists of three
hidden nodes and the output layer has two nodes to
control the robot’s motion (translation and rotation).
The network’s weights are randomly initialized for
the first generation of the evolutionary process and
serve as the genotype over which the genetic algo-
rithm operates.

2.3 Defining the Fitness Function

The choice of fitness function is arguably the most
critical component of defining the experiment be-
cause it inherently drives the robot’s evolutionary
path toward a specific behavior. For example, we
did not include a stall component in some of our
earliest experimental fitness functions and the robot
would at times flip the light switch on, only to crash
soon after into a nearby wall. This type of be-
havior would yield high fitness because the amount
of light seen in the environment would be maxi-
mized, but the robot’s exploration of the environ-
mldbevisited, where we use light as a signal to indi-

cate which tile has already been visited and which remain to be
visited.

ment would be severely hindered. Consider the ef-
fects of propagating such a negatively biased gen-
eration in terms of qualitative behavior to the next
generations. The final evolved genotype would
likely incorporate the wall-smashing behavior into
its behavior, which could never succeed in envi-
ronments with more light switches where explo-
ration is of paramount importance. As such, we
chose our fitness function carefully in hopes of gen-
erating effective light-switching behavior. Our fit-
ness function is defined as follows: (notStalled) x
([translationVal| + 2 x (lightSensed))

The first term in the fitness function,
|translationVal|, was chosen because we
wanted to reward the robot for exploration. We
had previously experimented with including the
minimum sensor value in this term also, but that
had the effect of limiting the robot in its exploration
of the environment as it preferred to stay far away
from walls. Because our robot’s main objective
is to maximize the amount of light in its envi-
ronment, the second term in the fitness function,
2 x (lightSensed) is defined so that the robot will
get a large reward for flipping on new light switches.
Both of these are multiplied by O if the robot’s stall
sensors are activated, so that a robot receives zero
fitness points for every step it spends crashing
into a wall, regardless of the number of lights on
in the environment. An effective environmental
exploration behavior that explores novel portions
of the environment-a behavior where it will not
reenter a light switch once it has been switched on
and will seek out new light switches—is, in essence,
the goal of our fitness function.

2.4 Evolutionary Algorithm

We used a genetic algorithm for evolving the robot’s
ability to effectively flip light switches and maxi-
mize the amount of light in their environment. The
genetic algorithm uses the weights of the neural net-
work as its genotype and uses a moderately aggres-
sive evolutionary scheme. We used a population size
of 20 for each generation. From those twenty, we
chose the top 20% (the top four) as elite. Each of the
elite members is passed on directly to the next gen-
eration. Each elite member also makes four copies
of itself, which are passed on to the next genera-
tion subject to a 2% mutation rate. This means that

each gene in the genotype has a 2% chance of be-
ing mutated, and the amount of mutation possible
is bounded at 1 unit. These parameters were cho-
sen because they were used in previous work by
Marocco and Nolfi (2006) which uses an environ-
ment similar to ours. We experimentally verified the
ineffectiveness of using crossover for mutating neu-
ral network weights and chose not to include it as a
result.

2.5 Pre-evolution Steps

Harvey et al. (1994) apply the incremental evolu-
tionary approach by evolving a population in a sim-
ple environment, then moving that same population
to a more complex environment. We have concerns
that by allowing our population to converge on a
solution that is very particular to the simpler en-
vironments, there may be so little diversity in the
population that it will hinder their abilities to then
evolve more sophisticated behaviors in complex en-
vironments. As such, we modify the incremental ap-
proach of Harvey et al. slightly.

When we have a population that has been evolved
on a simple task that we would like to move to a
more complex task, we do not simply transfer the
population to a more complicated environment. In-
stead, we choose the top four individuals in the pop-
ulation at the end of the pre-evolution step and make
four copies of each. As before, we allow one copy
to pass through unmutated; the other three are sub-
ject to the same 2% mutation as before. This leaves
four empty spots in the population, which we seed
with randomly initialized agents. This ensures some
degree of diversity in an otherwise converged popu-
lation.

All pre-evolved populations used in our experi-
ments were allowed to evolve for 100 generations
before advancing to a more complicated task, where
they were then allowed 100 generations to evolve in
the complex environment. Likewise, control groups
which were evolved from scratch in the complex en-
vironments were evolved for 100 generations. For
all experiments, we run five trials of our evolution-
ary algorithm and report the average resulting fit-
ness, since the results of the evolutionary process are
somewhat sensitive to the initial weights and starting
positions of the robots.

Experiment 1 Generational Perfaormance: Erwironment 1

240

220

200

180

160

140

Fitness Rating

120

100

80 Exptl Auverage ——

B0

0 10 20 30 40 50 60 0 an 0 100
Generation

Figure 2: Average fitness versus generation number for
robots solving a two-switch task in environment 1 with no pre-
evolution, evolving from randomly initialized weights. These
fitness curves represent the average fitness at each generation
over five trials.

3 Results

3.1 Environment 1

3.1.1 Beginning from Randomly Initialized
Weights

By watching robots which have evolved for 100
generations in this environment, we can make some
generalizations about the behaviors the robots have
evolved over the course of this experiment. For all
trials of this experiment, agents have clearly evolved
an ability to avoid crashing into walls. This is as
we expected, since robots are awarded zero fitness
points for every time step at which its stall sensors
are activated. This is a skill which will clearly be
useful to the robot when it faces more complicated
tasks.

The robots also seemed to have evolved to “want”
to have the light turned on. Occasionally, we see a
robot turn on a switch and later roll back over the
switch, turning the light back off. In such cases, the
robot will often change its direction of motion in or-
der to reenter the switch a third time and thus turn
the light back on. Such behaviors indicate that evo-
lution has indeed produced agents which are inter-
ested in seeing high values for the light sensors.

Different trials of this experiment lead to different
ultimate strategies for solving the one-switch prob-
lem. In some trials, we see the robot find the switch
and then stay on top of it, wiggling back and forth.

This ensures that the light always stays on, but at
the possible cost of some fitness points for keeping
the robot’s translation value small at every step. In
other trials, we see the robot go to the middle of the
environment to flip the switch, then back out of the
switch and begin going in circles around it. This
strategy awards more points for large translation val-
ues at every step as the robot circles the switch, but
it also allows the robot to occasionally roll over a
corner of the switch and turn the light off, risking
the loss of some fitness points for temporarily hav-
ing the light switched off.

In Figure 2, we see that the robots’ fitness score
plateaus at about 175 fitness points around genera-
tion 30. To put this fitness value in perspective, the
maximum possible fitness score is 600 points for a
robot who has the light on and translates by the max-
imum value at every step of the run. Of course, it
is unlikely that this would actually be possible for
any robot, so a more realistic upper bound would
be about 375 fitness points, which is the approxi-
mate score of a robot who finds the switch within 3
seconds of the beginning of a run and leaves it on
throughout the run, going in large circles around its
environment once it has turned the lights on. On the
other hand, a robot which goes in large circles with
the light off throughout the run gets a fitness score
on the order of 30. Our average fitness score hovers
around 175 for all higher generations, which is quite
a bit lower than the score of 375 for the optimum
performance just described, but is clearly better than
the case where the light is never found. This seems
to be due to the fact that it often takes robots con-
siderably longer than 3 seconds to find the switch,
depending on their starting position. As such, the fit-
ness for any given run is highly dependant on the ini-
tial conditions, leading to an average fitness of any
given population which is intermediate between the
optimum switching behavior and the no-switching
behavior.

3.2 Environment 2

3.2.1 Beginning from Randomly Initialized
Weights

As in environment 1, robots which had evolved
in this environment for 100 generations had clearly
learned to avoid running into walls. Beyond that,

Experiment 2 we. Experiment § Gemerational Performance: Environment 2
250

300

250

200

Fitness Rating

150

100

Expt2 Average ——
Expt5 Huerags

0 10 20 30 40 50 60 70 20 30

Generation

Figure 3: Average fitness versus generation number for robots
in environment 2 which were evolved from scratch (red) and
were evolved first in environment 1 (green). Fitness curves rep-
resent the average fitness at each generation over five trials.

though, we did not see any clear evolution of an ef-
fective strategy for finding the light switch, as the
robot seems to just wander more or less aimlessly
in its environment. We noticed that, in general, the
robot seems to spend much of its time near walls, of-
ten approaching a wall and then wiggling back and
forth in front of it for several seconds. This may
be because of the fact that the switch is located in
a corner, so evolution will favor robots who take a
special interest in walls. For example, should such
a robot be initialized very near to the switch, it may
approach the switch and then move back and forth
on top of the switch for most of its run, giving it a
very high fitness score and thus favoring the propa-
gation of this wall-dancing behavior into future gen-
erations.

In Figure 3, we see that the fitness function for
this experiment is gradually increasing throughout
evolutionary time and seems to be hovering around
100 fitness points by the 100th generation. This
is likely due to the fact that, while the robot can
move around a lot in its environment and gain fit-
ness points that way, whether it finds the light or not
seems to be mostly determined by its initial position
and the random chance that it will stumble onto the
switch. This means that most individuals do not find
the light at all, leading to a somewhat lower average
fitness score than was achieved in the previous ex-
periment in environment 1. This is a sensible result,
as we would expect the robot to be less likely to dis-

100

cover a switch when it is tucked into a corner than
when it is right in the middle of the room.

3.2.2 Pre-evolved in Environment 1

When we pre-evolved the robot in environment 1
before evolving it in environment 2, we found that
after 100 generations of evolution in environment 2,
the agents seemed much more purposeful than in the
previous experiment in which agents were evolved
from scratch. Where before the robots appeared to
be wandering somewhat randomly, here the robots
explore the environment in a way that much more
consistently leads to discovery of the switch. The
most common strategy evolved in this experiment
was a wall-following approach; wherever the robot
was initialized, it would approach the nearest wall,
then follow that wall until it hit the switch. This
seems an effective strategy since the robot has no
way of determining which corner has the switch un-
til it is actually on top of this switch. Once a robot
had found the correct corner containing the switch,
it would often avoid that corner with the light in the
future as it continued to wall-follow, though some-
times it would still return to the switch and turn the
light back off.

From Figure 3, we can see that robots that were
pre-evolved in environment 1 were at a clear advan-
tage over those which evolved from scratch. The
effect takes place immediately, as even the first gen-
eration’s fitness level is doubled by allowing pre-
evolution in environment 1. Over the first 5 gen-
erations, fitness increases dramatically for the pre-
evolved agents. After that, fitness seems to some-
what level off, though it still oscillates quite a bit.
By the 100th generation, the fitness level for the
pre-evolved agents is oscillating around 250 fitness
points, which indicates that the light must be on for
good portions of the run for most of the robots in the
population.

3.3 Environment 3

3.3.1 Beginning from Randomly Initialized
Weights

In this two-switch environment, the robots
seemed to have evolved fairly effective behav-
iors even when evolved from randomly initialized
weights. For all trials of this experiment, the robots
seemed to have adopted the same basic strategy by

Experiment 3 ws, Experiment 6 Generational Performance: Ervironment 3

400

360

3

=3
=3

250

Fitness Rating

200

150 J

100

Expt3 Auerage ——
ExptE Average

e
A I
I

0 10 20 30 40 50 B0 70 a0 90
Generation

Figure 4: Average fitness versus generation number for robots
in environment 3 which were evolved from scratch (red) and
were evolved first in environment 1 (green). These fitness
curves represent the average fitness at each generation over five
trials.

the 100th generation, which was to move in a circle
around the center of the environment such that both
switches were in its path. In general, this strategy
allowed robots to turn on both lights, but sometimes
the robot would have enough time to make more
than one complete circle in its environment, allow-
ing it to revisit a switch it had already seen. Rather
than recognizing that the light was on and avoiding
revisiting it, robots would typically continue on their
circular paths, switching the lights back off. This
is obviously not the type of behavior we were hop-
ing to see in this experiment. This usually happened
near the end of the run, such that the light would only
be off very briefly before the run was over and thus
have only a small effect on the fitness function. Per-
haps if the runs were longer, turning off a light which
had previously been turned on would have had time
to make a greater impact on a robot’s fitness, pro-
viding an evolutionary incentive for robots to avoid
revisiting switches it had already turned on.

In Figure 4, we see that the robot reaches a fitness
plateau by about generation 30, and from then on os-
cillates around a fitness level of about 325. To get a
sense of the meaning of this fitness level, recall that
the optimal behavior in the one-switch environment
lead to a fitness score of about 375. When observing
100th generation robots, we saw that the most effec-
tive agents, who quickly turned both lights on and
kept them on for the rest of the run, were getting fit-

100

ness scores of about 600. Our average robot in this
environment is almost as good as our best robot in
a one-switch environment but clearly is not exhibit-
ing optimal behavior for a two-switch environment.
Based on our observations of the robots, this is not
because they simply turn on one light and stop there.
Instead, 100th generation robots typically find and
turn on both switches by the end of the run, but of-
ten it takes a good deal of time to find the first switch
such that the second switch is only on for a few sec-
onds before the end of the run, leading to average
fitness scores that are not much higher than what we
can expect from the best agents in a one-switch en-
vironment.

3.3.2 Pre-evolved in Environment 1

When allowing the robots to pre-evolve in envi-
ronment 1 before placing them in environment 3,
we saw no detectable difference in the strategy ulti-
mately adopted to solve the two switch problem; as
in the case where robots were evolved from random
initial weights, the pre-evolved robots seemed to
discover the simple circular-path strategy described
above. Also as before, these robots did not seem
to learn how to avoid reentering switches that they
had already turned on. From Figure 4, it seems
that pre-evolving the robots in this case made no
difference in the fitness level the robots ultimately
achieved or the number of generations required to
reach that level.

3.4 Environment 4

3.4.1 Beginning from Randomly Initialized
Weights

Environment four represents the hardest environ-
ment for the robot to learn because of the fact that
there are two light switches in the environment and
that they are both placed at opposite corners of the
environment. Because of the similar structure to the
experiment where the robot was evolved in environ-
ment two (essentially the environment is copied and
flipped along a y = —x diagonal), we would ex-
pect the graphical results of this experiment to match
closely the results shown for the robot evolved from
scratch in environment two (Figure 5), except for
the fact that the fitness score should double because
the robot’s chances of randomly exploring and find-
ing a light switch double early on in the evolutionary

Experiment 4 ws, Experiment 7 Generational Performance: Ervironment 4

300

250

150

Fitness Rating

100

Exptd Auerage ——
Expt? Average

|t ARy

0 10 20 30 40 50 B0 70 a0 90
Generation

Figure 5: Average fitness versus generation number for robots
in environment 4 which were evolved from scratch (red) and
were evolved first in environment 1 (green). Fitness curves rep-
resent the average fitness at each generation over five trials.

process. In fact, this is exactly what happens.

After 100 generations, the evolved robot exhibits
light-switching behavior that is initiated by a semi-
elliptical exploration of the environment until the
first light switch it toggled on. The robot then leaves
the light switch and appears to avoid reentering the
light switch. At times, this reentry avoidance can
cause the robot to slightly reenter the light switch
and thwart its previous efforts, but the intention of
the move is clear because the robot generally then
begins another semi-elliptical exploration of the en-
vironment that oftentimes leads it to the other light
switch. There is often a need for wall avoidance dur-
ing the second-switch-finding phase and many times
the robot will run out of time steps either right be-
fore or right after turning on the second light switch.
The downfall of the evolved robot in this environ-
ment seems to be when the robot’s initial search for
a light switch fails to yield and the robot ends up
stalled on a wall. Certain orientations along the wall
seem problematic for the robot and it remains stuck
until the next iteration.

The robot’s evolutionary progress converges
quickly with this experimental setup (Figure 5).
After about 20 generations, the robot’s fitness has
plateaued at around 150. There is a degree of fine-
tuning that takes place between the 20th and the
100th generation, though. The robot appears much
more deliberate in its actions; also, it seems that the
fitness may be limited by the amount of time re-

Experiment 4 vz, Experiment 8 Generational Performance: Enwironment 4
300

250

1
200 \N

150

Fitness Rating

100

kS Exptd fverage ——

Exptd Average

0 10 20 30 40 50 [70 80 30

Generation

Figure 6: Average fitness versus generation number for robots
in environment 4 which were evolved from scratch (red) and
were evolved first in environment 2 (green). Fitness curves rep-
resent the average fitness at each generation over five trials.

quired to traverse the environment and flip the sec-
ond light switch.

3.4.2 Pre-evolved in Environment 1

Pre-evolving the robot in environment 1 equips
the robot with a seemingly more robust mechanism
for avoiding walls relative to the robot that was
evolved from scratch. There is also a tendency
for the robot to avoid the outer edges of the envi-
ronment that seems to be a remnant from its pre-
evolution. The robot’s behavior is also much less
exploratory after it has switched on the first light
switch, which seems connected to its pre-evolution,
where we sometimes saw the robot find the switch
and then wiggle back and forth on top of it with-
out further exploring the environment. That said, the
robot’s rise in evolutionary fitness slightly outpaces
that of the robot evolved from scratch (Figure 5),
likely because of its proficiency in finding at least
one switch every time and rarely stalling.

3.4.3 Pre-evolved in Environment 2

Because environment 4 is very closely related to
environment 2, we would expect that pre-training
the robot in environment 2 would yield favorable re-
sults. The robot’s behavior is similar to its behavior
after evolving the robot from scratch, except that the
robot’s stall avoidance appears to be considerably
more robust. Presumably, this comes from the nec-
essary wall avoidance mechanism learned to solve

100

240

Experiment 4 we. Experiment 9 Gemerational Performance: Environment 4
220

W\/ﬁ W\PJ\/WW

120

Fitness Rating

100 ‘E

Expt4 Average ——
Expt3 Auerage

i

0 10 20 30 40 50 60 70 20 30

Generation

Figure 7: Average fitness versus generation number for robots
in environment 4 which were evolved from scratch (red) and
were evolved first in environment 3 (green). Fitness curves rep-
resent the average fitness at each generation over five trials.

the task in environment 2. The robot seems to have
adapted well to the new environment, using its pre-
viously learned light switch-finding abilities to tog-
gle the first light and and then leaving the switch to
seek out the next. On appearance, this would seem
to be the most deliberate and task-oriented out of the
robots evolved in environment 4.

The results shown in Figure 6 follow closely
one’s intuition. There is an initial gap in fitness
relative to the robot evolving from scratch because
the robot is essentially solving the task it was pre-
evolved for, allowing it to reliably find at least one
switch. This gap is narrowed, though, as the robot
evolved from scratch learns to turn on one light with
regularity and then the second. What seems to main-
tain the consistent discrepancy between the two is
the clearly more robust wall avoidance behavior. It
would seem, given the fitness increase over evolu-
tionary time with this task, that first evolving the
robot on a subtask of the harder task at hand yields
positive performance results relative to evolving the
robot from scratch.

3.4.4 Pre-evolved in Environment 3

The results shown in Figure 7 suggest that there
is no relative advantage to evolving the robot in en-
vironment 3 before transferring it to environment
4. Because of the relatively simple circular-path
strategy evolved in environment 3, the robot seems
to have integrated nothing specific into its toolset

100

that could potentially improve its fitness relative to
evolving the robot from scratch. After evolving the
robot in environment 3, the robot seems to stall quite
often and does not explore the environment as ex-
pansively as previously seen with other configura-
tions, which is likely a remnant from the light switch
being centered in the environment in environment 3.

4 Discussion

Our results indicate that allowing robots to evolve
in a simpler environment on a simple task before
placing them in a more complex environment can
sometimes allow them to evolve more sophisticated
solutions to the complex task and can help them to
evolve those solutions more quickly. While we were
hoping to see a clear progression in terms of the so-
phistication of the robots’ behaviors from environ-
ment to environment, where pre-evolution in envi-
ronment 1 would lead to better results in environ-
ment 2, pre-evolution in environment 2 would lead
to better results in environment 3, and so on, this
was not exactly the case. Instead, we saw that in
some cases adding a pre-evolution step made no real
difference in the robots’ performance, and in other
cases, pre-evolving in one environment was more
helpful than pre-evolving in another in unexpected
ways. For example, we expected that pre-evolving in
environment 3 and then placing the robot into envi-
ronment 4 would result in much better performance
in environment 4 since there were two switches in
each of these environments, but this was not the case
(Figure 5). However, pre-evolution in environment
2 seems to have helped the robots evolve effective
strategies more quickly in environment 4 (Figure 6).

The clearest evidence that an incremental ap-
proach is useful for evolving complex behaviors can
be seen in Figures 3 and 6. Figure 3 depicts the fit-
ness boost obtained when agents are pre-evolved in
environment 1 before being placed in environment
2. When agents are evolved from scratch in environ-
ment 2, we see that after 100 generations, they have
not yet evolved a consistently effective solution to
the one-switch problem. Pre-evolution in an envi-
ronment where the switch is easier to find allowed
the robot to quickly (within 10 generations) evolve
an effective strategy for turning on the light in the
corner. Figure 6 shows that agents which were pre-

evolved in environment 2 before being placed con-
verged on a solution to the two-switch problem in
environment 4 more quickly than agents which were
evolved in environment 4 from scratch.

It is likely that the pre-evolution steps were help-
ful in these cases because they allowed the robot to
evolve some general behaviors that proved benefi-
cial in the more complex environment. For exam-
ple, in environment 1, agents evolved an ability to
avoid getting stuck against walls as well as a drive to
see the light turned on, which would be useful start-
ing points for solving the one-switch task in envi-
ronment 2. When evolving from scratch in environ-
ment 2, robots evolved behaviors which led them to
spend a lot of time looking at walls. This may have
been a helpful behavior in environment 4, since both
switches are in corners and robots with a predisposi-
tion to look at walls will be more likely to discover
these corner switches.

While we are pleased with these positive results,
we must also address the question of why our pre-
evolution steps were not always helpful. One ma-
jor reason may be that when designing our environ-
ments and evolutionary tasks, we did not correctly
predict which environments would be most difficult
for the robot to conquer. For example, we were ex-
pecting environment 3 to be more challenging than
environment 2 because it contained more switches.
However, we saw that the robot was able to evolve
a reasonably effective strategy for solving the two-
switch task in environment 3, even without the bene-
fit of a pre-evolution step. Thus pre-evolution in the
simpler environment 1 did not provide any real im-
provements in terms of the robots fitness level (see
Figure 4), but that may be because the task was sim-
ply not hard enough to truly benefit from the extra
time spent in pre-evolution.

Further, we were not always able to correctly
predict which pre-evolution steps would be helpful
to the robot. For example, we expected that pre-
evolution in environment 3 would be beneficial to
later evolution in environment 4, since both of these
environments contain two switches but the switches
in environment 3 are located more toward the center
of the environment and are thus easier to find. Figure
7 shows that this particular pre-evolution step was
not useful. Instead, it turned out the pre-evolution in
environment 2 was more beneficial 6. Even though

environment 2 has only one switch, it is placed in
a corner, just like the switches in environment 4. It
seems that pre-evolution which helped the robot ex-
plore the correct regions of the environment (i.e. in
the corner of the room) was more helpful than pre-
evolution which helped the robot learn to expect the
correct number of switches, which was not a result
we anticipated.

5 Conclusion

Our results seem to indicate that it is possible for
an incremental approach to be beneficial when try-
ing to evolve complex behaviors, with some caveats.
First, it may not always be clear to the human engi-
neer when a task is complicated enough to warrant
the use of more time-consuming pre-evolution steps.
Second, it may not always be clear to the human en-
gineer exactly what intermediate evolutionary steps
will help the robot to ultimately evolve some sophis-
ticated behavior. What may seem to the human like
a reasonable decomposition of a complex task into
simpler and simpler behaviors may not work well for
the robot and its unique perspective on the world.

We have seen that when we do find useful
intermediate-difficulty tasks on which to evolve our
robots, we can in fact improve the rate and quality
of their evolution on more difficult tasks (Figures
3 and 6), suggesting that an incremental approach
might prove useful when attempting to evolve very
complex behaviors.

Still, this approach may not be the most efficient
or the most generalizable technique. For every com-
plex task we wish to solve, we must hand-designed
a new set intermediate tasks. This can be time-
consuming and may require many trials before we
hit on a set of intermediate tasks which actually
prove useful to the robots when they ultimate try
to evolve complex behaviors. If we would like a
more generalizable technique that can be used with-
out much modification to evolve a wide variety of
complex behaviors, a system more akin to NEAT
(Stanley and Miikkulainen, 2004) might be a better
choice.

6 Acknowledgements

Many thanks to Professor Lisa Meeden for advising
this project. We also thank the folks of PyRo for

providing a starting-point for our genetic algorithm.

References

I. Harvey, P. Husbands, and D. Cliff, 1994. ”Seeing the
Light: Artificial Evolution, Real Vision” Proceedings
of the Third International Conference on Simulation of
Adaptive Behavior: From Animals to Animats pp 392-
401.

D. Marocco and S. Nolfi, 2006. "Emergence of commu-
nication in teams of embodied and situated agents.”
Proceedings of the 6th International Conference on the
Evolution of Language pp 198-205.

K.O. Stanley and R. Miikkulainen, 2004. “Competi-
tive Evolution through Evolutionary Complexifica-
tion.” Journal of Artificial Intelligence Research, 21 pp
63-100.

