
CS81: Learning words with Deep Belief Networks

George Dahl
gdahl@cs.swarthmore.edu

Kit La Touche
kit@cs.swarthmore.edu

Abstract

In this project, we use a Deep Belief Net-
work (Hinton et al., 2006) to learn words
in a fixed-size vocabulary, given input
in multiple modalities (image and audio
data). The goal of this project is like that
of Plunkett et al. (1992): to model vocab-
ulary acquisition, and address the Symbol
Grounding problem from a connection-
ist standpoint. Our model learns to clas-
sify both spoken and hand-written digits
in three distinct learning tasks. First, we
train our network only on the image data,
second, we train only on the audio data,
and finally, we train on a combined dataset
of paired image and audio data. Unlike
Plunkett et al. (1992), we use a genera-
tive model, which allows us to fix the class
labels and generate input vectors that our
model considers good representatives of
that class. The model also achieves high
accuracy on the classification tasks.

1 Introduction

Imagine, some day (far) in the future, that you want
your pet robot to find your missing sock. You tell
it to do so, and it heads off, looking for a sock.
In order to even begin to solve this problem, the
robot needs many sophisticated capabilities. Primar-
ily, the robot needs to understand that the audio sig-
nal “sock” it receives is correlated with a range of
images of “socks” that it might perceive through its
visual sensors.

Of course, we are a long way from solving the
Sock-Finding Problem; a solution would require
more sophisticated image and audio processing, and
some sort of syntactic processing, to name but a
few of the necessary components. The experiments
we performed in this project show one way a robot

could learn to associate input from multiple sensory
modes with a given label.

Our work builds on work by Plunkett et al. (1992),
in which a neural network was trained to associate
fixed labels with abstract images of black dots on a
white field. They used a normal feed-forward neu-
ral net with an autoencoder topology and a peculiar
training regimen intended to allow the trained net-
work to map both inputs to labels and labels to in-
puts. Inputs and outputs to their network were con-
catenations of labels and image vectors.

The primary goal of Plunkett et al. (1992) was to
model human vocabulary acquisition and then use
the model to both comprehend and produce “lan-
guage” (they modeled a highly simplified and re-
stricted form of what we might think of as language).
Their work is in part an attempt at a connectionist
answer to the Symbol Grounding Problem. (Harnad,
1990)

The Symbol Grounding Problem is a long-
standing issue in AI which can be boiled-down to
the following: how can words (which are arbitrary
symbols) gain meaning, rather than simply circular
definition in terms of other symbols, or brittle deno-
tation of specific sensory states? In particular, how
can a system ascribe semantic value (meaning) to
symbols in a way that is intrinsic to the system, and
not merely our interpretation of it?

This problem, of course, requires a clear idea of
what is meant by “meaning”, or, really, what the na-
ture of meaning is. The argument put forth in Har-
nad (1990) is essentially that connectionist systems
make semantics intrinsic by definition: if the “mean-
ing” of a symbol is the set of other symbols and,
crucially, subsymbolic elements that get activated
along with it, then a connectionist system that corre-
lates input in various modes would partially address
this problem.

So, the symbol grounding problem seems to be
solvable through only one route: the association of

Figure 1: Architecture of the Plunkett et al. (1992) system.

prototypes in many modes with the same internal la-
bel. This is, of course, what our network sets out
to do. This is also what the model in Plunkett et al.
(1992) is designed to do.

There is an important sense in which we (and
Plunkett) do not actually address the symbol ground-
ing problem: we provide the network with training
data that is split into different categories. A more
complete system would have to provide its own sys-
tem of categorization. Such a system might asso-
ciate audio and visual input based on temporal co-
occurance and use some sort of shared sensorimotor
context to place audio/visual input pairs into differ-
ent classes.

In addition to providing the seed of a connection-
ist answer to the Symbol Grounding Problem, Plun-
kett et al. (1992) were also interested in robots that
might produce language. Indeed, it would be quite
useful for a robot to be able to produce linguistically
meaningful utterances in response to its environment
and internal state. This task would of course require
that the system associate input from different modes
as being in the same category when appropriate, but
it would also require a system capable of generating
output like its input, not simply classifying inputs.
This will lead us naturally to use a generative model.

We have extended the task in Plunkett et al. (1992)
by using real-world audio and image data. Plun-
kett et al. (1992) liken their labels to elements of a
vocabulary. We have made this comparison more
plausible by replacing their labels with recordings
of humans speaking words from a small, fixed, vo-
cabulary. This means that a variety of different ut-
terances of a word can be paired with a given im-
age, rather than only a single fixed label. We also
use real-world images of handwritten digits instead
of contrived image prototypes. Although the vocab-

ulary we are working with is smaller (10 items as
opposed to 32), the task we have created is in most
respects much harder. Our model must learn to cor-
rectly identify the class that an utterance/image pair
belongs to even though there are many different ut-
terances that are instances of that class, and each one
can be paired with any different image instance that
belongs to that class. As in Plunkett et al. (1992), we
want our system to be able to generate its best guess
of what an instance of a given class might be.

As well as generalizing the task, we have used a
different connectionist model for learning. Instead
of using feed-forward neural networks with non-
standard training regimens, we use Deep Belief Net-
works (Hinton et al., 2006), which are true genera-
tive models.

Plunkett et al. (1992) used a normal feedforward
neural network, but had to structure and train it in
an odd fashion to allow for both comprehension and
production. They had three hidden layers, in two
tiers. (See the leftmost network in Figure 1.) They
first used backpropagation to train the network to
autoassociate only images. Only weights on the
path from the image input units to the image output
units were updated (this path is the middle of Figure
1). Then they repeated this procedure for the label
part of the input and output layers (this path corre-
sponds to the rightmost part of Figure 1). Finally,
they trained all weights in the network to autoasso-
ciate image/label pairs. This training procedure has
a couple of theoretical problems. The most impor-
tant one is that the weights for the 50 hidden units in
the penultimate layer were being trained to optimize
three different, and potentially contradictory, objec-
tive functions. The mixture between these objective
functions was ill defined and dependent on the or-
der of the training phases and how long each phase

was run. Furthermore, none of the phases of train-
ing actually optimized the weights to perform the
tasks that the network was tested on, since updates
were never performed “diagonally” through the net-
work. These theoretical issues came about because
traditional feed-forward networks are not generative
models.

1.1 Generative vs. Discriminative models

There are two main types of probabilistic models:
generative and discriminative models. The distinc-
tion between the two is based on what probability
distribution they model. Generally one assumes that
the goal of training is to predict some output variable
y given the value of an input variable x. Discrimi-
native models (such as traditional feed-forward neu-
ral networks trained in a way that allows their out-
put to be interpreted as approximate posterior class
probabilities1) directly model the probability of an
output given an input. The alternative is a gener-
ative model, in which one models the joint proba-
bility distribution of the input and the output. Thus,
while a discriminative model will estimate P (y|x), a
generative model will estimate P (x, y) from which
one can obtain eitherP (y|x) orP (x|y) using Bayes’
theorem.

The various tradeoffs between generative and dis-
criminative models are a fascinating area of re-
search. However, given that we actually want to
generate samples from P (x|y) as well as perform
classification, a generative model is most natural.

One particular tradeoff, however, bears mention-
ing: the asymptotic error of generative systems is
typically greater than for discriminative systems.
However, this error bound is reached more quickly
than with a discriminative model. (Ng and Jordan,
2002) This tradeoff is one reason the final supervised
fine-tuning phase in Deep Belief Network training is
so helpful; after pre-training, the weights can be up-
dated to minimize the appropriate loss function di-
rectly.

1.2 Deep Belief Networks

We use Deep Belief Networks (DBNs) (Hinton et
al., 2006) for all our learning experiments. A DBN

1There is another distinction at work here: probabilistic ver-
sus non-probabilistic models that do not divide the classification
problem into separate inference and decision stages.

is composed of multiple layers of stochastic binary
neurons. The top two layers form an associative
memory, specifically a Restricted Boltzmann Ma-
chine, or RBM (all layers are at one point parts of
Restricted Boltzmann Machines). DBNs are energy
based models and thus every configuration of neuron
activations has an energy associated with it; the en-
ergy function is determined by the weights. If neu-
ron activations are updated with activation probabil-
ities based on a logistic sigmoid applied to the neu-
ron’s net input, they will eventually reach an equilib-
rium distribution. The lower the energy of a config-
uration, the higher the probability of reaching it will
be. The distinction between input and output layers
is somewhat less sharp than in other neural network
models; if activations are fixed on any of the visible
units regardless of whether they are called input or
output units the remaining visible units can get acti-
vations through repeated stochastic updates.

Figure 2 is a diagram of the DBN architecture that
we used. The associative memory is formed by the
2000 top units, the 10 label units, and the topmost
layer of 500 units. Thus, it is a 510 dimensional
associative memory.

Figure 2: Architecture of the DBN.

1.2.1 Training Deep Belief Networks
Training of a Deep Belief Network is divided into

two phases. The first phase is a greedy, unsuper-
vised, layer-by-layer pre-training phase which is de-

signed to initialize the weights of the network to val-
ues in the neighborhood of a good local optimum of
the error surface. This pre-training phase allows the
DBN to make use of unlabeled data, which is of-
ten very desirable since most data is unlabeled. The
second phase of training is a supervised, global fine-
tuning phase that is very similar to traditional neu-
ral network training and can use normal gradient or
conjugate gradient descent.

The pre-training phase considers a single layer in
isolation and trains layers closest to the input layer
first. Pre-training treats the current layer as the hid-
den units of a Restricted Boltzmann Machine and
the previous layer as the visible units of the same
RBM. While the first hidden layer is being trained,
the actual training data can be used to obtain visi-
ble unit activations. In subsequent layers, the hid-
den activations of the previous layer are used as in-
put data. Generally the fine-tuning phase takes the
longest; the pre-training is quite fast.

Figure 3: Training of an RBM.

At this point it is useful to go into a bit more de-
tail on how pre-training a single layer works. Pre-
training uses a local Hebbian update rule to maxi-
mize the log-probability of the data. The weights
between the visible layer and the hidden layer are
learned using contrastive divergence. To compute
the updates to the weights, we first update the hid-
den activations (hj) stochastically based on the vis-
ible units (vi) and the weights. Then we stochas-
tically update the visible unit activations based on
the hidden unit activations and the weights to ob-
tain a reconstruction of the training data. These re-
constructed visible unit activations will be denoted
v′
i. Finally we compute new hidden unit activations

(h′
j) based on the reconstruction of the training data.

A diagram of this process is depicted in Figure 3.
Given these quantities, the change in the weight be-
tween visible unit i and hidden unit j is:

∆wij = ε[〈vihj〉 − 〈v′
ih

′
j〉],

where 〈.〉 denotes expectation with respect to the
training data and ε is the learning rate. Technically,
there is also a momentum term that repeats a fraction
of the weight updates from the previous epoch.

1.2.2 Sampling from the Class-conditional
Distributions of DBNs

Generating samples from the class-conditional
distributions (P (x|y)) of a trained Deep Belief Net-
work is conceptually simple even if it is relatively
computationally expensive. The following steps
generate a sample from P (x|y) for a trained DBN:

1. Initialize the top level of the associative mem-
ory in an unbiased way. This is accomplished
by propagating a random input vector up to the
top of the network.

2. Alternate between stochastically updating the
penultimate and ultimate layers until they con-
verge to an equilibrium. In other words, let
the associative memory settle on a low energy
state. The second to last layer includes both the
class-label units as well as the second to last
hidden layer. Whenever the label units would
be updated, instead (re-)set them to the values
that represent the class being conditioned on.

3. Propagate activations back down to the input
layer.

Of course this procedure will only make human-
interpretable input vectors if the input representa-
tion is already human-interpretable. In order to sam-
ple from the marginal distribution P (x) one simply
does the above procedure without clamping values
onto labels, and with the top level of the associative
memory initialized randomly (instead of with an up-
ward pass from a random input).

2 Experiments

We conducted a number of tests of the Deep Belief
Network using the same hidden layer architecture

as Hinton et al. (2006), namely three hidden lay-
ers of 500, 500, and 2000 units. Figure 2 shows
a diagram of the network architecture. We trained
the network to classify images of handwritten digits,
audio recordings of people speaking the words for
different digits, and audio recordings paired with ap-
propriate images. We did not perform extensive pa-
rameter optimization in any of our experiments and
used a learning rate of 0.1 and a momentum factor
of 0.9 during pre-training.

2.1 Data sets

Our data sets were, of necessity and by design, dif-
ferent from those of Plunkett et al. (1992). For
our image data, we used the MNIST database of
handwritten digits.2 The MNIST database consists
of 60,000 images of handwritten digits that have
only had minimal preprocessing performed on them,
along with a test set of 10,000 images. The images
are all 28 by 28 pixels and roughly centered, but oth-
erwise not preprocessed.

For audio data, we used the JEIDA/JCSD corpus
of isolated Japanese digits.3 Given that there are
multiple ways to say some digits between zero and
nine in Japanese, we used a subset of ten of these
words. The subset we used had approximately 6000
spoken digits, with four tokens from each speaker.
The speakers varied in age and sex, but the audio it-
self was of approximately uniform quality, all at a
sample rate of 16 kHz.

2.2 Image-only task

For this task, we duplicated some of the experiments
of Hinton et al. (2006), where they tested a Deep Be-
lief Network on the MNIST dataset of images. We
used 50 epochs of pre-training for each layer. We
performed 50 fine-tuning epochs, sometimes stop-
ping earlier by hand because of time constraints.
The images were represented to the network as a
raster-style flattening of the two-dimensional array
of pixels.

2Available at http://yann.lecun.com/exdb/
mnist/.

3Available from the LDC: http://www.ldc.upenn.
edu/.

Figure 4: Spectrogram of “ichi”.

Figure 5: Processed vector of “ichi”.

Figure 6: Waveform of “ichi”.

Figure 7: Spectrogram of “zero”.

Figure 8: Processed vector of “zero”.

Figure 9: Waveform of “zero”.

2.3 Audio-only task

For this task, we adapted the Deep Belief Network
to categorize audio input. Our audio representa-
tion was simplistic, but sufficient for the network to
achieve good categorization accuracy. We automati-
cally trimmed silence from the beginning and end of
each audio recording and fixed the length at 0.5 sec-
onds (8000 samples). For recordings that were too
short, we trimmed silence from the beginning and
padded the end with trailing silence as necessary.

We took Fast Fourier Transforms (FFTs) of each
10ms chunk of the audio, then concatenated these
frames into one long vector. In order to reduce the
input dimensionality and smooth the spectral infor-
mation, we averaged every four adjacent frequency
components in each frame. This step, unfortunately,
made our audio representation not suitable for play-
back, although in principle it could be avoided. We
also normalized the entire vector to have a maximum
value of 1.0.

We divided the 6000 tokens in our audio dataset
into a training set of 4500 patterns and a test set of
1500 patterns by holding out the fourth utterance of
each digit for each of the 150 speakers. This implies
that the network was only tested on data from speak-
ers that had been in the training set. Presumably,
the network would fare worse on unheard speakers,
though we did not have time to test this.

Figures 4 through 9 show human-readable spec-
trograms, the processed vectors passed to the net-
work, and the original, unprocessed waveform, for
“ichi” and “zero”. One can see how there is still
enough information in this simplistic audio repre-
sentation to distinguish the words.

2.4 Combined task

Finally, we performed the same classification task
on a data set of combined audio and image data.
We randomly paired images and audio denoting the
same digit to create the input vectors for the com-
bined task. This random process produced a small
number of duplicates which we did not bother to re-
move. The image and audio representations were
the same as for the individual tasks above; we sim-
ply concatenated them to produce a longer input vec-
tor. We expected the accuracy of the network on this
task to be higher than in either of the other ones be-

Figure 10: Threes and zeroes generated from the image-only network, and eights and threes generated from
the combined network.

cause the network is given strictly more information,
which it can use to determine the correct classifica-
tion. Also, the digits that are most ambiguous when
handwritten are not always the digits that are most
ambiguous when spoken in Japanese.

Note that there was no requirement that we pair
images with audio which denoted the same digit
as those images. We could easily have mispaired
things, and taught the network that the word “zero”
goes with the image 4, for example. Just like our
category labels, the pairings of data are totally arbi-
trary. It is more exciting, though, to use real-world
pairings.

3 Results

The system performed very well on all three of our
tasks. In the image-only experiment, we, like Hin-
ton et al. (2006), quickly reached 100% accuracy on
the training data. We achieved 98.88% classification
accuracy on the testing data.

The audio-only task did not fare as well, but this
was to be expected, as the dataset was a tenth the
size of the one used for the image-only task. The
network only reached 92.92% accuracy on the test
data (from 95.14% accuracy on the training data) af-
ter 200 epochs of fine-tuning. This is evidence for
slight over-fitting to the training data. The best way
to combat this would be to use more data, and do
fewer epochs of fine-tuning.

The combined task did even better than the im-
age only task, which was exactly as hoped. After
only 25 epochs of fine-tuning, the combined task

achieved an accuracy of 100% on the training data,
and 99.69% on the test data.

The network used in Plunkett et al. (1992) never
exceeded 85% classification accuracy. Their task
was, as stated, somewhat more abstracted, and sim-
pler. Despite using fixed tags rather than real-world,
varying audio, their peculiar feed-forward neural net
was unsuited to the task.

3.1 Generated images

Figure 10 shows some sample generated images.
The top shows the image-only network’s idea of
what a three looks like. The next shows our attempt
at getting that same network to show us a zero; ei-
ther there is an error in our generating code, or the
network really prefers to think about threes. All this
would mean is that there is a valley of significantly
lower energy for things that look three-like, which is
plausible, but somewhat of a problem. We currently
believe that we are not correctly conditioning on the
class label.

Similarly, the combined network produced im-
ages which were recognizably digits, but not the
ones we asked it for. For whatever reasons, it
preferred to dream of sevens, and would produce
them even when we asked for threes or eights. The
combined network also generated audio output, of
course, but this would not sound recognizable, given
our audio representation. The spectrogram of the
generated audio looked plausible — it looked like
a spectrogram of natural language audio.

4 Conclusions

DBNs are very successful classifiers, and can also
act as generative models, which is a very desirable
property for our tasks. Though DBNs, like most ma-
chine learning algorithms, will always benefit from
more data, in the tests we ran, they achieved striking
accuracy with a relatively small dataset.

We have trained a DBN to acquire a small vocabu-
lary. Our three tasks together give us two procedures
for converting spoken audio into generated images,
or vice versa. If we want to generate images of hand-
written digits corresponding to a spoken digit, we
could do either of the following: first, we could use
our image-only and audio-only DBNs together, to
classify an input, and then, using the other, generate
image or audio based on that classification. Alter-
natively, we could use the combined network, and
fix values on either the audio or image portion of the
input, and reconstruct the unknown values to appro-
priately complete the input vector.

This use of a DBN also addresses, in some sense,
the symbol grounding problem. It is exactly this
sort of correlation of multi-modal input, particularly
through a sub-symbolic representation, that seems to
be the only solution to this problem.

References
S. Harnad. 1990. The symbol grounding problem. Phys-

ica D, 42:335–346.

Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh.
2006. A fast learning algorith for deep belief nets.
Neural Computation.

Andrew Ng and Michael Jordan. 2002. On discrimina-
tive vs. generative classifiers: A comparison of logistic
regression and naive bayes.

Kim Plunkett, Chris Sinha, Martin F. Møller, and Ole
Strandsby. 1992. Symbol grounding or the emergence
of symbols? vocabulary growth in children and a con-
nectionist net. Connection Science, 4(3 & 4):293–312.

