Rediscovering Continuous Categories

Javier Prado
jpradol@swarthmore.edu

May 15, 2006

Abstract

This paper attempts to recreate the experiment of discovering con-
tinuous categories done originally by [2]. This endeavor is worthwhile
because of the power categories can and do play in the functioning of a
self-governing agent. This paper attempts to recreate the learning algo-
rithm first developed by [2]. The learning algorithm is able to take raw
sensor data and generalize over it through clustering. I address the issues
that concern each stage of the learning algorithm and show specific ex-
amples of a simulated Pioneer 1 mobile robot interacting within a simple
simulated world.

1 Introduction

Within the realm of developmental robotics, there are several areas of research
which involve trying to develop a robot to be as autonomous as possible. An
ultimate goal for the developmental robotic community is the construction of
a robot that incorporates an intrinsic developmental system which contain the
following three critical mechanisms: abstraction, anticipation, and self motiva-
tion [1]. This experiment concerns only the first two mechanisms, abstraction
and anticipation. By clustering over raw sensor data, the robot is able to ab-
stract common events in its environment. Also, by abstracting from its basic
sensor inputs, the robot is able to anticipate events in the future. This process
is hierarchical in nature because the robot starts out with only its sensor inputs,
and from here generalizes on those inputs to get some kind of abstraction. After
this abstraction has been made, the robot can continue to generalize over these
abstractions it has previously made in order to generate even more abstractions
about its environment.

The learning algorithm which I implement is supposed to return a prototype
for each category that it creates. The prototype is simply an average of the
members of its cluster group. The learning algorithm is also supposed to produce
a hierarchy of the each of the objects the robot is capable of interacting with.
This is the abstraction the learning algorithm can make with using only vectors
of time series.

2 Learning Algorithm

The primary accomplishment of this paper is the recreation of the learning algo-
rithm developed by [2]. The learning algorithm that they developed consisted
of four fairly distinct parts: event detection, time series comparison, sensor
comparison, and sensor weighting. The motivation for the original learning al-
gorithm was a desire for an autonomous agent to be able to abstract ideas for
itself. The basic way in which the abstractions are made is by clustering on
time series data.

2.1 Event Detection

Event detection is the process by which an agent in the world can recognize
when an event is taking place. This is the fundamental part of the algorithm
upon which everything else is based. [2] developed 4 templates which are used in
conjunction with sensor data to gather a time series vector. (See Figure 1) Their
argument for using such templates is since it is observable that sensorimotor
agents like a mobile robots or infant humans have this intuitive ability to sense
when unexpected sensor data happens upon them, then it is OK to include such
an innate mechanism in forming a learning algorithm.

For this part of the learning algorithm, I decided to build up fifty-placed
vectors for each of the robots sensors. This fifty-placed vector roughly equals
five seconds of elapsed real time. After collecting these vectors, I do a correlation
test with each vector and each template centered around the middle of the
vectors, this way the time series event is centered on the event. If the correlation
between the sensor vector and the template exceeds a certain threshold, then
my algorithm stores the entire fifty-placed vector into a buffer of other fifty-
placed vectors. Each of these fifty-placed vectors becomes an instance for cluster
analysis.

2.2 Time Series Comparison

In order to compare the time series vectors, I need a clustering algorithm to do
so. [2] provided a reasonably simple algorithm. The algorithm is agglomerative
in nature. Simply calculate the Euclidean distance between each fifty-placed
vector and chose the pair with the smallest distance. From here, average the
two vectors together and replace them in the pool of time series vectors. Re-
peat until there is only one vector left. This should give a clustering from which
to determine which sensors belong together. At a certain depth in the clus-
tered tree, all the instances of a sensor’s time series vectors should be clustered
together. For example, all of the sonar sensor time series vectors should be
clustered together at a certain depth. The same goes for all of the other sensors
inputing data for the learning algorithm.

I

L““T

[0011] 00000000001111111111]
— w w
04s 2.0s
[1,09,0.8,0.7,0.6,05,0.4,0.3,0.2,0.1,0,0,00,0,00,0,00] [0,00,00,000,000.1,020.304,05,06,0.7,08097]
\ |
\ 205] 206

Figure 1: Figure of the templates used in detecting events in the sensor data.
Because my simulation takes sensor readings roughly 10 times a second, I chose
the above vectors to roughly match up with the simulation. The vectors are the
exact numbers used in the correlation calculation.

2.3 Sensor Comparison

In the sensor comparison phase, the clustered sensors are used to make what
is known as an alphabet. An alphabet is basically the collection of prototypes
of a particular sensor at a given level of a clustering. Once again, a prototype
is simply the average of all of the time series that make up a certain region of
the clustering. Alphabets are useful because they allow for clustering without
having to worry about what kind of sensor is being clustered over. At this
stage in the learning algorithm, the robot is supposed to interact again with its
environment. Using the event detection mechanism, each subsequent time series
vector is compared with its respective alphabet characters. This comparison is
simply the inverse of the dissimilarity or Euclidean distance used earlier in
the original clustering. The comparison generates what are known as event
signatures. These event signatures allow for a more general clustering of the
environment.

2.4 Sensor Weighting

For this final section of the learning algorithm, I chose not to follow [2] algorithm
exactly. Whereas they propose to cluster weighted event signatures, I chose to
simply cluster the event signatures together. This seems reasonable since any
signature that has no correlation with an object in the environment will not

timeseries [Time Series Il{\i‘ pattern

segment / Clustering alphabets
. 14
[e |Event Sgnature
Detection : f ion
m event
' L signatures
[fldn el
Category Hierarchy \
and Prototypes Signature
Clustering

Figure 2: Figure of the general organization of the learning algorithm. Of
particular note are the two instances of clustering, once done right after the
time series segments have been created and once more with the event signatures.
Note that both times the clustering uses the time series segments. This lends
the algorithm to be used online, which unfortunately I could not do.

have a high similarity anyway. This means that when the final clustering is
done on the event signatures, those signatures that have low similarity with a
particular object in the world will not be clustered together.

An overview of the whole algorithm follows: Figure 2.

3 Experiment

The simulated world in which the simulated Pioneer robot interacts is very
simple. I chose this world to be simple because of my focus on the learning
algorithm and its implementation. For the simulated robot itself, it has seven
sensor inputs from which to inform its learning algorithm: four front sonar
sensors, two gripper break beam sensors, and one internal velocity sensor. The
simulated robot also utilizes a blobbified camera for the use of detecting objects
within the environment. The environment itself is made up of a puck, a wall
and a simulated table leg. Both the puck and the leg are small enough to fit into
the robot’s grippers. Both the leg and the wall will not be moved when bumped
into, but the puck will. Each of the three objects is colored both internally
and externally red. This is to allow the blobbified camera to seek out red blobs
and approach them. The simulated robot is controlled by a simple finite state
machine like brain. The robot searches for an object to interact with, and when

Figure 3: Figure of the simulated world. This world simulates a Pioneer robot
with three objects with which it can interact. Two of these objects fit in its
gripper. The object on the left is a simulated table leg, it fits into the robot’s
gripper but will not be moved when run into. The object on the right is a
simulated puck. It also fits into the robot’s grippers but unlike the simulated
leg, it does move when run into. Finally, the wall is at the bottom of the image.
I inserted a red colored box to draw the robot towards the wall. Other than the
coloring, the red colored box is completely flush with the surrounding wall.

it detects such an object with its blobbified camera, it seeks it out using a direct
path. The robot is programmed to continue moving for another two seconds
after the robot encounters an object so that the learning algorithm’s event
detection can take place. For my experiment, I had the robot interact with each
object three times. After all of the time series vectors were collected, I clustered
over them to generate the pattern alphabets for each sensor. With the alphabet
patterns in hand, I had the robot interact with each object again for another
two times, each time using the event detection to generate a time series vector.
Each vector was compared using the inverse of the dissimilarity function used
to produce the sensor signatures. Finally, with all the event signatures, I did
one final clustering on the event signatures to produce the category hierarchies.
See Figure 3 for an illustration of the world.

11[1] walll11)}) Dz 4.8
a1

0] (wall[1] wall[113) D:
11[0]
P2: M: (walll1] wall[1]) D: 2,
Pl: alll1]
P2 M wallll]

Figure 4: Figure of the results from one final clustering over the event signatures.
The objects which the algorithm was able to differentiate were between the leg
and the wall. The number following the label of the event is simply a reminder of
which numbered interaction that was between the robot and the labeled object.

4 Results

The results that I received were all very promising. My implementation of the
learning algorithm was successful enough to provide some categorical general-
izations. From the results of Figure 4, it can be seen that the algorithm is in
fact able to differentiate between the leg and the wall. I find this to be curious
because both have a similar velocity behavior with respect to running into an
immovable object. The fact that the puck was not even on the list of encoun-
tered objects is also interesting. Usually at least all of each of the different kinds
of sensors are set off by the puck when it is being handled by the robot.

5 Conclusion

Overall I can judge this experiment to be a success. The learning algorithm has
been successfully implemented. The only issue I have with this is the enormous
computational cost of clustering. I believe it is primarily my responsibility to
optimize the clustering algorithm, yet I do not see how it may be possible to
run the entire learning algorithm online. The number of time series vectors
generated during the initial event detection phase was staggering, something
on the order of fifty-thousand. This may seem like a small number but the
way in which I implemented the algorithm, it took almost an hour simply to

cluster the first time. Ultimately I believe this is a step in the right direction.
Having a mobile robot explore its environment and generate its own abstractions
is certainly what developmental robotics is striving towards. Yet because of
the large computational cost I think we are still a ways off from having an
implementation that can run online, removed from the engineer.

References

[1] Douglas Blank, Deepak Kumar, Lisa Meeden, and James B. Marshall. Bring-
ing up Robot: Fundamental mechanisms for creating a self motivated, self-
organizing architecture. Cybernetics and Systems, 36(2), 2005.

[2] Michael T. Rosenstein and Paul R. Cohen. The Playground Experiment:
Task-Independent Development of a Curious Robot. 1999.

