
Learning and Evolution: A Comparison

Hollis Easter Frederick Heckel

May 2003

1 Abstract

We present a system for integrating genetic search and back-propagation learning in a neural network-
based robot controller. We show experimentally that this combined approach leads to good results
more quickly than with other methods, and that the eventual results are also better.

2 Introduction

Genetic algorithms and neural networks are commonly used mechanisms in artificial intelligence and
robotics for a multitude of tasks. Other researchers have shown that GAs and connectionist networks
can be combined successfully to generate more effective solutions to various tasks. Our project seeks
to confirm those results in the domain of robot control. The specific task we are focusing on is that of
wall following, a fairly simple problem for which decent controllers can be hand-crafted. The ease of
creating a wall-following control system is an important point of the domain, as one of the relatively
unique aspects of our experiment is the need for a teacher. Other work has used implicit teaching
methods, such as input prediction, but we decided to explore the effects of using an explicit teacher
for the learning portion of the task.

We believe that upon comparing the performance of robot controllers created in three different
manners for this task, a combined approach of learning and genetic search will perform better than
using either genetic search or learning only. We also believe that our results will reveal that the
combination finds adequate solutions more quickly than either genetic search or learning alone.

3 Related Work

A substantial amount of work has been done regarding the interaction of learning and evolution with
neural networks. These studies have generally found that a combination can make a great deal of
difference for many tasks, and show that the starting state of the network can seriously affect the
ability of the network to learn and perform well on a task.

Nolfi and Floreano’s review[3] of several different research projects on the topic of interaction
between learning and evolution served as the primary inspiration for this paper. None of the projects
they discuss are exactly of the same type as our project; the closest project referred to is that of
Hinton and Nowlan. Hinton and Nowlan’s research used a combination of a genetic algorithm and
learning to develop the network. From a broad perspective, it is very similar to this project, except
for two major points: network connections as encoded in the gene are one of 0, 1 or a state modifiable
by learning, and learning is treated as a random process. All weights in the network architecture we
describe are modifiable by the learning process, so the networks do not tend to develop into patterns
with mostly/entirely fixed states. In addition, we are using back-propagation learning as opposed to
the random modifications made during learning by Hinton and Nowlan’s network. One advantage

1



to this random method of learning is that perhaps their method could still be effective in a domain
without a teacher.

Nolfi and Parisi devote a large amount of time in another paper to explain what they see as flaws
in Hinton and Nowlan’s approach[4]. Their largest complaint is that the learning and evolutionary
goals are the same, and explain what they consider a more effective way to combine learning and
evolution. While we understand their complaints, we believe that the Hinton and Nowlan approach,
when combined with a better learning method, is still very useful and effective.

The next paper explored by Nolfi and Floreano’s review is Nolfi, Elman, and Parisi’s research
into networks which learn a task different from the one which they are evolved for[2]. This network
controlled a simulated robot which earned fitness from consuming food in a grid world, but trained
on different criteria. Instead of training to ”find food”, the network attempted to learn to predict its
next sensor inputs. They found that this combination of learning and evolution also tended to guide
evolution in a positive manner and resulted in individuals with a higher overall fitness. Our task is
different from this task in that we are using the same goal for both learning and evolution(which is
made trickier for needing to hand-craft an explicit teacher), but these networks use back-propagation
learning like ours.

More explicitly, Kolen and Pollack showed that the initial conditions for back-propagation do
make a significant difference in the ability of the network to learn and find a good solution[1]. Kolen
and Pollack demonstrated, through trials with a variety of different starting conditions, that the x-or
learning problem converges at greatly different rates based on the initial weights of the network. Based
on the results of their experiment, they recommend that as good starting conditions and architectures
are found for particular problems and networks, these conditions should be published so that future
researchers need not waste time exploring a virtually infinite domain for appropriate initial weights.

4 The Experiment

4.1 Problem Domain

Wall-following is a useful behavior for autonomous robots. From basic room navigation to search and
rescue, robots in many walks of life depend on being able to follow walls to get where they are going.
Wall-following also has the virtue of being a relatively easy problem for which to write a teacher by
hand. At the simplest level, a teacher can say “if there’s something on my left, move me forward;
otherwise, turn left”. Teachers increase in complexity from there.

If it’s so easy to write a wall-following agent controller by hand, why bother testing learning and
evolution on it? Because the handcrafted agents, while function, do not generalize well, and often
perform quite poorly. This is the sort of problem where New AI makes a strong case for itself. It seems
plausible that a neural network, given hidden nodes and the opportunity for learning, will discover
features of an environment that enable it to more effectively follow walls. Another advantage of the
wall-following domain is that it proves fairly simple to tell whether a robot is actually succeeding at
the task.

5 Method

5.1 Setup

We implemented our architecture using the ConX neural network brain package and the genetic
algorithm package from Pyro1. Simulations were done using Player/Stage2. The simulated robot

1Python Robotics, a software package codirected by faculty at Swarthmore and Bryn Mawr Colleges.
2A simulator intended for multiple-entity use. It intentionally uses a somewhat lax sensor model to provide a

computationally practicable simulation platform.

2



Figure 1: The controller’s architecture. Four defined sensor groups present organized data.

was a version of the Pioneer2, using rangefinders and a truth device (to reset the robot’s position
in the world). ConX uses back propagation for learning, and the genetic algorithm uses real-valued
genes to describe the weights between nodes in the network. The simulation world used was one of
the standard worlds contained in the Player/Stage package, part of a hospital floor plan with a large
number of walls and other obstacles.

Our experiment comes in three pieces: GA, NN, and GA+. GA is, as the name implies, a straight
genetic algorithm. NN is a neural network simulation, with back-propagation learning. GA+ is a
genetic algorithm that trains its genetically-created weights before beginning a separate run in the
world to accrue fitness, with the intent of focusing fitness on the ability to learn effectively. All three
experimental procedures use the same robot brain, with identical architecture.

The neural network (Figure 1) received information from only four sensor groups, rather than
the full 16 range finding sensors. As the task it was intended to execute was that of lefthand wall
following, we believed it need rely on only front, rear and left hand sensors. The groups used were
front, front-left, back-left and rear. These four input nodes had connections to four hidden nodes
which in turn connected to the two output nodes. Output from these nodes were used to control the
translation and rotation of the simulated robot. For the two portions of the experiment which utilized
learning, a handwritten lefthand wall-following brain was used as a teacher.

3



5.1.1 Fitness

Fitness was determined by the robot’s speed and distance from a wall at each step. If the robot ran
into a wall, the fitness trial was terminated before a full 200 steps had passed and a penalty incurred.
Otherwise, fitness would accrue for a full 200 timesteps of 0.1 seconds. To clarify: running into walls
is strongly penalized, as it incurs a percentage penalty as well as removing the possibility of accruing
further fitness.

Robots earn fitness more quickly by moving at high speed, and by staying near walls. The wall
function is a step multiplier function: when side sensors receive high activations, the fitness is added
normally. When side sensors are low, but front or back sensors are high, fitness accrues at 50are in
high activation state, there is a question of what to do.

Initially, we gave robots that were near no walls no fitness—a 0.0 multiplier. However, this seems
a bit unreasonable, especially given that all robots start from predefined starting locations within the
world, away from walls. Therefore, later test versions offer a 0.1 multiplier for movement away from
walls, so as to allow robots to find walls without failing completely to earn fitness.

5.1.2 Test length

Two hundred generations of twenty individuals were run for the genetic algorithm only trials; GA+
trials ran for one hundred generations. Past experience shows that crossover does not tend to perform
well in evolving neural networks. We did some trial runs with crossover turned on, and some with it
turned off, and those that did not use it were, indeed, better. Elitism, though present in Pyro’s GA
implementation, was not enabled.

Training periods for the learning-only robots were approximately 600 steps of 0.1 seconds each.
GA+ training periods were cut down to 200 steps. The shorter training period and smaller number
of generations used for the GA+ trials were for the sake of time, and also to more convincingly show
the success(or failure) of GA+ in achieving our goal. Given that neural network training is very much
dependent on a significant amount of experiential learning, it makes sense that, should GA+ behave
well while handicapped by shorter learning, it will have greater applicability.

During fitness trials, learning was turned off for GA+ and backprop-only trials. Starting locations
for all fitness trials were chosen from one of six random locations preselected in the Player/Stage
hospital world. During backprop learning, if the robot ran into a wall, its position was reset to its
starting location for the learning period. It is important to distinguish between training runs for the
methods involving learning from testing runs for all three methods. NN and GA+ were given a chance
to train in the environment for a set period of time before beginning their fitness runs. If they collided
with walls during their training runs their poses were reset to those where they began.

Whenever a fitness trial begins, learning is turned off, and the robot is placed at a random starting
location in the world, whether or not it has previously trained. It then begins a run through the
world, accruing fitness as it goes. If a robot hits anything during a fitness run, the penalty is assessed
and the run ended.

5.2 GA

The GA method was fairly straightforward. Parameters were, for the most part, set to Pyro defaults.
Genes were allowed to vary in real number space between −1.0 and 1.0. Selection rate was set to 0.8,
mutation rate to 0.3, crossover rate to 0.5 or 0.0, depending on the test, and the tests were capped at
200 generations.

When created by the genetic algorithm, network weights were simply loaded into the robot, which
was then placed in the environment and allowed a test run.

4



5.3 NN

The NN method was, again, quite straightforward. The network was a three-layer network of 4 input
nodes, 4 hidden nodes, and 4 output nodes. Learning momentum was set to 0.1, and ε was set to 0.75,
by arbitrary fiat. The NN method was given 600 training steps before beginning its testing run, which
we hoped would allow it to counteract the lack of contextual learning or non-random initialization.

5.4 GA+

The GA+ method combines the previous two, in the hopes of biasing evolution toward the ability
learn quickly and well. GA+ uses backpropagation learning as part of a fitness algorithm to test the
evolved weights. It is important to note that this is normal or “real” evolution and learning, not
Lamarckian evolution; individuals pass on their genotype, not their phenotype, and so learning has
no effect on evolution other than through the fitness function.

The genetic search provides a set of base weights, which are loaded into a brain and allowed to
train for 200 time steps. If the robot runs into objects, the robot is simply replaced at its original
starting position. After training, the robot is placed at a random starting location and allowed to
start its run. If the robot collides with objects during the testing run, its run is considered ended.

GA+ is the most time- and computation-intensive of our tests, because it uses heavy-duty back-
propagation on every individual.

6 Results

Our hypothesis was that the quality of solution produced by straight genetic search would be the lowest
among the group, and that those produced by GA+ would be of far higher quality. We supposed that
learning would play an intermediate part, strongly outperforming a genetic algorithm, but falling to
GA+. In addition, we supposed that a neural network would come up with a “decent” solution3 quite
a bit faster than the GA would, and that the GA+ would yield the quickest “decent” solutions.

In point of fact, the question of a quick solution turns out to be less intuitive than we thought. A
quick solution for a GA-based approach is one that takes relatively few generations of relatively few
individuals—so a solution that requires a small population of smart controllers. But for a learning-
based approach, what defines speed? Is it the number of training steps undertaken? Each NN
learning-based test stands on its own, without the benefit of surrounding context from the others.
Number of steps seems the only reasonable option—we hope to test it in the future.

We did three sets of trials for the GA and GA+ modules, and four sets for the NN module. For
the GA-based modules, we present a representative sampling of fitness through time; for NN, this is
unintuitive, and so we present simply the “winner”, or best fitness score, from each generation.

Blanks in the tables mean that no analysis was available for the specified field. The second trial
was cut short by machine crashes, and so the data are small: the best GA score was 86.6 in generation
19; the best NN was 7.4; and the best GA+ was 72.2 in generation 10. Both GA tests used crossover.
The first GA+ test’s output file seems to have gotten corrupted—the first 8 generations are filled with
@ symbols.

7 Discussion and Conclusion

Perhaps the most surprising aspect of our experiment was the execrable performance of the neural
network learning method. Even when given 600 time steps for learning, the best NN performance was

3One that is ‘good enough’, for however that ends up being arbitrarily defined. ‘Good enough’ is easy to know when
you see it, but harder to legislate using cold statistics.

5



Generation Trial 1 Best/Avg Trial 3 Best/Avg
1 46.4/14.1 33.7/15.5
2 17.9/5.02 48.3/13.6
3 29.7/11.2 44.3/18.9
4 46.7/10.3 59.6/25.2
5 50.6/9.75 64.4/21.9
6 44.1/11.5 40.5/12.2
7 53.8/12.3 50.2/14.2
8 59.6/13.7 41.9/15.9
9 24.9/6.65 50.7/13.1

10 30.0/9.82 47.3/13.0
11 54.5/26.7
12 60.4/15.9
13 49.0/13.5
14 61.8/22.9
15 57.4/28.8
16 60.3/19.9
17 55.2/14.9
18 57.3/15.5
19 58.9/26.5
20 62.6/13.4 60.6/21.8
25 87.4/33.3
30 62.5/24.2 73.9/29.6
35 80.4/35.4

160 70.6/14.8

Figure 2: GA results

Trial Best
1 8.37
2 7.4
3 6.9
4 24.9

Figure 3: NN results

6



Generation Trial 1 Best/Avg Trial 3 Best/Avg
1 missing 37.4/15.1
2 missing 26.0/9.5
3 missing 42.4/9.7
4 missing 50.7/14.0
5 missing 54.0/16.8
6 missing 71.2/17.4
7 missing 77.8/16.7
8 missing 64.9/17.4
9 58.8/13.9 76.8/23.2

10 50.4/21.4 59.4/23.7
11 72.7/29.7
12 69.8/22.5
13 60.6/23.5
14 57.2/19.2
15 71.8/25.6
16 54.5/18.6
17 57.0/19.0
20 79.5/30.1
30 54.1/13.6
40 75.1/27.3
50 67.3/20.0
60 75.2/23.4
70 78.5/36.4
80 66.8/23.8
90 75.3/30.4

100 67.8

Figure 4: GA+ results

7



24.9, far below the levels reached by the others. The definition of the teacher seems unlikely to be the
problem, given that the teacher can be used as a standalone brain that behaves well.

It seems likely, therefore, that genetic search has a significant advantage through the fact that
most runs start with a non-random initialization. This presentation of context seems to have a strong
effect on the fitness of the individuals in question. With or without learning, genetic search seems to
beat straight learning hands down, usually by a multiplier of 2–5.

GA versus GA+ is a slightly muddier picture. Among other questions is that of which counts for
more: best score, or average score. Both pieces of data provide useful information, which is why we
have included them here. Best scores, obviously, indicate the best solutions that a particular system
can find. To some degree, this translates into being the best out-of-the-box behavior you can hope
for–the best that a given system can hope for, given correct placement and good genes.

Average value is, perhaps, more interesting. Here, GA+ has clear advantages over straight GA:
while GA frequently has high scores, occasionally better than GA+’s, its averages start low and stay
there. In general, GA+’s high scores are higher than those of GA, and the average is also higher.

Another point of interest is the ratio of high to average scores. For straight GA, this ratio tends
to be somewhere around 0.27, meaning that the high score is usually about 4 times better than the
average. For GA+, the ratio is closer to 0.36, with the high score around 3 times better than average.
The range between excellent and average is thus smaller for GA+ than for GA.

This leads to one of our earliest questions: which solution is best for finding a “good enough”
solution? We see reason for cautious support of GA+ in this area. Both significant GA+ tests began
finding good solutions very quickly, and their average solutions quickly increase to the point where
they nearly always beat the best NN solutions. GA+ is therefore desirable for both speed and quality
of solution.

GA+, and anything derived from it, cannot ever be truly autonomous, hands-free robotics. The
need for a teacher, be it handcrafted or otherwise, makes this approach unsuitable for those domains in
which teachers cannot easily be made. This approach becomes a bit more feasible for improving exist-
ing systems–the pre-existing system could be made into the teacher for a GA+ system. Nevertheless,
the teacher is critical to GA+’s function.

Genetic search is prone to self-exploitation. Fitness functions frequently leave loopholes for a
genetic algorithm to find. GA+ will work will in other domains, we think, so long as fitness functions
are carefully made.

7.1 Future Directions

Among the things we would like to try with GA+, given more time, are

1. Tests on different network architectures. We theorize that GA+’s advantages would manifest
themselves even more prominently on a network with more nodes and connections.

2. More tests, with larger generations. These should converge somewhat faster, at least in terms
of number of generations.

3. Longer training times for the two learning brains. In particular, longer training for the straight
NN brain might allow it to perform better, as might placing it randomly during training when
it hits walls, rather than replacing it in its starting location.

4. Mid-training tests for the NN brain, to see how many training steps it takes to get a “decent”
solution.

5. Variable-length fitness runs. It is possible that the winning strategies are optimized for short
runs, though random placement takes care of a lot of this. Varying the number of steps in a
fitness run by ±n might inject more randomness, which would be good.

8



6. Lamarckian evolution versus “real” evolution. This sort of system provides an ideal testing
ground for discovering whether it would be better to pass on phenotype rather than genotype
for the brain.

References

[1] John F. Kolen and Jordan B. Pollack. Back propagation is sensitive to initial conditions. In
Richard P. Lippmann, John E. Moody, and David S. Touretzky, editors, Advances in Neural
Information Processing Systems, volume 3, pages 860–867. Morgan Kaufmann Publishers, Inc.,
1991.

[2] Stefano Nolfi, Jeffrey L. Elman, and Domenico Parisi. Learning and evolution in neural networks.
Technical Report 9019, 1990.

[3] Stefano Nolfi and Dario Floreano. Learning and evolution, 1999.

[4] Domenico Parisi and Stefano Nolfi. The influence of learning on evolution. In Richard K. Belew and
Melanie Mitchell, editors, Adaptive Individuals in Evolving Populations: Models and Algorithms,
pages 419–428. Addison Wesley, Reading, MA, 1996.

9


