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Abstract
A simple way to create an autonomous driv-
ing agent is to collect data of a human driv-
ing and then train a model using supervised
learning. This approach has been shown to
be suboptimal due to a mismatch between
the states reachable by a human driver and
trained agents (Zhang & Cho, 2016). Cur-
rent approaches to solving this problem are
impractical for real world robots and vehi-
cles. We present a simple algorithm that in-
corporates active learning to train an end-to-
end autonomous driving agent that is eas-
ily extensible from simulation to the phys-
ical world. While a trained agent is driv-
ing, a human driver overrides its actions if
the agent veers off course or displays other
incorrect behavior, and the feedback from
the human driver is added to the training
data. We test our approach on the popular
racing game Mario Kart 64 and empirically
show that it effectively counters the data
mismatch problem. On both an easy course
and a difficult course, the agent trained us-
ing our approach shows far superior per-
formance over a naive supervised learning
agent.

1. Introduction

End-to-end autonomous driving refers to the task of
mapping raw sensory input, such as an image from

CPSC 66 Machine Learning Proceedings, Swarthmore College,
Fall 2017.

a front-facing camera, to a vehicle output necessary
for driving, such as the steering angle. Convolutional
Neural Networks (CNNs) have been shown to excel
at this task because of their ability to automatically
extract features from the high-dimensional inputs of
raw pixel data (Bojarski et al., 2016). The CNN archi-
tecture created by Bojarski et al. is particularly well
suited to this task (2016). It is able to learn a com-
plex mapping from raw image to control, implicitly
extracting features such as the location of lane lines,
and is able to achieve approximately 98% autonomy
for lane-following on a highway.

Even with a powerful CNN architecture, a naive
supervised learning approach, where the learner is
trained on data collected by a human driver, is not
sufficient for end-to-end autonomous driving. This
is because the approach violates the critical assump-
tion of supervised learning that the training data and
testing data are drawn independently and identically
distributed from the same distribution of data (Ross
& Bagnell, 2010). Intuitively, this problem arises be-
cause a human driver is often too perfect and does not
make any significant errors while driving. An agent
trained on this data will inevitably make errors which
will lead the agent to error states that do not exist in
the training data, causing the errors to compound.

Current state-of-the-art approaches to solving this
problem of data mismatch are not easily extensible
from simulation to the physical world (Ross & Bag-
nell, 2010) (Ross et al., 2011) (Hussein et al., 2016).
We propose a solution using an active learning ap-
proach that would be very simple to implement in
real robots and vehicles. When the agent trained on
human driving data veers off course, we override the



Final Report

agent and correct its trajectory. The data collected dur-
ing the override is then added to the training data and
the agent is retrained. We test this approach on the
popular car racing game Mario Kart 64 as a proof of
concept. With just a few iterations of correcting and
retraining, the agent is able to learn error correcting
behavior and drive much more robustly than an agent
trained with naive supervised learning.

2. Background

2.1. DAGGER Algorithm

Data mismatch between the training data and testing
data is a key problem in the field of imitation learn-
ing, where the goal is to train an agent to mimic an
expert. With naive supervised learning, the error com-
pounds and can be shown to grow quadratically in
the time horizon of the task (Ross & Bagnell, 2010).
Dataset Aggregation (DAGGER) is a state-of-the-art
algorithm that solves this problem, providing a guar-
antee that the error only grows linearly in the time
horizon of the task (Ross et al., 2011). In the DAG-
GER algorithm, an agent is first trained on data col-
lected by an expert policy. Then, the trained agent is
run in the environment and the expert policy is queried
for the correct output at each state the agent encoun-
ters, but the expert never overrides the agent. The data
collected is then added to the training set and training
produces a new agent. The intuition here is that the
agent will explore areas of the state space that the ex-
pert would not typically find itself in, meaning that the
mismatch between the training data and testing data is
reduced.

While DAGGER essentially solves the data mismatch
problem, it is highly impractical for application to real
robots or autonomous cars. It queries the reference
policy for each and every collected state, which is un-
desirable as the reference policy is often expensive
(Zhang & Cho, 2016). DAGGER is also very difficult
to implement if a human driver must act as the ref-
erence policy, which is almost always the case in the
real world. As noted in (Ross et al., 2013), it is very
difficult for a human to determine the correct output
without actual feedback from the agent.

2.2. Active Learning with a Optimal Agent

(Hussein et al., 2016) presents an alternative to solv-
ing the data mismatch problem using active learning.
Similar to the DAGGER algorithm, an agent is ini-
tially trained on data collected by the expert agent.
Then, for each state the agent encounters, the confi-
dence for each prediction is calculated and the expert
is queried for the correct action in states with low con-
fidence predictions.

This approach has an advantage over the DAGGER
algorithm in that the agent makes far fewer queries to
the reference policy. However, it has even more prac-
ticality issues than DAGGER because the expert agent
must always be alert and respond as soon as the agent
signifies that it has low confidence on a prediction.
Therefore, a computerized optimal agent is required
for this approach.

3. Approximate Active Learning Approach

We propose to train an end-to-end autonomous driving
agent by incorporating the idea of active learning as in
(Hussein et al., 2016), but in a way that does not re-
quire a computerized optimal agent. Specifically, the
human driver determines when the agent is not confi-
dent about a prediction instead of relying on the agent
to self-diagnose.

The first step of our algorithm is to train an agent from
data collected by a human driver using supervised
learning. Then, the trained agent drives autonomously
and is corrected by the human driver whenever the
agent veers off course or displays any other kind of
error behavior. Data collected while the human driver
corrects the agent is added to the training data, and
the agent is retrained. The algorithm is summarized
in Algorithm 1

This inversion of the party classifying states with low-
confidence predictions makes implementation signif-
icantly easier. The human driver will not have to re-
spond immediately to react to an agent’s queries, since
they control when the queries will occur. While this
approach is not directly an implementation of active
learning, it is very closely related and can be thought
of as an approximation. A true active learning agent
calculates a confidence score for each of its predic-
tions, and queries the expert when the confidence dips



Final Report

Algorithm 1 Approximate Active Learning
Input: Base agent A0 trained on D = (x, y)
Initialize agent = A0.
for i = 1 to maxIter − 1 do

repeat
x = current image frame
if manualCorrect = true then

y = human driver output
add (x,y) to D

else
y = agent output

end if
perform output y

until end of run
retrain agent using D

end for

lower than some threshold. In the autonomous driv-
ing setting, the agent will likely have low confidence
when veering off the road or encountering error states,
as they will not be well represented in the training
data. Therefore, our inverted active learning approach
is in a sense an approximation to active learning, as
we approximate the states in which the agent has low
confidence.

4. Experimental Methods

4.1. Basic Setup:

We use the popular racing game Mario Kart 64 to test
our approximate active learning method. In order to
train an agent to drive in the Mario Kart N64 game,
we use the Github repository TensorKart by Kevin
Hughes (Hughes, 2013). The main emulator pro-
gram (mupen64plus) runs the Mario Kart N64 ROM,
which allows us to freely play the Mario Kart game
using a PS4 controller. For collecting data, we use
a TensorKart program that allows us to take screen-
shots of the mario kart game while also recording the
the buttons and joystick commands we make. An-
other program included allows us to run a specified
trained agent on any of the mario kart courses. The
main environment that this program uses is the gym-
mupen64plus environment.

We simplify the driving task by fixing the accelerate
button to always be pressed. This causes the steering

Figure 1. Convolution Neural Network and Fully Connected
Neural Network used to train our agents. The CNN contains a
total of 5 feature maps, eventually flattened and inputted into our
fully connected NN. The output is the predicted output steering
value

angle to be the only kart output as the forward velocity
is fixed. We made this decision because the acceler-
ate button has only two states (pressed or not pressed)
making it not directly indicative of the forward veloc-
ity of the kart. The joystick values are split into X and
Y values. Moving the stick left to right horizontally
corresponds to X values between -80 and 80 respec-
tively; this corresponds directly to the steering angle
and is therefore the value we define as the output. We
ignore the Y values as they are irrelevant to the steer-
ing angle. Besides the joystick and the accelerate but-
ton, all other buttons or controls are unused.

4.2. Training the Supervised Learning Agent

We first train a base agent using standard supervised
learning. The training data is collected by a human
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Figure 2. An example training set image and the correct target
output value. If faced with this image, the kart would want to take
a slight left, shown by the joystick arrow above.

playing optimally on a particular course; the human
player always stays on the track and does not hit any
walls or obstacles. The data collected consists of input
images and the corresponding steering angles that the
human takes, as shown in figure 2. Furthermore, we
collect the training data without any other computer
karts interfering. This data is used to train a Convo-
lutional Neural Network, which maps an input image
to an output steering angle 1. The architecture of the
CNN is taken from (Bojarski et al., 2016), and has five
convolutional layers and four fully connected layers.
We also added dropout layers and L2-regularization to
the fully connected layers to help prevent overfitting.

4.3. Implementation of Approximate Active
Learning

To create our approximate active learning agent, we
run the base supervised learning agent on the course
and manually override it when we determine that is
it in a bad situation. We consider a bad situation to
be when the agent is off course, bumping into walls
or any other situation that would slow or hinder the
agents performance. These bad situation images and
their corresponding corrections are then added to the
existing training set. After the run, we will have added
a new set of images and corresponding steering an-
gles that represent when the agent is unsure or in a
tough situation. Using this new dataset, we train an-
other agent, which we call Agent 1, using the process
mentioned above. Now, we run Agent 1 on the track
and collect more correction data and add it to the ex-
isting training data. We repeat these steps to create
Agent 2, Agent 3, etc., up until Agent 7.

Agent No. Course Time No. of times stuck
IL Agent 4:13 12
Agent 1 3:20 4
Agent 2 2:43 0
Agent 3 2:54 0
Agent 4 2:41 0
Agent 5 2:40 0
Agent 6 2:39 0
Agent 7 2:36 0

Human Player 2:29 N/A

Table 1. The completion times (min:sec) for each agent on Luigi
Raceway. The naive supervised agent and Agent 1 fail to complete
the course on their own. As a result, the completion time is only
possible with human intervention (number of times stuck).

4.4. Evaluation Metrics:

One way in which we evaluate an agent is by its time
to complete a Mario Kart 64 track. However, some
agents are unable to complete the track without human
intervention, so we also record the number of times a
human had to manually help the agent. We also eval-
uate the performance of each agent on an autonomy
metric, which describes how autonomous the agent
actually is with regard to how often the human must
intervene to sustain optimal driving. Optimal driving
in this case is avoiding wall collisions and staying on
course. In order to calculate this, we count the num-
ber of image frames where the human had to intervene
and how many frames the agent successfully drives by
itself. We then divide how the number of frames with
autonomous driving by the total number of frames.
The equation and calculation is listed in equation 1.
For each agent, we calculated three autonomy values,
one for each lap of the course. We then take the aver-
age of these three values to compute the average au-
tonomy value for each agent, shown in equation 2.

Autonomy =
Auto

Auto+Manual
(1)

AvgAutonomy =
(AL1 +AL2 +AL3)

3
(2)
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5. Results

5.1. Simple Track Performance:

Here, we take a look at our results on the simplest
track in Mario Kart N64: Luigi Raceway. This track
is simple because of its limited and non-sharp turns,
which allows us to provide a basis for our supervised
learning agent and active learning agents. Looking
at table 1, we see that the supervised learning agent
performed very poorly, requiring us to intervene 12
times. We only override the agent when it is com-
pletely stuck and unable to surpass the wall or obsta-
cle. Even so, this produced an inefficient completion
time of 4 minutes and 13 seconds. The next agent
performs substantially better, passing through 2 laps
before failing on the final third lap. Here, the agent
only gets stuck 4 times and has massive improvement
of 53 seconds compared to the naive supervised learn-
ing agent time. This agent still does not make per-
fect turns and constantly rams into walls, but is able
to slightly correct in these unideal situations. There
is even more improvement in Agent 2 with a 37 sec-
onds improvement from Agent 1’s time. This agent
exhibits new behavior with a few zigzag driving in-
tervals. These zigzags represent incorrect turns, but
are corrected immediately due to the correction data
we added after the naive supervised learning model.
In the times of the next agents, we see a slow and
steady decrease of the course time, displaying slight
improvement of each model. One exception is Agent
3; however, the agent actually does perform well ex-
cept only in one spot. Once it learned the appropri-
ate correction for that spot, it performed well as we
observe in the later agents. Eventually, however, the
agents do not surpass the optimal human player.

5.2. Agent Autonomy on Simple Track:

Here, we look at the average autonomy of each agent
starting at the supervised learning agent to the last
agent. From figure 3, we see that there is a steady
increase of autonomy with the last agent having the
best autonomy. The last 4 agents all have very simi-
lar autonomies, but the difference between these and
the naive supervised learning autonomy is almost over
12%. It is also notable that consecutive agents are not
necessarily better than each other, but the trend overall
is a steady improvement of autonomy.

Figure 3. The autonomy value and standard deviation of each
agent trained on Luigi Raceway

5.3. Complex Track Performance:

The complex track here is Bowsers Castle. This track
is much more complex than Luigi Raceway in that
there are multiple moving obstacles, sharp turns, and
paths without walls. In Table 2, we see that the many
of the agents do not even finish the course or even a
lap. Again, we see that the naive supervised learning
does the worse, not even passing through the first turn.
The next agents do not finish the course, but perform
much better than the supervised learning agent. The
last agents are actually able to complete the course
with a little help from the human controller. The hu-
man, however, only intervenes when the agent is com-
pletely stuck and is unable to advance in the course.
Mistakes such as going off course or crashing into ob-
stacles are left alone and are accounted in the course
time completion.

The first viable agent in table 2 is Agent 4. This agent
is able to complete Bowsers Castle in 5:28 with help
8 times. We do not account the agents before this
one because they are helplessly lost while driving the
course and would require numerous human interven-
tions to complete the course. The next agent, Agent 5,
does slightly worse than Agent 4, but the latter agents
steadily improve. Agent 6 only gets stuck 6 times;
while completing the course at a better time of 4:25.
The next agent then performs the best by getting stuck
3 times with a completion time of 4:23.



Final Report

Figure 4. The autonomy value and standard deviation of each
agent trained on Bowser’s Castle

These agents still exhibit behavior such as zigzag driv-
ing, but recovering from mistakes are much more dif-
ficult with an intricate course such as Bowser’s Castle.

5.4. Agent Autonomy on Complex Track:

Looking at figure 4, we see an overall increase in
the autonomy of the agent on Bowsers Castle. With
a course so complex, the supervised learning agent
requires human intervention almost half of the time.
The next agents see a variety of success, but overall a
steady increase and an improvement on naive super-
vised learning. Even with a course so complex, the
last agent is able to drive mostly by itself with an au-
tonomy of 95%.

6. Discussion

6.1. Tackling Data Mismatch:

From the results, we can see that the supervised learn-
ing agent performed the worst in both courses. This
is because of the common data mismatch problem we
previously mentioned. The human player is too per-
fect that the naive supervised learning agent is unsure
what to decide in poor situations. In Luigi Raceway,
the agent fails on the first turn because it hits a wall
and is unable to complete the course because of this.
The active learning agents perform much better be-
cause the data mismatch is solved by adding correc-
tion in these unideal situations. Once the agent hits a

Agent No. Course Time No. of times stuck
IL Agent DNC N/A
Agent 1 DNC N/A
Agent 2 DNC N/A
Agent 3 DNC N/A
Agent 4 5:28 8
Agent 5 6:37 10
Agent 6 4:25 6
Agent 7 4:23 3

Human Player 3:04 N/A

Table 2. The completion times (min:sec) for each agent on
Bowser’s Castle. None of the agents can complete the course
without any human intervention. However, Agents 4-7 perform
reasonably well to need only a little help. As a result, we record
the times for these agents and how much human intervention is
needed (number of times stuck).

wall, it corrects itself appropriately instead of incon-
clusively deciding where to turn. This then allows the
agents to complete the Luigi Raceway course.

6.2. Ability to Correct in Luigi Raceway:

From the results, we see steady improvement from
one agent to the next. This is an appropriate illus-
tration that the agents are learning new corrections
in each of the agents. We see this in the results be-
cause the time to complete the course steadily de-
creases across agents with Agent 7 having the best
time. The zigzags seen in the latter agents illustrate
the ability for the agent to correct itself when it marks
itself in a bad situation. However, we do not see as
much improvement in the latter agents than that of the
earlier agents. The earlier agents went from not com-
pleting to being able to complete the track at a rea-
sonable time. This is slightly expected because since
the track is so simple, there is not much an agent can
improve. The latter agents still hit a few walls, but are
able to correct from these mistakes more efficiently.
Overall, the agents definitely exhibit ability to correct
itself and a steady increase in performance, but with
such a simple course, the performance will most likely
plateau.

6.3. Ability to Correct in Bowsers Castle:

The results for Bowsers Castle are slightly more var-
ied because of the course complexity. Overall, they
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show a gradual improvement and the ability to cor-
rect itself. This is seen in the decrease number of hu-
man interventions in the latter agents as well as the
decrease of completion time. The supervised learning
agent is unable to complete the course because once it
is stuck in a spot, it cannot figure out how to fix itself.
The agents afterwards are able to correct mistakes, but
we do not get a functionable agent until Agent 4. This
is also due to the complexity of the course because the
corrections are more complex as well. Bowsers Cas-
tle has numerous course sections where the agent can
get stuck. Corners, moving obstacles, ledge jumps are
just a handful of situations where an agent can strug-
gle to surpass. With so many obstacles, more correc-
tion data is needed, leading to more training processes
to produce a functionable agent. While none of the
agents are able to complete the track by itself, we see
the help of the correction data in the decline of hu-
man intervention and decrease in completion time in
the latter agents.

6.4. Variability in Autonomy:

In figure 4, we see a lot of variability between each of
the agents autonomy. Again, this is most likely due
to the variability and complexity of Bowsers castle.
Moving obstacles are unpredictable and can knock the
kart into a wide variety of sections of the course. As
a result, a latter agent may not appear better than pre-
vious agents; however, this is possibly because of the
unpredictably of the course. An agent could be per-
forming optimally, but could be knocked into a sub-
optimal path that greatly decreases its overall perfor-
mance.

7. Conclusion

Overall, our results show a clear improvement from
the supervised learning agent to the later active learn-
ing agents. Our hypothesis is correct in that the latter
agents also trained with correction data are able to fix
themselves in unideal situations. Analyzing perfor-
mance in Luigi Raceway, we saw a steady improve-
ment in the latter agents and a significant difference
between the supervised learning agent and the latter
active learning agents. However, we predict that the
improvement will slow because of the lack of com-
plexity, leading to a lesser impact of correction on the

completion time.

Thus, we decided to test our agents on a more intricate
course: Bowser’s Castle. Even though it took more it-
erations of our algorithm, we produced a viable agent
that performs significantly better than the supervised
learning agent. With so many unpredictable sections
of the track, the results of the latter agents showed
some variation, but again overall the performance in-
creases over iterations of our algorithm.

In addition to a better performing agent, our method
is more practical and easy to implement. We only
needed to correct the kart when we deemed it was in
a precarious situation instead of labeling each image
with exact values. This makes the method also more
realistic and relatable to real-life cars and robots. A
human wouldn’t need to immediately respond to an
agent’s queries because he or she controls when these
queries occur.
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