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Abstract

Novelty search, which incentivizes the evolution of
novel rather than fit behaviors, has shown to be ef-
fective at solving deceptive problems in constrained
behavior spaces. However, in large behavior spaces
with a required goal, novelty search can struggle to
evolve solutions in a timely manner. We combine
novelty search with an objective search to solve de-
ceptive problems in an unconstrained environment.
Our experiments add to existing research about the
limitations of novelty search and show that a blended
objective + novelty search is more efficient than ei-
ther search alone in unbounded, deceptive behavior
spaces.

1 Introduction

Evolutionary robotics aims to mimic natural systems
to evolve complex behaviors. Almost all evolution-
ary algorithms use a goal-based fitness function that
differentiates between individuals based on their per-
formance towards a predetermined objective. Indi-
viduals that perform the best relative to the fitness
function are favored in future generations. In sit-
uations in which a goal can be clearly defined and
reached by evolving individuals with a steady fitness
gradient, objective search has been proven to be effi-
cient and effective.

However, evolutionary algorithms that use objec-
tive search struggle to perform well in deceptive situ-
ations where the optimal behavior or solution cannot
be found by evolving behaviors that have linearly im-
proving fitness [6]. Objective search often converges
to local optima in deceptive environments and as a
result provides poor solutions to these problems even
after many generations [6].

Novelty search, developed by Stanley and Lehman,
avoids the deceptiveness problem altogether by ignor-

ing any goal-oriented objective [6]. Instead, novelty
is a goal-independent search that rewards novel be-
havior. Over many generations, this eliminates the
problem of local optima, as individuals that produce
similar behaviors as past individuals receive low fit-
ness scores using a novelty metric that replaces the
traditional fitness function.

In deceptive, constrained environments, novelty
search has been found to be more efficient at finding
a solution than objective search. In larger behavior
spaces, novelty search struggles to evolve solutions
in a timely manner because there is no incentive to
evolve solutions that reach the goal [2].

The proposed solution, novelty + objective search,
is a blended approach that evolves a population based
on a fitness function that utilizes both a novelty met-
ric and an objective metric. This combination is
perhaps the most logical solution for deceptive envi-
ronments with large behavior spaces, in which objec-
tive search struggles with deceptiveness and novelty
search struggles with the size of the behavior space.

Previous research has used a blended search in de-
ceptive, constrained environments [7]. We extend
that research to maze environments of various decep-
tiveness that are unconstrained by outer boundaries.
Our experiment provides useful insights about the ef-
ficiency of novelty + objective search, and our re-
sults extend Stanley and Lehman’s previous research
about augmenting novelty search [6].

2 Background

2.1 NeuroEvolution of Augmenting
Topologies (NEAT)

Our experiments use NEAT, a genetic algorithm that
evolves neural networks, as the platform on which ob-
jective search, novelty search, and objective + nov-
elty search are tested. NEAT was developed in 2004
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by Stanley and Miikkulainen, who argue in their pa-
per that the incremental evolution of neural network
topologies can be more successful than fixed topolo-
gies at solving complex problems [9]. However, the
continuous evolution of the structure of a neural net-
work creates several challenges: meaningfully cross-
ing over topologically different networks, preserving
networks with unique topologies until their weights
can be optimized, and ensuring topologies are not
unnecessarily complex [9].

Stanley and Miikkulainen solve these problems
in NEAT using several novel structures. First,
NEAT uses historical markers to align genes before
crossover, which allows for relatively straightforward
recombination and creation of offspring. Second,
NEAT creates species of similar topologies and uses
explicit fitness sharing to prevent any one species
from dominating the population. Finally, because
NEAT starts with a minimally complex topology with
few or no hidden nodes, networks explore lower levels
of behavior space before complexifying. As a result,
more complex topologies are only maintained in a
population if they improve fitness after several gen-
erations of optimization [8].

We use a Python implementation of NEAT devel-
oped by Stanley and Miikkulainen [1]. We use NEAT
in this experiment for several reasons. First, we rec-
ognize NEAT as a tool to evolve complex behaviors,
which will be critical to solving complex, deceptive
mazes. Second, our experiment focuses on a task in
an unconstrained behavior space. The range of be-
haviors available to any robot is limited by time, the
physical and virtual environment, and the ability of
the robot to effect change on the environment. While
the runtime of each trial must be limited due to prac-
tical considerations, we hope to reduce limitations in
the other two respects as much as possible. There-
fore, in addition to creating an unconstrained virtual
environment, we also use NEAT so that the robot is
not restricted in its ability to effect change by a pre-
defined and fixed topology. Third, as this research
is largely an extension of previous work, we wish to
remain consistent with other research that also used
NEAT [3, 4, 7].

2.2 Novelty Search

Novelty search was developed by Stanley and Lehman
as an alternative to searches that use an objective
function [6]. Objective-based searches follow a gra-
dient of increasing fitness towards a single solution.
Yet in many deceptive environments, the optimal so-

lution cannot be found by following a linear fitness
gradient. Instead, globally optimal solutions may re-
quire behaviors that temporarily lower fitness. As
a result, objective-based searches often become stuck
in locally optimal solutions in environments that have
some element of deceptiveness.

Novelty search abandons objectives, instead
searching simply for behavioral novelty. Instead of
a fitness function to measure individual success, nov-
elty search uses a novelty metric. The novelty metric
determines the relative sparseness of any given behav-
ior in the defined behavior space. A novelty archive is
maintained with a list of n behaviors with sparseness,
ρ, over a certain threshold. The behavior x of a new
individual is compared to the k-nearest neighbors in
the archive, which is a list of notable past novel be-
haviors. If the new behavior has a sparseness score
over the threshold it is added to the archive. Sparse-
ness is calculated with the following function:

ρ(x) =
1

k

k∑
i=0

dist(x, µi)

where µ is i-th nearest neighbor of x. In the context
of NEAT, the novelty metric is used as a replacement
for the fitness function.

2.3 Augmenting Novelty Search

Recent research on novelty search has focused on im-
plementations that retain the advantages of novelty
search while also guiding the search towards a goal.
The simplest solution, and the solution explored in
this paper, is a linear blend of the novelty metric
with an objective fitness function [7]. This multiob-
jective approach uses the objective metric to guide
robots towards behaviors that are close to a solution
and the novelty metric to avoid local optima.

Another approach is Minimal Criteria Novelty
Search (MCNS), a variation on novelty search devel-
oped by Lehman and Stanley in which individuals
that do not meet a minimum criteria are excluded
altogether from reproduction. Tested on a deceptive
maze task similar to the environment in this paper,
MCNS performed better than both novelty search
and an objective, fitness-based search [5].

Gomes, Urbano, and Christensen modify MCNS to
create Progressive Minimal Criteria Novelty Search
(PMCNS), which uses a ratcheting of the minimum
criteria to force novelty search to fully explore smaller
behavior spaces close to the solution [4]. In PMCNS,
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Figure 1: Maze navigation maps. In all maps, the dark circle represents the starting position of the robot
and the light circle represents the goal.

the minimum criteria periodically increases over gen-
erations and is based on the fitness of the individ-
ual in the nth percentile. In an environment using
swarm robots, PMCNS was found to substantially
outperform both novelty and an objective, fitness-
based search, and outperformed a linear blend in
some respects.

Our experiment focuses on the linear blend aug-
mentation of novelty search. While other research has
done related work, our experiment is novel in that it
is the first direct comparison between a linear blend
search, novelty search, and an an objective, fitness-
based search in a deceptive, unconstrained maze envi-
ronment. Furthermore, our experiment explores how
changes in deceptiveness impact the relative success
of a linear blend, a topic that has to our best knowl-
edge not been previously researched.

3 Experiments

3.1 Setup

The traditional task used to evaluate NS has been the
deceptive maze environment. Following Stanley and
Lehman, among others, our experiment follows this
pattern. More broadly, we attempt to replicate to the
best of our ability the parameters and experimental
conditions of previous, related work.

Our domain consists of three separate mazes, with
varying levels of complexity and deceptiveness (Fig-
ure 1). Each maze is situated in an unbounded en-
vironment; as the maze structure is the only part of
the environment with obstacles, individual behaviors
can consist entirely of unimpeded travel away from
the maze for the full duration of a run. The mazes

are constructed with deceptive cul de sacs that pro-
vide local optima in the fitness landscape. In the
easy maze, successful robots have to navigate around
a cup-shaped obstacle to avoid a local optima. In
the medium maze, robots who navigate out of the
first obstacle also have to navigate around a second
obstacle and turn backwards to approach the goal.
In the difficult maze, the cul de sacs are augmented
by a maze with a small entrance; individual robots
must first enter the maze before navigating the tradi-
tional deceptive environment. The difficult maze is a
simpler but roughly comparable environment to the
maze used by Stanley and Lehman.

For each maze, there is a fixed robot start position
and a fixed goal within the maze (Figure 1). The
start position of the robot is 6 units below the goal
position in the easy and medium mazes and 8 units in
the hard maze, due to the increased size of the hard
maze. As a reference, at peak velocity the robot is
able to travel 100 units over 1,000 time steps, the
duration of each individual run. The environment
and robots are created within the Jyro simulator.

Each robot is a modified version of the Jyro Pio-
neer robot. The robot (see Figure 2) has six sonar
sensors that indicate the distance to the nearest ob-
stacle, provided the obstacle is within 3 units. In
addition, the robot has four pie-slice sensors that fire
when the goal is in a particular quadrant relative to
the heading and location of the robot, and a single
bias node. The robot has two outputs, one for veloc-
ity and one for rotation.

For objective search, robots require a fitness func-
tion to guide exploration of a behavior space. In this
case, fitness is defined as the normalized Euclidean
distance between the position of the robot at the end
of a run and the goal position. A robot finishes a run
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Figure 2: (a) The layout of the sonar sensors. Each
arrow is a range finding sensor that indicates the dis-
tance to the closest obstacle in that direction, pro-
vided the robot is within 3 units of that obstacle. (b)
The layout of the pie-slice sensors. Each robot has
four such one-hot sensors that act as a compass, ac-
tivating when the goal is within that pie slice. These
sensors are dependent on both the location and the
heading of the robot relative to the goal.

after the goal is reached, the robot stalls for more
than 10 steps, or 1000 steps, whichever occurs first.

The novelty metric, which we used as the fitness
function in NEAT, is based exclusively on the sparse-
ness of the robot’s behavior. As this was a maze task
with a predetermined goal, the end position of the
robot was chosen to represent behavior.

The novelty + objective search implementation
uses a linear combination of the objective fitness func-
tion and the novelty metric:

score(i) = (1− ρ) ∗ fit(i) + ρ ∗ nov(i)

where ρ ∈ [0, 1]. Due to computational limitations,
we used ρ = 0.5 and did not test other values of
ρ. In previous work, Cucco and Gomez found that
0.4 < ρ < 0.9 produced the best results on a decep-
tive Tartarus task with a large behavior space, so we
assume an even weighting will produce results that
will be largely representative of other ρ-values [7].

For each of the three search implementations (nov-
elty, objective, novelty + objective), we ran 40 trials
for the easy and medium mazes using NEAT (see Ta-
ble 1). For the hard maze, we were limited to 11 tri-
als because of computational limitations. Each trial
ended upon convergence to the solution or after 250
generations, whichever came first.

Parameter Setting
Generations max of 250
Population size 200
Input nodes 11
Hidden nodes at gen 0: 0
Output nodes 2
Prob. to add link 0.2
Prob. to add node 0.1

Table 1: NEAT parameter settings used in the exper-
iments.

3.2 Results

We evaluated our results in a variety of ways with two
quantitative methods and one qualitative method.
The first quantitative method was the measure of the
average generation to convergence and second quan-
titative measure was maximum average best fitness.
Our qualitative measure of evaluation was the end
behavior of each individual after the conclusion of a
run.

3.2.1 Generation of Convergence

Convergence indicates an individual robot came
within 0.2 units of the goal position. A summary of
the average generation at which an individual robot
reached convergence can be found in Figure 3. In
experiments with the easy map, all experiments for
each implementation converged within 5 generations
and at similar rates that did not have statistically sig-
nificant differences. However, there were statistically
significant differences in mean generations to conver-
gence in the medium maze, and we achieved close to
statistically significant results in the hard maze with
only 11 trials. Specifically, novelty + objective search
converged faster than novelty and objective searches
alone. Statistical results have been computed using
Student t-tests and can be found in Table 2.

Within the 250 generation limit, 64% of trials us-
ing novelty search and 36% of trials using objective
search did not converge on the hard maze. Using nov-
elty + objective search on the same maze, only 9% of
trials did not converge.

3.2.2 Maximum fitness

Average maximum fitness is a measure of the fitness
of the most successful individual in each generation,
as measured by distance from the goal at the end
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Figure 3: The average generation to convergence for each method and maze. Trials that did not converge
within the maximum 250 generations are included in the averages and are assigned the value 250. The
generation of convergence indicates an individual robot came within 0.2 units of the goal position within
that generation.

easy med hard
obj. nov blend obj nov blend obj nov blend

gen 2.38 2.45 2.30 35.75 29.25 14.6 148.82 165.27 81.91
std dev. 1.79 1.80 1.79 54.95 30.92 11.89 103.25 122.00 75.18
T-Test

obj. p = 1.0 p = .85 p = .71 p = 1.0 p = .53 p < .01 p = 1.0 p = .76 p = .11
nov. p = .85 p = 1.0 p = .85 p = .53 p = 1.0 p < .05 p = .76 p = 1.0 p = .12

blend p = .71 p = .85 p = 1.0 p < .01 p < .05 p = 1.0 p = .11 p = .12 p = 1.0

Table 2: Average generation to convergence and results of Students paired t-test. Each generation has a
population of 200.

of a run. In contrast to convergence, average max-
imum fitness measures relative success over genera-
tions rather than absolute success. Results are dis-
played in Figure 4, with the exception that results
for the easy maze are excluded because all runs re-
gardless of search implementation method converged
within 5 generations at similar rates. For the medium
maze, all trials for novelty + objective search con-
verged within 55 generations, while the worst case

objective search took more than twice that long (143
generations). One trial with novelty search did not
converge, and we see consistently lower maximum
best fitness scores across generations. Experiments
with the hard maze had similar results. 72% of nov-
elty + objective trials converged in less than 70 gen-
erations while only 27% of trials in novelty and ob-
jective searches converged within 70 generations. In
both the hard and medium mazes, novelty + objec-
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Figure 4: Average maximum fitness in the population for each generation (40 runs for the medium maze
and 11 for the hard maze) for each search implementation method.
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Figure 5: Each scatter plot displays the endpoints of most individuals over all generations of all trials of a
given search implementation method. The few individuals with end behaviors far from the obstacle are not
included in the plots. Lighter colored dots indicate individuals in earlier generations, while individuals in
later generations are darker. Plots for the easy map are essentially equivalent and not shown.

tive search consistently outperformed novelty search
and objective search across most generations.

3.2.3 Exploration Behavior

Figure 5 depicts the end position of every individual
of all trials for each implementation method for the
medium and hard mazes. The graphs reveal larger
patterns of behavior that are difficult to describe
quantitatively. It is important to note that the be-
havior space is unconstrained, and individual robots
can and did travel up to 100 units away from the
start position (50,44) within 100 steps. However, end
positions of the vast majority of runs were within the
boundaries of the axes of the scatter plot graphs (Fig-
ure 5). This crowding behavior around the start po-
sition may seem counterintuitive for novelty search,
as individual behaviors with endpoints in the vast
behavior space far from the start position are val-
ued more than other behaviors. We hypothesize that
the behavior shown for novelty search is the result
either of a gradual exploration of the behavior space
that will occur over many thousands of generations,
sensors that only give meaningful data near the ob-

stacles, or some combination of both.
As with mean generations to convergence, the scat-

ter plot graphs for the easy map are essentially equiv-
alent. In the medium map, there are clear differences
between the different search implementations. Nov-
elty search produces a generally even and dense scat-
tering of points around the obstacle. Objective search
produces many individual behaviors that get stuck
in local optima (in the cul de sac below the goal),
and other individuals collectively create a mysteri-
ous mustache formation. Novelty + objective search
avoids local optima, as can be seen by the less dense
area of endpoints in the cul de sac below the goal. At
the same time, the distribution of points is less evenly
scattered around the obstacle than novelty search.
Thus, novelty + objective search creates robot behav-
iors that appear to be a combination of goal searching
behavior and novelty.

4 Discussion

The experimental results show that combining nov-
elty search and objective search in an unconstrained,
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deceptive maze environment is more effective than
novelty or objective alone at reaching a desired goal.
This is unsurprising and confirms previous research
that shows the effectiveness of augmenting novelty
search to incorporate some goal-finding behavior. It
is clear from our results that novelty search struggles
in unconstrained environments and objective search
struggles in deceptive environments. In contrast,
novelty + objective search evolves individuals with
a multiobjective task: reach the goal and reach end
positions not previously explored. Our results show
that this implementation method overcomes both the
vast behavior space problem associated with novelty
search and the local optima problem associated with
objective search.

The results also show that the deceptiveness of the
task is directly related to the relative performance of
novelty + objective search. The easy map was de-
ceptive in a sense that it had a local optimum, but
practically it was not deceptive enough to create clear
differences between novelty + objective search and
the other two methods. The only significance dif-
ferences between novelty + objective and the other
methods appeared in the more deceptive medium and
hard mazes. Therefore, we conclude that there is
a certain threshold of deceptiveness that must be
reached before novelty + objective can outperform
the other two methods in an unconstrained envi-
ronment. We hypothesize that this threshold varies
based on the hyper-parameters of the algorithm (in
our case, NEAT) and the type of deceptive task.

This paper adds to the body of existing research
about novelty search and its various augmentations.
Previous research explored the ability of a linear
blend on large but constrained behavior spaces and
found that it performed better than objective and
novelty alone. Our research shows that a linear
blend continues to outperform in an entirely uncon-
strained physical maze environment. Along with
other research, we now have a clear understanding
of which search methods perform best in various en-
vironments:

• deceptive environments:

– small behavior spaces: novelty or aug-
mented novelty search

– large behavior spaces: augmented novelty
search (e.g. linear blend, MCNS, PMCNS)

• non-deceptive environments:

– small behavior spaces: objective search

– large behavior spaces: objective search)

Outside of simulations, much of the world is un-
constrained and deceptive. Therefore, our results
can meaningfully contribute to how robots navigate
through the physical world. For example, many small
search and rescue robots tasked with moving to a spe-
cific location in unknown and deceptive terrain might
perform more effectively with a linear combination of
novelty and objective search than with a pure objec-
tive search method.

An obvious next step is to run more tests on our
hard maze in order to get more significant results.
Furthermore, the construction and testing of more
mazes would be interesting, especially those mazes
that are impossibly deceptive or complicated for ob-
jective and novelty search but may be solvable by nov-
elty + objective. Finally, we used a very simplified
method of combining novelty and objective searches
with a static linear ratio between the novelty and ob-
jective metrics. The use of a more complicated func-
tion to model the novelty/objective ratio, including
some form of annealing, might produce even better
results.
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