
Improving Q-Learning with Neural Networks

Henry Feinstein ’19 and Eric Wang ’18

December 18, 2017

Abstract

There have recently been major advancements in applying deep learn-
ing to the traditional reinforcement learning technique Q-learning. The
progress we’ve seen is largely due the deep neural network’s strength in
developing compact representations of high dimensional input. While Q-
learning has success in some domains, the challenge of assigning an action
policy for each state grows rapidly as the state space size for the problem
expands, rendering it unable to effectively solve many real-world prob-
lems. While this problem can be solved by hand-picking features, that
typically requires a high amount of domain knowledge of the problem
that the learning agent designer may not have. Neural networks can au-
tomatically produce condensed input representations while achieving the
learning task. In this paper, we closely examine the Deep Q-learning Net-
work’s (DQN) efficacy in dealing with large state spaces by comparing
its performance with that of a traditional implementation of Q-learning
on a robot crawling task. We incrementally increase the complexity of
the task by artificially expanding the size of the state space, successfully
showing that standard Q-learning fails as the task complexifies while the
DQN displays no change in performance.

1 Introduction

The task of reinforcement learning revolves around training a responsive agent
to behave optimally in an environment with only occasional feedback. The field
has recently been revolutionized by deep learning - the use of neural networks
in learning agents - an approach that hugely widens the possibilities of rein-
forcement learning application. For example, a team of researchers recently
demonstrated deep Q-learning’s ability to achieve human-expert level perfor-
mance on a range of Atari 2600 video games with only pixel values as input [2].
Deep Q-learning is an improvement on previous reinforcement learning tech-
niques through the introduction of deep neural networks. In this paper we seek
to demonstrate those improvements by comparing a DQN with its traditional
counterpart on an increasingly difficult task.

1



1.1 Q-Learning

Q-learning is a value function technique, meaning that it solves a problem by
estimating the value or expected return for each possible action given a par-
ticular state [3]. Assuming the success in learning those values, an agent may
greedily take an action of high value to maximize reward.

In the case of Q-learning, the state-action values are approximated iteratively
and stored in a table. As an agent wanders around its world, it observes the
state transitions caused by its actions and updates its values using the following
equation:

Q(s, a)+ = α[R(s) + γ[max
a′

Q(s′, a′)] −Q(s, a)] (1)

The R(s) term represents the intrinsic reward of the resulting state s′. We
evaluate the max Q-value of s′ to represent expected future return, and dis-
count it by multiplying by discount γ, a tuneable parameter between 0 and 1.
We subtract the current Q-value because this is an iterative update which is
dampened by the learning rate α to preserve previous learning. We call values
approximated by this technique Q-values [4].

1.2 Feature Selection and Deep Q-Learning

While the Q-learning technique is effective on some problems and proven to
converge upon a successful policy over time [1], the time it takes to converge
grows rapidly as the state space grows larger [4].

We solve this issue by extracting features from the state space for complex
tasks, creating a condensed representation of the full state space. The learner
instead learns using this feature space.

Rather than storing the Q-values in a tabular form, the DQN approach
seeks to approximate the Q-function using a neural network. As before, Q-value
updates are calculated with the Q-value update function, but are instead stored
in a memory queue at each step. After each episode, we draw a random training
set from the memory to train the neural network. The neural network has one
output per action, trained to output the estimated Q-value. Observations are
drawn randomly from the memory to avoid catastrophic forgetting. The Q-
value’s recursive nature may cause oscillations in the training progress; this is
alleviated by holding an old version of the neural network constant, which is used
for update calculations. The old neural network is only updated occasionally
[2].

Because deep neural networks effectively perform feature selection in their
early layers, a DQN essentially learns features to solve the problems presented
by large state spaces. This is convenient because it does not require the exper-
imenter to hand pick features, a highly labor-intensive task that may not even
be possible for very complex problems.

2



1.3 Hypothesis

Considering the well-documented ineffectiveness of standard Q-learning on prob-
lems with large search spaces and neural networks’ feature selection capacities,
we propose the following hypothesis:

As the sensorimotor space grows, the performance of the standard Q-learning
approach will degrade, while deep Q-learning will remain successful.

2 Experiment

2.1 Learning Task & Environment

To test our hypothesis, we needed to create a learning task using an agent and
environment for which the sensorimotor space can be expanded in a controlled
manner without rendering the task impossible to learn. We settled on an ex-
periment in which a simple simulated robot attempts to learn to crawl. The
environment is a simulated plane that is infinite and flat. It tracks the position
of the robot, as well as its velocity. The robot has a single two jointed arm
actuator and no sensors other than knowledge of its state, which consists of an
“arm” position and “hand” position, corresponding to the two portions of the
actuator (Figure 1). The state space can be gradually expanded by discretizing
the actuator’s movement space to a greater and greater extent; this increases
the possible number of arm and hand positions the robot can occupy without
actually extending the possibilities of movement. At each step it can take one
of 4 possible actions: “arm-up,” “arm-down,” “hand-up,” and “hand-down.” At
each step the robot is rewarded for its velocity: the distance traveled in that
step.

Figure 1: Environment and Robot. The environment is a flat, infinite plane (in
yellow); the robot’s actuator is split into a longer “arm” portion (in orange) and
a shorter “hand” portion (in red).

3



2.2 Learning Agents

2.2.1 Standard Learning Agent

Our standard learning agent follows the traditional form for a Q-learning algo-
rithm; the agent constructs a table the exact dimensions of the state space for
a given trial. It then fills in that table with Q-values as it explores and moves
through the world using the Q-value update function (Equation 1). Every value
in the table is initialized to zero. The hyperparameters may be found in the
Appendix.

To allow necessary policy exploration, the agent is initialized with an ε value
of 0.5. At each step, the agent has probability ε of taking a random action
instead of its policy. The ε value decays linearly starting at step 5000 and
reaches zero by step 12000.

2.2.2 Deep Learning Agent

To determine the best action at each step, our deep learning agent uses a dense
feed-forward neural network. Its inputs are the current state and its outputs
are the Q-values for each of the four possible actions. The weights of the neural
network are initialized to random values. The network topology is depicted in
Figure 2 and the hyperparameters may be found in the Appendix. For fairness,
the DQN agent uses the same epsilon decay as the Q-learner.

Figure 2: Our DQN neural network topology: one fully connected ReLU 32-unit
hidden layer and a linear 4 unit output layer. The input dimension is variable
because we one-hot encode arm and hand position.

2.3 Experimental Setup

To test our hypothesis, we executed each learning agent on a series of trials,
increasing the number of possible hand positions by five at each round. Each
trial was 15,000 steps long. Although both the number of arm and hand posi-
tions could be altered in the simulator, we opted to only experiment with hand
position granularity for two reasons. Firstly, changing only the hand positions

4



proved to be enough of a state space expansion to show compelling results; sec-
ondly, if we had increased both arm and hand positions simultaneously, it would
have expanded the state space in multiple dimensions. We believe that it is eas-
ier and more meaningful to analyze the results when the space was expanded
in only one dimension. Our results present the mean of ten trials at each of 15
hand position levels, beginning at 15 possible hand positions and ending with
85.

3 Results

Our results show a significant difference in performance between the standard
and deep Q-learning agents. Figures 3 and 4 chart the adjusted total distance
traveled and the average final velocities at each number of hand positions, re-
spectively. Adjusted total distance and final velocity were calculated using the
following formulae:

ATD = total distance ∗ (# hand positions/15) (2)

AFV = final velocity ∗ (# hand positions/15) (3)

The reasoning behind this transformation of the data is that as the granu-
larity of the possible hand positions increases, it will take more steps to achieve
the same forward progress regardless of the quality of the crawling policy. For
example, the reward gained from one hand movement when there are only 15
hand positions will require two movements at 30 hand positions. Plotting the
raw total distance data gives the illusion that the deep Q-learning agent was
severely impaired by state space expansion, when in reality it was learning an
equally good policy and instead being slowed by the phenomenon just described.
Thus, to represent the true “quality” of the policy learned by each agent, we
transform the data using Equations 2 and 3.

5



Figure 3: Adjusted Total Distance Traveled. Error bars represent the standard
deviations for each agent at each number of hand positions (10 trials each).

Figure 4: Adjusted Final Velocity. Velocities shown here are averaged over the
final 100 steps of each run. Error bars represent the standard deviations for
each agent at each number of hand positions (10 trials each).

Figure 3 shows a striking difference between the performances of our stan-

6



dard and deep Q-learning implementations. The deep learning agent performs
consistently across the entire range of possible hand positions, showing no de-
terioration as the state space expands. The standard Q-learning agent, on the
other hand, hits an insurmountable wall at 35 hand positions, and never recov-
ers; from 35 all the way to 85 hand positions, it is completely unable to learn a
forward-moving policy once randomness decays.

Surprisingly, the deep agent’s performance was significantly better than the
standard agent’s at every number of hand steps, even 15 - as can be seen in Fig-
ure 4, the deep agent’s final velocity was consistently greater than the standard
agent’s at high statistical significance. Additionally, the differences in total dis-
tance traveled are statistically significant at every hand position number. This
implies that at all hand position numbers tested, the deep agent was able to
learn a more effective crawling policy. Links to videos of 85 hand position trials
for both agents can be found in the Appendix.

4 Discussion

In Figures 3 and 4, we can clearly see a stark drop-off in standard Q-learning’s
performance between 30 and 35 hand positions for the robot. This phenomenon,
while initially surprising, makes sense because of the nature of our learning task.
By formulating arm and hand angles as the robot’s state and learning input,
we have restricted the policy to only be able to assign one optimal action re-
sponse to each body position regardless of action history. Thus we can imagine
a policy to necessarily be some cycle in the state space, given the cyclical na-
ture of a typical crawling pattern. We can also imagine ”traps” in the state
space, accidentally-learned mini-cycles (oscillating back and forth between two
body positions, for example) in the space that the agent cannot escape without
stochasticism. Indeed, from our qualitative observation, we do see the tradi-
tional Q-learning repeatedly move one actuator back and forth, producing no
net progress. For larger state spaces, not only is it much more challenging to
fill out a full cycle in the Q-table, but it is also much easier to fall into mini-
cycles that cannot be escaped after 12,000 steps when exploration is completely
removed.

Likewise, the performance of the DQN is also unsurprising. If we reason that
the neural network learns to condense the input space, and see that the DQN
successfully solves the problem with 15 hand positions, it should be achievable
that the network simply learns to “divide” input data to return the problem back
to the original 15 hand position task. Why the DQN learns a higher velocity
than standard Q-learning even at 15 hand positions (2.258 units/step vs. 1.567
units/step) is a question that eludes us and deserves further investigation.

4.1 Neural Network Design

In the process of implementing our DQN, we experimented with hyperparam-
eters through many failed iterations before settling on our final topology and

7



hyperparameter set. Network topology turned out to be a particularly sensitive
parameter. When initially using a topology with two 12-node hidden layers, we
struggled to make the agent learn at all.

We suspect that the necessity of a small topology is due to the high frequency
of network training and small batch size. Each time we train the network we
are susceptible to some catastrophic forgetting, constraining the potential for
learning. Learning may not be able to extend very far beyond the information
gleaned from training on 1 minibatch, which we only train for 1 epoch. Thus, a
small network, which learns fast, may be able to capture more from the epoch
than a larger network.

Our decision to train so frequently emerged from our biased experience in
designing the standard Q-learner. Its learning speed biased us to believe the
DQN learner should also be able to finish learning within a few hundred steps
and thus necessitated frequent training. In general, expecting a neural network
to converge so quickly is an unrealistically high expectation. We suspect that if
we extended minibatch size and trained less frequently, a network with a larger
topology could also succeed, albeit over more steps.

5 Conclusion

Our results strongly confirm our initial hypothesis: our DQN implementation
performs consistently regardless of state space size, while our standard agent
fails completely when the state space grows too much, and is unable to recover
throughout the remainder of the experiment. Our results are convincing, if not
surprising; it is well-established in the field that the standard approach to Q-
learning is highly susceptible to large state spaces. Our experiment does give
some insight, however, into exactly what ”large” means - the steep dropoff of
our standard agent’s learning capability at a mere 35 hand positions implies that
a state space need not be extremely complex to thwart the standard approach.
Considering how few real-world problems are composed of state spaces as simple
as the 35 hand position trial, our paper clarifies and reinforces the power and
necessity of using neural networks in the field of reinforcement learning.

Acknowledgements

We would like to thank Professor Lisa Meeden for her guidance and support over
the course of this project. We would also like to thank Professor Bryce Wieden-
beck and Samuel Sakota for their consultation in designing and implementing
our DQN agent.

References

[1] Peter Dayan Christopher J.C.H. Watkins. Technical note: Q-learning. Ma-
chine Learning, 8, 1992.

8



[2] Volodymyr Mnih et al. Human-level control through deep reinforcement
learning. Nature, 518, 2015.

[3] J. Andrew Bagnell Jens Kober and Jan Peters. Reinforcement learning in
robotics: A survey. International Journal of Robotics Research, 32(11):1243–
1244, 2013.

[4] Peter Norvig Stuart Russell. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2010.

6 Appendix

6.1 Learning Agent Hyperparameters

Table 1: Q-learning Hyperparameters
Hyperparameter Value
discount 0.8
learning rate 0.8
initial exploration 0.5
final exploration 0
exploration time frame 5000-12000

Table 2: DQN Hyperparameters
Hyperparameter Value
minibatch size 128
replay memory size 2000
target network update frequency 64
discount 0.95
update frequency 64
learning rate 0.01
initial exploration 0.5
final exploration 0
exploration time frame 5000-12000

6.2 Trial Videos

Standard Q-Learner Video:
https://youtu.be/kEa41v9qR8o

DQN Video:
https://youtu.be/UHXBdPaXlOg

9

https://youtu.be/kEa41v9qR8o
https://youtu.be/UHXBdPaXlOg


6.3 Consulted Source Code

Keon’s DQN implementation:
https://github.com/keon/deep-q-learning

n1try’s DQN CartPole implementation:
https://gym.openai.com/evaluations/eval_EIcM1ZBnQW2LBaFN6FY65g/

Source code for environment and robot simulator taken from CS63 (Artificial
Intelligence), taught by Prof. Bryce Widenbeck in Spring 2016.

10

https://github.com/keon/deep-q-learning
https://gym.openai.com/evaluations/eval_EIcM1ZBnQW2LBaFN6FY65g/

	Introduction
	Q-Learning
	Feature Selection and Deep Q-Learning
	Hypothesis

	Experiment
	Learning Task & Environment
	Learning Agents
	Standard Learning Agent
	Deep Learning Agent

	Experimental Setup

	Results
	Discussion
	Neural Network Design

	Conclusion
	Appendix
	Learning Agent Hyperparameters
	Trial Videos
	Consulted Source Code


