Generating Globally Coherent Original Melodies Using LSTMs and
music21

Dina Ginzburg
December, 15, 2017

Abstract

Machine learning algorithms have increasingly been implemented in a variety of ways within
the music domain. In this paper, a Long Short Term Memory Network (LSTM) was used to
solve the music-related problem of composition. The network was trained on ”Ryan’s Mammoth
Collection of Fiddle Tunes” which was obtained from the music21 corpus. Previous attempts
to generate melodies using neural networks have suffered from a lack of ”global coherency”.
All networks were able to learn key. The 256 time step network produced melodies that were
the most globally coherent, however the computer-generated melodies were not judged to be as
globally coherent as the melodies in the training set.

1 Introduction

Researchers have long been interested in using machine learning techniques to compose original
melodies. This task is deceptively difficult. The choice of music representation scheme, the quality
and quantity of the data the network is trained on, and defining ”good” melodies are all non-trivial
aspects of the music-generating system which must be considered during the design process. This
paper will detail one such music-generating system.

Most research on computer-generated melodies uses recurrent neural networks (RNNs), since
they are specifically designed to ”contemplate feedbacks units and delay operators, which allow
the incorporation of nonlinearity and dynamical aspects to the model” [1]. This means that RNNs
are especially good methods for learning temporal relationships in sequences .Mozer developed the
CONCERT architecture, an Elman-style recurrent neural network to generate original melodies
based on the genre of training data. His system transformed all of its training data to be in one key
and used a complex representation scheme involving relatives pitches. Mozer was able to generate
melodies that sounded pleasant to naive listeners. However, he did not find that the network was
able to learn "more global phrase structure” [4]. Rather it was limited to only inducing local
relationships among notes.

Later work continued to address this problem of ”global coherence”: Eck and Schmidbauer
proposed the use of a specific type of recurrent neural network, an LSTM, since ”Long Short Term
Memory (LSTM) has succeeded in similar domains where other RNNs have failed, such as timing
and counting, and learning of context sensitive languages” [3].This is because LSTMs are specifically
designed to deal with the problem of long-term dependencies, which standard RNNs were not able
to address. Their music representation scheme was also far simpler than Mozer’s, simply assigning
one input/target unit per note, with a 1 representing on, and a 0 representing off. Not only was



this representation simpler, it also allowed there to be no artificial distinction between notes and
chords. Eck and Schmidbauer were able to show that an "LSTM is able to play the blues with
good timing and proper structure as long as one is willing to listen” [3].

More recent work in music composition has introduced ”chaotic inspiration” to LSTM-based
systems, which involves giving the network a chaotic melody as ”initial inspiration” [1]. Researchers
have also attempted to define ”melodiousness” in some sort of quantifiable way, despite the sub-
jective nature of musical ”quality”. The system proposed in this paper will use an LSTM network,
a simple binary music representation scheme, a certain amount of randomness when generating
melodies, and a semi-subjective measure of ”global coherency” which relies on human judges, to
address some of the issues raised in the field.

2 Methods

Training data was obtained from the music21 corpus and preprocessed using music21’s object-
oriented toolkit. Three LSTM networks varying in input-size were trained on this data and then
used to generate five original melodies each.

2.1 music21

music21 is an object-oriented python toolkit for searching, analyzing, and manipulating music
scores. Scores are represented as stream objects which can be nested and contain notes, rests,
and other symbolic data. All elements are timed, based on offset from a starting point. music21
also comes with a large virtual corpus containing many works of classical music, as well as a large
variety of folk songs [2]. For the purposes of this project, "Ryan’s Mammoth Collection of Fiddle
Tunes” - containing over one thousand melodies - was chosen since it was the largest single-genre
collection in the corpus. Ryan’s contained melodies in varied keys which were kept as is and not
converted to one single key.

2.2 Music Representation

(1.0,0,0,0,0,0,0,0,0,0,0,01=

0,0,0,0,0,0,0,0,0,0,0,0,01=

1.0,0,0,0,0,0,0,0,0,0,0,1]=

it bl ]

Figure 1: Each array represents the melody at a certain offset.

Each melody in Ryan’s collection was transformed into a sequence of arrays. This was done
using the music21 methods Flatten and NotesAndRests which reduced each score to a list of



note and rest elements, each assigned an offset value. The method GetElementsAtOffset was
then used to check what elements were playing at each sixteenth note. The notes and rests at
each offset were then encoded into an array with 13 entries, each of which represents note from
C4 to C5. If an entry is set to 1, then that note is playing at that offset. If it is set to 0, it
is not playing at that offset. This representation scheme is quite simple. Chords can easily be
represented by simply setting more than one entry in an array to 1. However, the biggest drawback
of representing melodies this way is that there is no way to discern repeating sixteenth notes and
notes of longer duration. This drawback was overlooked for the sake of time, although improvements
to representation will be discussed further in subsequent sections. Figure 1 shows examples of this
representation. Each melody was padded with a certain amount of rests at the beginning in order
to give the network an opportunity to learn how to begin melodies as well.

2.3 LSTM

RNNs address the limitations of standard feed-forward models by including loops. This allows
information to persist. RNNs’ chain-like structure makes it a particularly suitable model for dealing
with lists and sequences. However standard RNN architectures were unable to handle long-term
dependencies, or when relevant information is not recent in the sequence. This is where LSTMs
come in.

LSTMs were specifically designed to address this shortcoming of RNNs. Rather than the single
layer module used in standard RNNS, LSTMs have four layers in each module. These layers allow
each block of the LSTM to add, remove, or pass on information from its memory. LSTMs have
proven to be enormously successful at a variety of tasks and have popularized RNNs as a reliable
method for learning sequences.

(@ ® () @ ® ()
f t t f i f
A T s A [TdAll A ]
AN >
© ® @5 © ® o

Figure 2: Left: The repeating module in a standard RNN contains a single layer. Right: The
repeating module in an LSTM contains four interacting layers.

2.4 Training

The keras deep learning library was used to construct the network architectures, specifically the
LSTM layer and the merge layer. Three LSTM networks were trained on the same training data.
These networks only differed in the number of time-steps into the past the network considered. 64
time steps correspond to one 4/4 measure, so 64, 128, and 256 time step input sizes were selected
as parameters to the network (corresponding to 1, 2, and 4 measures). Otherwise, all parameters
were set to the default parameters as determined by keras. Each network was trained for 10 epochs
with a batch size of 32, achieving an accuracy rates of 45%, 47.5%, and 43% respectively. In the
context of music composition, the low accuracy rate should not be cause for worry. Since we want



the network to generate original melodies, we want the network to learn general rules for music
composition rather than learn to predict the melodies within the training data perfectly.

P avawg

1000000000000
0000001000000
0001000000000

0000000000001

Figure 3: Three LSTMs were trained on encoded versions of melodies from Ryan’s Mammoth
Collection of Fiddle Tunes.

3 Experiments

Once all three networks were trained, the music-generation process began. Each network was
given five sets of a starting input consisting of only rests. This was passed through the networks
which generated a probability distribution for every possible next note. The next note was chosen
not by choosing the note with the highest probability, but rather from the probability distribution.
This allowed the generated melodies to have a certain amount of controlled ”chaos”. Melodies often
contain patterns that are disrupted in surprising and original ways, so by incorporating randomness
into the music-generation process some aspect of the creative process was also being modeled.

To address a problem mentioned earlier in Section 2.2, once melodies were generated, repeating
notes were treated as the longest possible duration unless there was a measure break, in which
case the notes were split apart at the measure break. The question of when to end the generated
melodies was addressed simply by arbitrarily choosing a sequence length of 8 measures. This was
informed by the fact that most of the fiddle tunes in the training data came in multiples of 4
measures, with 8 measures being quite common.

Every generated melody was sent to a team of two music theorists, Tai Warner and Asher
Wolf, for analysis (along with five melodies from the training set). Analysts were unaware of
which melodies were generated by which network. Each analyst produced a global coherency score
from 1, not globally coherent at all, to 10, perfectly globally coherent, based on their research of
fiddle music theory. Roughly, global coherence was judged to mean repeating patterns and musical
structures/themes, as well as chord progressions that make sense given fiddle tune conventions.



4 Results

Analysts were able to correctly identify the training data melodies (example in Figured), giving
them an average global coherency score of 9.8. Although there was no significant difference between
input-sizes of 64 and 128, 256 time steps led to slightly more globally coherent melodies than the
other two networks. Overall, the melodies generated were middlingly globally coherent. However,
some interesting features of certain melodies were noted by analysts.

Time Steps Average Global Coherence
64 6.2
128 6.0
256 6.6
Training Melodies 9.8

Table 1: Average Global Coherence Scores for Each Network (based on 5 melodies each)

Figure 5 shows one melody which was labeled the analysts ”favorite”, despite being given a
low global coherency score of 3. Although there seems to be no repetition of structures or themes
within the melody, analysts noted that the melody reminded them of the style of Bela Bartok,
a 20th century composer who was influenced by Hungarian folk music. Figure 6 shows another
example of a melody given a low global coherency score with the analysts noting its weirdly offset
beats. Figure 7 shows an example of a melody rated highly in global coherence. It exhibits a
similar rhythmic structure on both lines, indicating repetition of a musical idea. Every generated
melody retained a single key throughout. This indicates that the networks were able to learn key:
the most basic element of global coherency.

Figure 4: A melody given a global coherency score of 10. Music theorists easily identified melodies
from the training set.

5 Discussion

The networks’ ability to learn key indicates that LSTMs show promise for learning features of
globally coherent melodies. Certainly the available literature indicates that this is true. Although
global coherency does seem to be loosely correlated with LSTM input-size, more experiments are



Figure 6: A melody given a global coherency score of 3. Music theorists’ noted its weirdly offset
beats.

Figure 7: A melody given a global coherency score of 8. Music theorists’ only noted that the
melody did not resolve at the end.

needed to make any strong conclusions about the data. The computer-generated melodies were
easily distinguishable from melodies in the training data, indicating that there is still much more
work to be done on the system.

However, despite some disappointing results, responses from the analysts towards the computer-
generated melodies were quite interesting on their own, irrespective of a melody’s global coherency.
In fact, Warner and Wolf found some of the least globally coherent melodies of the bunch most
interesting. This suggests that there is some value to a system which does not achieve ”global
coherency”, but nevertheless generates interesting and original melodies. Particularly in the case
of ”writer’s block”, a network that can generate unexpected melodies could spark unexpected ideas
in composers.

Finding a quantitative way of evaluating the quality of generated melodies was difficult. The
privileging of Western music theory and its emphasis on melody is one way to go about doing
so, and in fact is how I and most work in the field has approached the task of computer music
composition. However, this is a limited understanding of music and what it is about music that
excites us so much. I am particularly interested in experimental music from around the world -
music which explicitly breaks rules but nevertheless is able to captivate listeners. Could such an
experimental, rule-breaking, machine ever exist?



5.1 Further Work

Due to time constraints, there is much further work that could be done on the system. First,
the music representation scheme could be improved by adding a 14th entry in each array which
would indicate if a note was ending or not. This would solve the problem of the representational
equating of repeating 16th notes and notes of longer duration. Experiments could also be done
by training the networks on different genres from the music21 corpus. Would networks trained
on different genres produce significantly different melodies? Finally, more network architecture
engineering could be done by not only tweaking parameters, but also constructing more complex
network architectures. This could include more than one LSTM layer, the inclusion of standard
feed-forward networks, as well as hierarchical architecture that allow for the learning of higher-level
features of melodies and local relationships between adjacent notes.

Poasoms
1050 REELS and JIGS,

sz W

Figure 8: Potential network architecture which includes a feed forward layer as well as two LSTM
layers one of which feeds into the other.

References

[1] Liang Zhao Andres E. Coca, Debora C. Correa. Computer-aided music composition with lstm
neural network and chaotic inspiration. Neural Networks (IJCNN), 2013.

[2] Michael Scott Cuthbert and Christopher Ariza. music21l: A toolkit for computer-aided musi-
cology and symbolic music data. ISMR, 2010.

[3] D.Eck and J. Schmidhuber. Finding temporal structure in music: blues improvisation with lstm
recurrent networks. Neural Network for Signal Processing, 2002.

[4] Michael C. Mozer. Connectionist music composition based on melodic, stylistic, and psychophys-
ical constraints. Music and Connectionism, 1992.



