Comparing Inputs to Evolutionary Algorithms for Maze
Pathfinding

Annie Zhao and Owen Kephart!

!Computer Science, Swarthmore College, Swarthmore, PA 19081

December 18, 2017

Abstract

This paper explores trade offs between varying compression schemes on visual sensory inputs and
neuroevolution of augmenting topologies (NEAT) fitness functions for efficiently navigating through a
visually distinct maze. We examined 128x128x4 image inputs scaled down to 4x4x4 inputs using an
autoencoder network and rescaling. While the autoencoder performed well, we do not recommend that
it be used as input into a NEAT network as it is difficult to reclaim the important information out of
the encoded representation without the decoder. We suspect that simplifying the sensor inputs manually
is generally superior to neural encodings. We also experiment with objective-based, novelty-based and
hybridized fitness functions for NEAT but did not obtain significant results. We could not create a map
that hit the sweet spot of difficulty to easily observe a difference between our experimental methods.

1 Introduction

Navigating mazes is a classically difficult autonomous learning task. Mazes are often used to
test for intelligence and recall in animal species as the process of efficiently pathing through
a magze requires both exploration and, once the goal has been found, repeated exploitation.
For robotic agents, recent attempts to solve this problem have found success across a variety
of machine learning domains. Initial efforts utilized straightforward algorithms, such as a
Modified Wall-Following Navigation algorithm [1]. Researchers found that while genetic
algorithms generally outperformed their benchmarks of depth-first search and breadth-first
search in finding the shortest path to the goal [2]. The difference in performance between
the genetic algorithms and iterative approaches became increasingly significant as the sizes
of the mazes increased. Furthermore, successful maze navigation behavior has been achieved
outside of simulation. In a study conducted by researches at the University of Freisburg, a
successor-feature-based deep reinforcement learning algorithm with an ability ”to transfer
knowledge from previously mastered navigation tasks to new problem instances” managed
not only to speed up existing deep learning techniques but also solve simple, visually similar
mazes in a live environment [3].

The primary inspiration, however, for our project is the work on maze navigation done
by Google’s Deepmind Lab team. Earlier this year, the team designed and performed well
on the task using ”goal-driven reinforcement learning ... with auxiliary depth prediction and
loop closure classification tasks” [4]. This project did well in two domains: 1) developed
a robust method of processing visual input and 2) created a multi-layered reinforcement
learning system for an agent to recall past runs and then act optimally. We use the same 3D
simulation engine to create our own visually distinct mazes. In the first domain, we examine

Adaptive Robotics

different ways of encoding sensor input through rescaling or dimensionality reduction via
an autoencoder network. In the second domain, we test the performance of evolutionary
algorithms using neuroevolution of augmenting topologies (NEAT') with either pure objective
based fitness, novelty based fitness or a combination of both fitness functions.

2 Experimental Setup

2.1 Environment

We used a simulation environment built on top of the Quake 3 engine, Deepmind Lab.
We built five different maze levels for this environment using levels generated from hand-
crafted text files. By defining an entity layer and a variation layer, Fig[l], we can design the
architecture of the level, spawn position, goal position and the colors of the walls within the
maze. The goal, shown in Fig [2], is a fruit-like object surrounded by red walls that gives
a reward and ends the agent’s run when it has been reached. For our experimental runs,
each maze had a set spawn point and set goal location, with only a single goal. Each maze
was designed such that they would not be visually uniform to prevent two different locations
from looking too similar. The text maps were compiled into a .pk3 format for use by the
engine.

The agent has 7 possible actions within the environment, each specified by a value in an
action vector: {look left/right, look up/down, move left/ rlght move forwards/backwards,
fire their weapon, jump or crouch}. At each step, or frame, the agent behaves based off
of the values in given in the action vector. For our experlments we restricted the agent’s
movement set to be left /right and forwards/backwards by modifying only two action vector
values and leaving the rest to be zero.

T

+

AAAAAAAAARAAA .
AAAAAAAAAA LA,

EkkEE FEEkEE k
e A e o e e ke

P

* %

b o o ok

ok

*
*
*
*
ok ok Rk ok *
*
*
+

ok o ke o o o ke ok o

Figure 1: Maze 4 entity and variation layers.

2.2 Autoencoder

In order to collect training data for our autoencoder, we utilized a special collector agent.
Each agent is be intialized with a random turn value between 10 and 30 degrees and rotate
in place. A 128x128x4 image was saved as an RGBA PNG every 20 steps. As a result, the
depth field of a given frame from our environment is visually represented by the transparency
values in the alpha channel. As the learning environment has a special spawn animation, we
avoided taking images from the first 50 steps of a run. We repeatedly ran this agent within
the mazes using variable spawn location and each run had a default length of 200 steps.
We created several variations of an autoencoder that reduced the size of our RGBD input
images. The final version was a 22-layer autoencoder that narrowed down to a bottleneck of
size 4x4x4 before rexpanding back out to 128x128x4 over 2000 epochs. The encoder half of
the network was composed of 6 convolutional and 5 max pooling layers, each with a 2x2 filter.
The decoder half of the network reversed the convolutional layers of the encoding process and

Adaptive Robotics

¢
1005 124 &

Figure 2: Goal within maze, surrounded by red walls.

replaced the max pooling layers with 2x2 filter upsampling layers. As this was a fairly large
network for an autoencoder, the training time for this network took approximately 14 hours
on a training set of 3000 collected RGBD images. Some simple keras graph surgery allowed
us to remove the decoder half of the network and extract the layers of the autoencoder only
up until the bottleneck for use in our experimental agents.

2.3 Pathfinding

We created three varying forms of visual sensor input for our agent, all of size 4x4x4. The
autoencoded image, as mentioned in the previous section, a scaled down image, using bilinear
interpolation and an image composed of random data for our baseline comparison.

We ran trials on three different evolutionary algorithms, objective-based NEAT, novelty-
based NEAT, and a hybrid algorithm. Fitness-based NEAT minimizes distance from goal
and focused on objective but has a weakness of getting stuck in local minima. We scaled
the distance to the goal to be from between 0 to 1 for the objective fitness function. Then,
if the goal is reached, the total score for that run would be 10 — (timetoreach). Meanwhile,
novelty-based NEAT maximizes the uniqueness of the path but is unfocused and had no
guarantee of moving towards the goal. Finally, we hybridized the two fitness functions using
a linear combination using a tunable parameter « in

a - novelty fitness + (1 — «) - objective fitness

For our experiments, we set o = 0.5 for a ratio of 50% objective and 50% novelty fitness.
For each of these three evolutionary algorithms, we tried the three visual inputs for a total
of nine experimental runs per map. We conducted 10 evolutionary runs per experiment for
30 generations each with a population size of 20 individuals. It took approximately 30 mins
per run for total computation time of around 5 hours per experiment.

We found that maze 4, as shown in Fig [I] was consistently solvable for each of the 9
experiments, including even the random input agent. As a result, we decided to run the
same set of experiments on maze 2, shown in Fig 3| with a more difficult path to the goal.

2.4 Hardware

We used several machines to train our autoencoder and run our maze experiments. Each
had 32GB of RAM, Intel(R) Xeon(R) CPU and a Quadro M1000M GPU. The autoencoder
ran on the GPUs while the maze computation was on the processors.

Adaptive Robotics

el]

Figure 4: Visual comparison between original image (first row), image passed through autoencoder (second
row), image scaled down and back up using bilinear interpolation (third row), and a random image (last
row).

3 Results

Overall, our results produced by our autoencoder were very encouraging, and showed our
output was significantly more similar to the input than a simple downscaling/upscaling
procedure. For our pathfinding, we did not see a significant difference in performance based
on the algorithm used, and perfomance was similar between networks with scaled image
sensor inputs and autoencoded image sensor inputs, and lower for random sensor inputs.

3.1 Autoencoder

Our initial autoencoder compressed the data in the input image down to an 8x8x4 image.
The model for this autoencoder converged after approximately 2000 epochs, and achieved a
validation loss of .4038 for our metric, binary cross entropy. However, this bottleneck proved
to be too large to work with efficiently in NEAT framework, and so we switched to an even
smaller 4x4x4 bottleneck. This model also converged after around 2000 epochs, achieving
a validation loss of .4113 (lower is better). While the difference in loss is relatively small,
there were some minor subjective quality differences.

However, these subjective differences are small compared to the differences between the
different methods, shown in Fig Note how the images passed through the autoencoder
preserve a large amount of data about angles and edges that an image that is simply scaled
down cannot.

Adaptive Robotics

Comparison Image Mean Std

Original 0.394 .034
Autoencoded 0.411 .034
Scaled 0.436 .033
Random 0.831 .065

Table 1: Comparison of image loss values for different compression schemes (N=1000)

original decoded scaled random
loss: 0.373 loss: 0.387 loss: 0.438 loss: 0.790

original decoded scaled random
loss: 0.367 loss: 0.387 loss: 0.418 loss: 0.811

-l

Figure 5: Loss metrics for different compression methods with two different input images.

In terms of quantitative differences, we randomly selected an input image from the test
set 1000 times, and found the binary cross entropy of this entropy compared with four other
images — the same exact image, the image after being passed through the autoencoder, a
rescaled image, and a random image (scaled up from a 4x4x4 original image). From this,
we calculated the mean and standard deviation of each off these distributions (Table 1). We
found with high confidence (p < .01) that each of these distributions was statistically different
from the others, indicating that using the autoencoder is a better method for minimizing
this metric than scaling the image down and then up, which is in turn better than simply
generating a random image.

Binary cross entropy is generally a hard metric to visualize, but in Fig[5], you can see how
smaller loss values correspond to images that look more similar to the original. Note that
even finding the cross entropy of an image with itself is not guaranteed to return zero.

3.2 Pathfinding

For our metric of average of maximum fitness at each generation, no statistically significant
difference was observed between scaled input and autoencoded inputs across all algorithms.

Adaptive Robotics

In addition, the algorithm itself did not seem to matter. On the hard map, we were not able
to generate an agent that could solve the maze within the 30 generations, regardless of our
parameters.

While on the easy map, the agent with random sensor inputs was able to fairly consistently
find a solution, by virtue of it having inconsistent inputs, it was not able to iterate upon
this and retain this good solution for future generations. Thus its average maximum fitness
does not grow over time as it does for the other two input types, which are deterministic.

On the hard map, we see a very minor upward trend for the non-random sensor inputs,
which aligns with our expectations. These results are plotted in Fig[6 Fig[7], and Fig

noise noise
10 10

—— NEAT —— NEAT
novelty novelty
—— NEAT+novelty —— NEAT+novelty

AN

o

avg fitness
avg fitness

T T T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
generation generation

(a) Easy map (b) Hard map

Figure 6: Average over 10 runs of the maximum fitness for each generation for algorithms with random input
SEnsors

scaled scaled
10 10

—— NEAT —— NEAT

novelty
—— NEAT+novelty

novelty
—— NEAT+novelty

avg fitness
avy fitness

o 5 10 15 20 25 30 o 5 10 15 20 25 30
generation generation

(a) Easy map (b) Hard map

Figure 7: Average over 10 runs of the maximum fitness for each generation for algorithms with scaled input
sensors

4 Discussion

In general, we did not find statistically significant differences between most of the studied
parameters. None of the three genetic algorithms that we experimented with were shown to
behave significantly differently from each other on either of the maps that we experimented

Adaptive Robotics

autoencoded autoencoded
10 10
—— NEAT —— NEAT
novelty novelty
—— NEAT+novelty —— NEAT+novelty

avg fitness
avg fitness

o 5 10 15 20 25 30 o 5 10 15 20 25 30
generation generation

(a) Easy map (b) Hard map

Figure 8: Average over 10 runs of the maximum fitness for each generation for algorithms with autoencoded
input sensors

with (the easy and hard mazes). For the hard maze, it was fairly obvious that the algorithms
were simply incapable of solving the maze in the relatively low number of generations that
we gave it. No run ever made it all the way to the end of the maze. It would be interesting
to see what would happen if we let the algorithms run for many more generations, but the
tests took an extremely long time to run as it was, and there was no guarantee that the
robot would ever find the goal.

For the easy mazes, we believe that most of the successful solves were simply a result of
random variation in genomes happening to get the robot to the end of the maze, rather than
a controlled series of explorations over time, or iterative improvements on past genomes that
got close to the goal. Having 64 sensors as input to the learning algorithm likely overwhelmed
it, and in such a small number of generations it was unlikely for it to discover a way to make
use of all of the information it was being flooded with.

We were originally surprised at the similarity of the results of the scaled image inputs and
the autoencoded image inputs in the case of the easy map. However, on further reflection,
this is to be expected. The NEAT networks that we were generating were likely not picking
up on any real qualities of the input data. However, it was guaranteed that for identical input
images, each of these methods would output the same sensor readings. Thus all the learning
algorithm had to do was stumble upon some combination of parameters that managed to get
it to the goal, and from there it could just copy this solution and have it spread throughout
the population (as this solution would be guaranteed to have a much higher fitness than any
other genomes).

This thinking is reinforced by the observation that the network that worked with noise
as an input consistently found

5 Conclusion

While the autoencoder that we trained was definitely interesting, and had a fairly high
performance, we do not recommend that it be used as input into a NEAT network. It is
incredibly difficult to reclaim the important information out of the encoded representation
without the weights that are stored in the decoding half of the network. While we were
not able to create a map that hit the sweet spot of difficulty such that we could observe
a difference between the non-random methods, intuition gained from this process suggests
that you would be better off simplifying the sensor inputs manually.

Adaptive Robotics

In general, the simple NEAT implementation seems somewhat ill-equipped for a complex
task in a 3D environment if you are not able to dedicate large computing resources to its
training.

6 Acknowledgements

We’d like to thank Professor Lisa Meeden for all of her help, both in lecture and in lab. We
went through many shifts in goals with this project and she was invaluable in helping us
narrow in on what we found to be most interesting.

Jeff Knerr was extremely helpful in the experimentation phase of our project, and aided
us in installing the necessary software across all of the Computer Science department lab
machines.

Adaptive Robotics

References

[1] Fawaz Y. Annaz. A Mobile Robot Solving a Virtual Maze Environ-
ment 2012. University of Nottingham (Malaysia ~ Campus), Depart-
ment of Electrical Electronic Engineering, 43500 Semenyih, Malaysia.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.885.9214rep=repltype=pdf.

[2] Anton Jonasson and Simon Westerlind. Genetic algorithms in mazes. 2016. Exa-
mensarbete Teknik, Inom Grundniv, 15 Hp, Stockholm, Sverige. http://www.diva-
portal.se/smash/get /diva2:927325/FULLTEXTO01.pdf.

[3] Jingwei Zhang, Jost Tobias Springenberg, Joschka Boedecker and Wolfram Burgard Deep
Reinforcement Learning with Successor Features for Navigation across Similar Environ-
ments. 2017. University of Freiburg, Institute of Computer Science, 79110 Freiburg, Ger-
many. https://arxiv.org/pdf/1612.05533.

[4] Piotr Mirowski, Razvan Pascanu et Al. Learning To Navigate In Complex Environments.
2017. DeepMind London, UK. https://arxiv.org/abs/1611.03673.

	Introduction
	Experimental Setup
	Environment
	Autoencoder
	Pathfinding
	Hardware

	Results
	Autoencoder
	Pathfinding

	Discussion
	Conclusion
	Acknowledgements

