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Abstract—Toddlers quickly learn to recognize thousands of
everyday objects despite the seemingly suboptimal training
conditions of a visually cluttered world. One reason for this
success may be that toddlers do not just passively perceive
visual information, but actively explore and manipulate objects
around them. The work in this paper is based on the idea that
active viewing and exploration creates “clean” egocentric scenes
that serve as high-quality training data for the visual system.
We tested this idea by collecting first-person video data of free
toy play between toddler-parent pairs. We use the raw frames
from this data, weakly annotated with toy object labels, to train
state-of-the-art machine learning models for object recognition
(Convolutional Neural Networks, or CNNs). We run several
training simulations, varying quantity and quality of the training
data. Our results show that scenes captured by parents and
toddlers have different properties, and that toddler scenes lead
to models that learn more robust visual representations of the
toy objects in them.

I. INTRODUCTION

Visual object recognition is a fundamental skill, and even
infants as young as 3-4 months are able to extract perceptual
cues that allow categorical differentiations of visual stimuli [1],
[2]. Two-year-old toddlers are easily able to recognize a variety
of everyday objects, allowing them to rapidly learn word-to-
object mappings [3] that build the developmental basis for
more complex skills such as language learning. But how do
toddlers become such efficient learners despite relying on
visual input from an inherently cluttered and referentially
ambiguous environment, where objects are encountered un-
der seemingly sub-optimal conditions? Recent studies started
using head-mounted cameras to approximately capture a tod-
dler’s visual experience, finding that the structure of a toddler’s
egocentric scene is profoundly different from that of an adult,
even within the same context [4]. Toddlers tend to actively
seek out one object of interest to manipulate, and (due to their
small visuomotor workspace) create scenes that are visually
dominated by that object [5]. As the success of any learning
system depends on the quality of the input that it is trained
on, the overall hypothesis in the present study is that toddlers
naturally create visually “clean” training data that facilitates
learning to visually recognize objects.

To test this idea, we use video data collected from head-
mounted cameras of toddlers and parents jointly playing with a
set of toy objects to train and compare different object recogni-
tion models. More specifically, we train Convolutional Neural
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Fig. 1: Overview of our experiments. Using head-mounted
cameras, we capture video data from toddlers and their parents
during joint toy play. We use this data, weakly annotated with
toy object labels, to train different object recognition models.
We compare performance of models trained with toddlers
versus parents using a separate, controlled test set.

Networks (CNNs), which are the current state-of-the-art for
object recognition in the computer vision community [6], and
are also increasingly used as “proxy models” by researchers
who study human vision [7]. Our recent related work [8] using
a similar paradigm has shown that CNNs benefit from the
visually diverse object viewpoints that toddlers create through
active manipulation of toys. However, these experiments relied
on fully-supervised training based on cropped-out close-up
images of toy objects, ignoring the context of how and where
objects actually occurred in the toddler’s field of view.

In contrast, the current study draws inspiration from recent
insights into weakly-supervised CNN training for object lo-
calization [9]. We directly feed the raw frames of the entire
first-person scenes to the neural network model and only use
weak supervision of objects, thus better approximating the
actual visual input of the toddler. This new paradigm allows
us to study differences in the first-person data from toddlers
and parents at the scene level, and introduces referential
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Fig. 2: Sample first-person video frames captured during joint toddler-parent toy play, contrasting toddler views (top) and
parent views (bottom). Each column shows synchronized frames. The first column also depicts the bounding box annotations
for each type of toy.

uncertainty between object labels and objects in view. More-
over, it allows us to investigate the trade-off between training
data quantity (many relevant objects in the field-of-view) and
quality (fewer, more dominant objects in view). Specifically,
we manipulate quantity by annotating varying numbers of toys
in view, and quality by annotating toys based on how large or
how centered they appear in view. We compose a series of
training simulations, finding that networks that were trained
with toddler data sometimes drastically outperform their parent
data counterparts, suggesting that toddlers create scenes that
facilitate visual object recognition.

The rest of the paper is structured as follows: Section II
introduces the datasets that were used in all of our experiments,
and Section III reviews statistics of the first-person dataset
that are relevant for visual object learning. In Sections IV
to VI we describe different CNN training simulations and
discuss their results. We summarize and conclude our findings
in Section VII.

II. DATASETS

We use an existing dataset collected by our past related
study [8] to test our hypothesis. This dataset consists of
videos from head-mounted cameras that capture the first-
person viewpoints of toddlers and parents jointly playing with
a set of toys in a natural environment. It also includes a set of
controlled close-up photographs of the same set of toys. We
use the first-person viewpoints to train our CNN object models,
and the controlled viewpoints to test their performance on an
independent dataset.

We briefly summarize the datasets here; see [8] for details.
For the first-person dataset, ten toddler-parent dyads (mean
child age 22.6 months) were invited to engage in free-flowing
play with a set of 24 toys (Figure 3) in a small lab outfitted
as a play room. Each dyad was simply encouraged to play
together and with the toys as they pleased. Parent and toddler
both wore head-mounted cameras to capture an approximation
of their respective fields of view (Figure 2). About 8 minutes
of video data were collected per dyad. One frame every five
seconds was then extracted from each video, producing a set
of 1,914 frames (957 each from toddlers and parents). Objects
were manually annotated in each image with a bounding box

(Figure 2, first column), yielding a total of 9,646 toy instances
in the toddler data, and 11,313 instances in the parent data.

The controlled dataset (Figure 3) consists of 128 close-up
photos of each of the same 24 objects, photographed on a
turntable: 64 photos from each combination of the eight 45°
orientations about the vertical axis and eight 45° orientations
about the axis of the camera center, and a cropped and
uncropped version of each image.

Fig. 3: Sample images from the controlled test data. To add
viewpoint and scale variation, each toy was photographed from
8 different viewpoints (green), and then rotated 8 times (blue)
and cropped at a lower zoom level (red).

III. SCENE STATISTICS OF THE FIRST-PERSON DATA

During joint play with a set of toys, toddlers and parents
actively create many scenes within their self-selected fields of
view. These scenes may contain toys in different quantities,
scales, and levels of clutter (see Figure 2). From the perspec-
tive of a learning system that aims to build a stable visual
representation of each type of toy, different scenes thus create
different levels of ambiguity and difficulty. We are interested
in whether the active viewing and visual exploration behavior
of toddlers actually creates less ambiguous scenes and thus
potentially higher quality data for visual object recognition.
To substantiate this idea, we begin by studying different
properties of toy objects in the fields of view (FOV) of toddlers
and parents. While we already reported some of the scene-
level properties in previous work [8], they are particularity
important to review in the context of the current study.

A. Object Size

Scenes might be more informative if the objects of interest
dominate. We approximate the actual size of a toy object with



the area of its bounding box, and measure the fraction of the
field of view that is occupied by this box. Figure 4a contrasts
the distributions of perceived object sizes between toddlers
and parents. Toddlers create significantly larger object views
with a mean size of 5.2% FOV versus 2.8% FOV for parents.
For reference, the white car toy (orange bounding box) in the
fist column of Figure 2 has a size of 13% FOV in the toddler
view and 5% FOV in the parent view.

Even when only large objects are in view, there may be
substantial referential ambiguity if all objects are roughly the
same size. When toddlers actively select and manipulate toys,
those toys should be visually dominant in comparison to the
remaining toys in view. To examine this idea, we compute the
fraction of the average size of the largest n toys in view over
the average size of the remaining toys. As shown in Figure 4b,
the relative size difference between large and small toys in
view is consistently greater in the toddler data, suggesting that
toddler scenes feature less ambiguity than parent scenes.

B. Object Centeredness

How centered an object appears within the field of view
may also contribute to its visual importance considering the
center-bias of eye gaze observed in head-mounted eye-tracking
experiments [10]. To measure centeredness, we compute the
distance from the center of an object bounding box to the
center of the field of view. Figure 4c contrasts the distributions
of object-to-center distances between toddlers and parents.
We observe no significant difference (mean distance is 48.4%
of the maximum possible distance for toddlers, 48.5% for
parents), suggesting this is not actually a major differentiator
between the views.

C. Number of Objects

Finally, the ambiguity of a scene also depends on how many
objects appear in view at the same time. Figure 4d studies this,
showing the number of objects that appear simultaneously in
each frame. The results suggest that toddlers create scenes
that contain significantly fewer toys in view compared to their
parents (10.1 versus 11.8 on average). Moreover, the fraction
of frames with a small number (fewer than 5) of objects is
about 20% for toddlers but only 13% for parents. Conversely,
parents are more likely to have almost all objects in view at
once (24% with more than 16 objects for parents versus only
15% for infants).

IV. OBJECT RECOGNITION WITH DEEP NETWORKS

A. Fully-supervised Object Recognition with CNNs

In the computer vision literature, object recognition al-
gorithms are usually trained and evaluated on datasets that
contain a set of n predefined visual object classes [11]. As
a result, most techniques use discriminative models that are
trained to classify an image of an object into one of these
(mutually exclusive) n classes, and each training image is
assumed to contain an instance of exactly one class, and
nothing else. State-of-the-art object recognition models like
Convolutional Neural Networks (CNNs) explicitly encode this
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Fig. 4: Toy object statistics of the first-person scenes. A
comparison of how toy objects appear in the fields of view of
toddlers and parents, in terms of (a-b) object size, (c) object
location in view, (d) number of objects in view.

assumption into the loss function that is minimized during
training. For example, the most common loss function for clas-
sification tasks is categorical cross-entropy, which encourages
the network to output a probability distribution across classes
that is very confident for exactly one class (low entropy) rather
than multiple classes (high entropy).

B. Weakly-supervised Training with First-person Data

In the context of the naturalistic first-person data described
in Sections II and III, the assumption that every scene contains
exactly one object of one class is almost always violated: real-
world scenes contain multiple objects, and the labeled object
may not dominate the view. We are interested in studying
(1) to what extend a standard CNN classifier (trained with
crossentropy loss) can overcome these violations, and (2)
differences between models that are trained with data collected
by toddlers when compared to models trained on parent data.

Towards these goals, we run various simulations where
we train multiple CNN models under different “weakly-
supervised” conditions. In each condition we label a specific
subset of the toys that are present in the field of view
under the following paradigm: Starting from a frame f that
contains k toy objects (1 ≤ k ≤ 24), we generate up to k
training exemplars where each exemplar consists of a pair
of the same (repeated) frame and the toy object label l, i.e.
(f, l1), ..., (f, lk). Only generating training exemplars based
on a subset of the toys in each frame lets us manipulate
the overall amount of training data, while choosing which of
the toy objects to label potentially affects the quality of the
training data.

Since this paradigm creates simple image-label pairs, it
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(c) Labeling the n most centered toys per frame

top n

917   1,794   2,632   3,430   4,191   4,905   5,582   6,207   6,774   7,285   9,646(a),(b),(c)

# exemplars 942   1,862   2,761   3,622   4,456   5,262   6,029   6,741   7,412   8,025  11,313
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(e) Labeling the n-th largest toy per frame

2 4 6 8 10 12 14 16 18 20 22 24

n-th most centered Toy per Frame

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Te
s
ti
n

g
 A

c
c
u

ra
c
y

toddler CNNs

parent CNNs

toddler data ambiguity

parent data ambiguity

random guess

(f) Labeling the n-th most centered toy per frame

Fig. 5: Object recognition accuracies for different training simulations. (a-c, e-f) Solid lines depict the overall testing accuracy
of CNN models based on the controlled test set of 24 toy objects. Every data point shows the average of five independently
trained networks and the shaded areas depict the standard error. Dashed lines depict baselines. (d) Summary of the total number
of training exemplars, the average size and average center distance of labeled objects across different training simulations.

allows us to train a discriminative CNN under the same
conditions as described in Section IV-A. This is a difficult
learning problem for two main reasons: (1) each training
image shows the whole first-person view and is potentially
referentially ambiguous with respect to the object label, and
(2) part of the training data may even be contradictory since
the model (falsely) assumes that each frame contains only one
object.

Across all simulations, we train models using either the
first-person data collected by toddlers, or the first-person data

collected from parents, and compare their object classification
accuracy on the controlled dataset of Section II.

C. Implementation Details

We use the well-established VGG16 [12] CNN architecture
for all of our experiments. VGG16 has a fixed input layer of
224×224×3 neurons, which means we resize all frames to
224×224 pixels. This input layer is followed by 14 convolu-
tional layers, 2 fully-connected layers, and the output layer.
The convolutional layers are divided into 5 blocks and each



block is followed by a spatial max-pooling operation. All neu-
rons have ReLU activation functions. A complete description
of the architecture can be found in [12]. We adjust the output
layer of the network to have 24 neurons to accommodate our
24-way object classification task. Following common protocol,
we initialize the convolutional layers with weights pre-trained
on the ImageNet dataset [11]. Each network is trained via
backpropagation using batch-wise stochastic gradient descent
and a categorical crossentropy loss function. The learning rate
is 0.001, the momentum is 0.9, and the batch size is 64 images.
We stop training each network after 20 epochs, after which the
loss had converged consistently across different simulations.

V. LEARNING BASED ON FRAME-SPECIFIC METRICS

One basic question is whether CNNs can successfully learn
object models from the first-person scenes at all. Since not all
24 toys occur simultaneously in every single frame, learning
(in the sense of finding a mapping between toy objects and
correct labels) should be possible in principle. Moreover, we
expect the toddler data to be less ambiguous in that regard
since the toddler scenes contain fewer toys on average. Recall
that we create training data by generating up to k exemplars
((f, l1), ..., (f, lk)) from a single frame f that contains k toys.
Thus we can compute the probability that an exemplar is
labeled as toy t given that it contains t, P (l = t|t ∈ f)
by simply computing the fraction of training images that are
labeled as t over the training images that contain t. One can
think of the average probability across all object classes as a
measure that captures the referential ambiguity between labels
and objects (assuming each object in a scene is equally likely
to be labeled). This probability would be 1 for perfectly clean
training data, and 1

24 if the data is completely ambiguous. We
report this measure in our results as an additional baseline.

A. Learning from random Toys in View

In our first simulation, we generate training data by simply
labeling a random subset of the toys in each training frame.
Figure 5a shows the testing accuracies (on the controlled
dataset described in Section II) of different CNNs as a function
of the number of annotated toys per frame. The blue solid
line depicts accuracies based on CNNs trained only on the
toddler data while the orange line is based on CNNs trained
only on the parent data. As CNN training is non-deterministic,
each data point shows the mean testing accuracy across five
independently trained networks.

The results show that both parent and toddler networks
can achieve above chance accuracies. Also in both cases, the
accuracy tends to decrease as n is increased, i.e. as more
toys per frame are labeled. This suggests that training with
fewer overall training exemplars facilitates learning compared
to training with more (but potentially contradictory) exemplars.
Overall, the toddler networks indeed perform better than
the parent networks. This difference may be caused by two
different factors: (1) toddlers see fewer objects in view (as
indicated by the different baselines), and (2) toddlers create

larger views of objects. We further investigate the effect of
object size in the next simulation.

B. Learning from the largest Toys in View

From a teaching perspective, labeling a random toy in
view is perhaps not the most effective strategy. If the size
of objects matters we should see better learning overall and
better learning for toddler data in particular if we instead label
the subset of the n largest toys in each scene. The results
of this simulation are summarized in Figure 5b. Indeed, both
parent and toddler networks now outperform their baselines,
indicating that the models were more likely to associate object
labels with larger objects in view.

Overall, the toddler networks now drastically outperform
the parent networks (top accuracy of 36% versus 13%), which
further supports the idea that larger objects facilitate learning.
For reference, when labeling only the largest toy in each frame
its average size is 15.6% FOV in the toddler data, but only
7.1% FOV in the parent data.

Since we generate labels based on object size, generating
more training data does not only result in more contradictory
exemplars, but also lower quality exemplars. Consequently, we
observe a more drastic drop-off in accuracy as n increases.

C. Learning from the most centered Toys in View

A different reasonable teaching strategy is to label the n
most centered toys in each scene. Figure 5c summarizes the
results of this simulation. Again, both parent and toddler mod-
els outperform their baselines, indicating that they successfully
learned that more centered toys in view are more likely to be
labeled. There is a positive correlation between object size
and centeredness (0.23 in the toddler data; 0.16 for parents),
so object size may still have an effect. However, the most
centered toy in each frame is on average much smaller than
the largest toy (10.2% FOV for toddlers, 3.8% for parents),
yet the networks achieve overall comparable accuracies.
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Fig. 6: Object recognition accuracies when only labeling toy
objects with a minimum size. The table shows the total number
of training exemplars for each condition.



Again, toddler networks drastically outperform parent net-
works. Since there is no significant difference in object cen-
teredness across the datasets, this difference is still likely
driven by the overall difference in object size.

D. Learning from Misleading Exemplars

Another insightful training approach is to only label the
n-th largest (or most centered) toy object in each frame rather
than the top n objects. This approach controls for the total
number of training exemplars (as it is independent of n) and
avoids contradictorily labeled exemplars. At the same time, if
centeredness or size are important, then increasing n creates
increasingly misleading exemplars.

Figures 5e and 5f show the simulation results of training
with the n-th largest and n-th most centered objects respec-
tively. In both cases, only toddler networks achieve results
that are significantly above the baselines. Compared to the
previous simulations, overall recognition accuracies decrease
much more sharply as n increases, highlighting the effect of
the misleading exemplars. This drop-off is most drastic for the
toddler networks trained on the largest versus second-largest
toys in view. This implies that having a very large “distractor
object” in view is particularity detrimental for learning, further
highlighting the importance of object size.

VI. LEARNING BASED ON ABSOLUTE METRICS

The results presented in Section V suggest that toddlers
create scenes that facilitate visual object learning primarily
by bringing a few objects dominantly into the field of view.
To measure the effect of object size more directly, we run
another set of training simulations. This time, we only label
objects of a certain minimum absolute size, regardless of their
relative size to other objects in view. This creates another
quality versus quantity trade-off since increasing the minimum
object size results in fewer training exemplars.

Results are summarized in Figure 6. Object recognition ac-
curacy increases with object size in the toddler data, reaching
its peak when training with ~800 frames in which the target
object covers at least 12% of the FOV. Interestingly, while
there is a quality versus quantity trade-off, the overall accu-
racy remains relatively high, indicating that CNNs can build
relatively robust object models from just a few high-quality
exemplars. Parents on the other hand did not generate enough
high-quality exemplars to learn robust object representations.

VII. SUMMARY AND DISCUSSION

In this work we captured first-person video from toddlers
and parents during free-flowing toy play, and used it to train
CNN models to recognize those toys. This toy play paradigm
was intentionally not designed to allow a well-controlled
comparison of visual object learning between toddlers and
parents (e.g. the toys are not novel and subjects are not
instructed to learn to recognize them). Instead, our goal was
to simulate a naturalistic scenario that captures how toddlers
interact with objects in their day-to-day lives, with parents
functioning as a reference. Our results show that toddlers,

both as a result of their exploratory behavior and their small
visuomotor workspace, naturally create visual scenes that are
dominated by a small set of large objects. We believe that these
naturally occurring statistics of the visual input are crucial
towards toddlers’ growing efficiency to recognize, distinguish,
and ultimately learn to map words to objects. To support this
idea, we demonstrated that a computational visual learning
system (CNNs) can indeed benefit from such statistics.

Specifically, we showed that (1) CNNs could learn represen-
tations of the toy objects despite being trained only with raw
frames from the first-person view, and (2) models trained with
data from the toddlers’ perspectives drastically outperformed
parent-trained models in many conditions. These differences
appear to be driven by toddlers centering objects dominantly
in view and creating more diverse viewpoints of objects [8].
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