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Abstract

Communication is an essential skill for cooperative tasks, yet neuroevolved agents struggle
to develop communicative behaviour. In fact, it has been shown that communicating agents are
sometimes outperformed by noncommunicating ones on tasks that ostensibly require commu-
nication. In our paper, we explore mechanisms which could aid agents in developing commu-
nication through evolution. Specifically, we examine the idea of an opt-in mechanism whereby
agents communicate only on request – the idea being that by eliminating communication when
agents deem unnecessary, evolution is presented with less information to understand and organ-
ise. Spurious input would serve only to distract evolution and cause it to explore unconstructive
lines of development, hence we expect to find opt-in controllers evolving better solutions faster.
Additionally, we explore an extension of the opt-in mechanism wherein agents receive fitness
penalties for each communication request made. The idea behind this is to incentivise agents
to communicate efficiently, or more colorfully, to incentivise them to not distract evolution. We
test the performance of agents with opt-in controllers on a task where communication and co-
operative behaviour is required only half of the time; the rest of the time, agents are assigned
fitness based on actions independent of each other. Their performance is compared to those
of agents which communicate constantly and to noncommunicative agents. We do indeed find
that opt-in controllers outperform the other kinds, although contrary to our expectations, they
underperform the other controllers through the early stages of evolution.

1 Introduction

Much of what occupies humanity’s attention can be described as cooperative multiagent problem
solving, namely, politics and sport. Thus perhaps there is an argument to be made that developing
artificial adaptive multiagent systems that are capable of solving such problems is of innate interest.
Anyhow, the applications of cooperative multiagent systems are diverse and many [4].

The most robust solution that humans have found to solving such problems is communication.
Politicians will discuss, debate and deliver their votes. Athletes will shout, signal and make sug-
gestive eye contact. The importance of the role of communication in cooperative tasks has been
highly studied in artificial life experiments [6]. Communication has been shown to be necessary or
offer great advantages to solving specific tasks, for instance, tasks that involve agents assembling
in specific configurations or requesting help from one another.

Yet we find that neuroevolved agents with communication mechanisms perform exceedingly
poorly – so poorly, in fact, that they are outperformed by noncommunicating agents on tasks
involving cooperation. Thus in the ensuing discussion, it will serve us well to understand why
communication suits humans so well, yet trips up neuroevolved agents as they are currently imple-
mented.

In the paper Coevolution of Role-Based Cooperation in Multiagent Systems, Yong and Mikku-
lainen [6] explore how to evolve cooperative controllers to solve a predator-prey capture task. Such
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tasks involve a group of agents, called predators, attempting to hunt down a pre-programmed prey
agent through cooperative and coordinated action. One of their chief and most surprising findings
was that communicating agents were completely outperformed by noncommunicating agents on
this task; as seen in Figure 1, the noncommunicating agents learned to solve the predator prey task
in less than half the number of generations that the communicating agents took.

Figure 1: Noncommunicating agents evolve solu-
tions in under half the time [6].

A reason that this is so surprising is that
communicating agents were technically com-
pletely capable of mimicking the behaviour of
noncommunicating agents in this case. If evo-
lution had simply learnt to set the weights cor-
responding to the communicative inputs within
the neural network architecture to zero, the
communicating agents would be functionally
equivalent to the noncommunicating ones.

Understanding how it is at all possible that
noncommunicating agents solve a task requir-
ing cooperation proves to be informative. The
key idea is that an agent is capable of deter-
mining information about another agent’s ac-
tions or position indirectly, through their effect
on the environment. For instance, in Yong and
Mikkulainen’s predator-prey task, the direction
in which the prey runs away implicitly reveals
actionable knowledge about the other preda-
tors. This use of information implicit in the
environment is termed stigmergy.

It is hard to believe that stigmergy is so powerful, yet this phenomenon proves quite robust.
Stan Franklin gives multiple real life situations in which coordination of multiple agents is achieved
without communication [2]. For example, Ghenghis, a six-legged insect-like robot, learned to walk
with simply three sensors, two of which indicated pain and one of which indicated pleasure. There
was no element of coordination, communication or signalling between the six legs.

In examining the stigmergic approach, the most minimal approach towards communication,
one can see what pitfalls evolution steps into with explicit communication. Franklin points out
that communication comes with built in computational costs, in that it needs more “architecture
and intelligence” [2]. Yong and Mikkulainen similarly highlight that a network capable of explicit
communication will require significantly more parameters (such as weights and hidden units). There
are very many more moving parts that a network will have to learn to tune [6]. When humans
apply communication to problem solving, this is not usually a consideration at all.

A related argument is that evolutionary algorithms (for instance NEAT [5]) have no knowledge
of what the input really represents. Through evolution it simply guesses how to connect the inputs
to the outputs with sensible weights. The overhead of additional inputs and outputs posed by
explicit communication simply presents evolution with too much information to understand and
organise through its methodical guesswork alone.

This leads to two lines of thought. One, some forms of representing information may prove
significantly easier. It’s not at all obvious exactly what an agent should be communicating and
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what form this communication should take. With each additional dimension of communication,
the task becomes that much harder to solve. Perhaps some form of principal component analysis
should be applied first. This problem has been studied in the literature. For instance, Jim and
Giles [3] investigate a version of the predator-prey task where agents are allowed to communicate
arbitrary binary strings – in essence, the freest form of communication. Closer to home, Chang
and Worlanyo [1] study a swarm foraging task where agents communicate through frequencies and
attempt to learn to interpret these frequencies in meaningful ways.

Second, given that explicit communication necessarily involves overhead, how do we mitigate
the effect of all this extra information. Yong and Miikkulainen describe how on their prey-predator
task, communicating agents biased towards not communicating perform comparably to the non-
communicating agents. Again, we notice that humans are very good at filtering through extraneous
information, helping explain why communication is much more robust as a human strategy. The
idea then is that we implement a mechanism to help agents filter information, and tune out unnec-
essary noise.

In our paper we explore the idea of allowing agents to opt-in to communication. Then we
have given the agents the power to deem when it is necessary to communicate and when it is
not. Then, by eliminating communication when deemed unnecessary, evolution is presented with
less information to understand and organise, helping it focus on exploring constructive lines of
development.

Thus when compared against controllers that receive a constant stream of communication on a
task where communication is not always necessary and distracts from the objective, we hypothesise
that controllers with an opt-in mechanism will achieve superior performance. As the opt-in mech-
anism reduces the amount of information evolution needs to process, we also predict that these
controllers will evolve better solutions faster. Compared to noncommunicating controllers, opt-in
controllers will perform better, while constantly communicating controllers will perform worse or at
the same level, supporting the findings of Yong and Miikkulainen. Finally, we experiment with con-
trollers that are penalised for requesting communication, and we conjecture that these controllers
will learn not to communicate during the parts of the task communication is not required.

2 Experiments

2.1 World and Physics

Two agents are located in a circular world of diameter 100 units. Agents move around the world
with a maximum velocity of 1 unit per timestep. Agents control themselves through their choice
of acceleration, which is capped at a maximum of 0.1 units per timestep square. When an agent
collides with the boundary of the world, its velocity is reset to zero. This results in a physics
wherein agents have momentum, so their current velocity does constrain their actions.

2.2 Fitness

At each timestep agents receive fitness in the range [0, 1]. An agent’s fitness score is calculated by
averaging fitness over the lifetime of the agent. The world alternates between two modes, individual
mode and team mode, at regular intervals of 100 time steps. The two modes are distinguished by
the fitness functions applied to the agents whilst the world is in that mode, as specified by Table 1.
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Individual mode: 1− d(agent, goal)

Team mode: 0.75 · |va · vb|+ 0.25 · d(agent a, agent b)

Table 1: Fitness functions for individual mode and team mode, where d is normalised distance.

In the individual mode, each agent has a goal point that it is rewarded for being close to. For
instance, in Figure 1, the red agent is rewarded for being close to the orange point, while the blue
agent is rewarded for being close to the light blue point. In the team mode, agents share fitness
based off of the absolute value of the dot product of their velocities and their distance from each
other.

Figure 2: World in the individual mode

The goal point for each agent is chosen each time the world switches from team to individual
mode. The point is randomly chosen on the boundary of the world, although to reduce the element
of luck and the variability of fitness, we ensure that the goal point is between 40 and 65 units away
from the agent at the moment it is chosen.

The best way to think of fitness in team mode is simply as a function that is dependent on
both the agents’ velocities relative to each other and their positions relative to each other. Going a
little more in depth, we see agents are rewarded for moving in the same axis as each other (either
parallel or antiparallel with the other), and for being as far apart as possible.

Additionally, penalty controllers, discussed in later sections, received a fixed penalty of 0.05 in
fitness each timestep they chose to request communication.
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2.3 Evolution

Autonomous heterogeneous neural controllers were evolved using NEAT [5]. NEAT, or NeuroEvo-
lution of Augmenting Topologies, is a method for evolving artificial neural networks that acts
differently than other genetic algorithms; instead of evolving with a fixed topology, NEAT deter-
mines the network topology in addition to the weights. It does so by slowly evolving increasingly
complex neural network architectures. The evolution, as usual, prioritizes network architectures
and weight set-ups that yield higher fitness scores.

The reason we evolved heterogeneous controllers as opposed to homogeneous ones is we hoped
to develop pairs of controllers with strategies that could be asymmetrically dependent on the other’s
actions: for example, a pair of controllers could learn to let one be a leader, and the other a follower.

Coevolution of the heterogeneous controllers (which we’ll call A and B) was implemented as
follows. In each generation, an A controller is tested by pairing it with the ten best B controllers
from the previous generation. Rather than using the average fitness across all pairings, the fittest
pairing is used to determine the fitness of the A controller. B is then similarly evolved. The idea
behind implementing coevolution in this way is that we want to evolve pairs of controllers that are
attuned to their partner, as we wish for them to develop highly specific communication strategies.
A controller with a strategy dependent on its partner responding a certain way will not perform
well when its fitness is averaged over all pairings. A good analogy for this coevolutionary process
is that of a dance: a controller’s fitness is determined by its performance with the partner of its
choice. We used a population size of 30, evolved for 40 generations in two different runs. The
fitness of each pairing was determined by simulating the world for 10,000 timesteps.

2.4 Controllers

We tested four types of controllers, detailed as follows. Silent controllers operated without com-
munication. Constant controllers had constant communication. Opt-in controllers communicate
through an opt-in mechanism that is implemented as follows. The controller has a dedicated out-
put that signals a request for communication. When a controller makes a request, both controllers
receive communicative inputs. Penalty controller are opt-in controllers but evolved with a fitness
penalty for each request to communicate. They incur a penalty of 0.05 to their fitness for that
timestep each time they decide to signal.

Table 2 details the inputs given to each kind of controller. All controllers receive as input their
own positions and velocities, the current mode and the location of the goal during the individual
mode. Silent controllers are restricted to just these inputs. Constant controllers always receive the
positions and velocities of the other agent. Opt-in and Penalty controllers have additional inputs
that correspond to the position and velocity of the other agent upon request. The decay input is
a measure of time since the last communication request made. A signal resets its value to 1, after
which it decays at a rate 0.9 with each time step.

Figure 2 is a visual representation of an opt-in controller that emphasises the idea that the
world selectively filters input to the controller dependent on the signal output.
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Inputs What it Represents Silent Constant Opt-In Penalty

x, y position of self X X X X
vx, vy velocity of self X X X X
mode current game mode X X X X
rx, ry coordinates of individual goal X X X X
cx, cy position of other agent − X o o

cvx, cvy velocity of other agent − X o o
decay measure of time since last communication − − X X

Table 2: Inputs for each controller. A checkmark indicates the controller had the input, while a
dash indicates the controller did not have the input. An o indicates the controller opted into the
input.

inputs

outputs

x y vx vy gx gy cx cy cvx cvy decay

ax ay signal

Figure 3: Inputs and outputs for an opt-in controller.

Table 3 details the outputs of each controller. Agents traverse the world by outputting acceler-
ation along the x and y directions. We implemented an acceleration based movement mechanism
as it imbues agents with momentum. Apart from being more realistic, this also makes the task
harder for the agents as their current velocity constrains their ability to change position. Opt-in
and penalty controllers have the additional signal output. When signal is greater than 0.9, the
world interprets it as the agent requesting communication.
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Outputs What it Represents Silent, Constant Opt-In, Penalty

ax, ay coordinate accelerations of agent X X
signal a request for communication − X

Table 3: Outputs for each controller.

3 Results

3.1 Overall Fitness Scores

For each run, we tested the fittest pairing from each generation over the course of 30 lifetimes, each
of 10,000 timesteps. We compare and contrast the data gathered from each of the runs, rather than
averaging the two, so that we have a better sense of how the controllers evolved relative to each
other. Note that in testing, penalty controllers were not penalised for communication requests, so
the fitnesses are in fact comparable.

We analyze the first run. As can be seen in Figure 4, the opt-in controller achieved the highest
overall fitness. The constant controller fared roughly equally to the silent controller. The penalty
controller scored similarly to the constant and silent controllers, albeit a bit worse. Furthermore,
the silent controller was quickest to evolve an effective solution to our task.

Figure 4: Results from the first run.
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In the second run, as can be seen in Figure 5, the results are very similar. Once again the opt-in
controller achieves the best performance and the silent controller evolves better solutions faster.
The penalty controller once again performs the worst.

Figure 5: Results from the second run.

3.2 Analysis of Behavior

In the first run, the controllers across the board were able to navigate close to the goal points during
the individual mode. However, during the team mode, we observed varying behavior. The silent
controllers consistently settled into a clockwise loop during the team mode. This tacit agreement
often performed alright on the component of the fitness related to velocities. However, the agents
with these silent controllers tended to get very close to each other. The opt-in controllers generally
circled each other but kept a large radius, and signalled almost constantly, about 90% of the time
in both modes. The constant controllers displayed similar behavior to the opt-in controllers. The
penalty controllers often acted chaotically, without any signs of higher purpose. Interestingly,
the penalty controllers gradually learnt to never signal over the course of the run, functionally
performing as silent controllers. This is likely because the penalty they received was around the
margin of difference between their fitness and that of the silent controllers.

In the second run, controllers once again exhibited similar behavior during the individual mode,
being able to navigate close to but not always exactly towards the goal points. Once more, we
observed diverse behaviour in the team mode. The silent controllers would hug the perimeter,
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often ensuring separation between the two. Opt-in controllers circled each other while keeping a
large radius, with one of the agents consistently staying closer to the center. Constant controllers
often settled into circling motions, but performed poorly in terms of the distance between each
other. The penalty controllers performed very badly comparatively, being outperformed at every
point in evolution, though this time the controllers from the final generation signalled most of the
time in both game modes.

There was no clear evidence that the signalling corresponded to the game modes, which is what
we were testing for. In fact, with the penalty controllers in the second run, in earlier generations
sometimes the opposite of the expected signalling behaviour occurred, with more signalling in the
individual mode than the team mode. The signalling behaviour changed pretty drastically between
generations, even at the end of the run. This may explain why the penalty controllers performed
poorly through the run.

4 Discussion

We find that all agents perform respectably on the individual mode, always heading towards their
goal, and usually staying within the vicinity of the goal once reached. In the team mode, on the
other hand, we find none of the controllers achieve clearly dominant behaviour. However, the
results do support some of our hypotheses. Opt-in controllers did in fact outperform both silent
and constant controllers. As predicted, and in support of previous results, we found that silent and
constant controllers performed comparably, with silent controllers having a small upper hand.

The fact that all controllers performed largely within the same fitness range indicates that our
task may need revision, in order to better distinguish good solutions from average solutions. Addi-
tionally, the task was designed to necessitate communication half the time. However, the fact that
noncommunicating controllers were able to stumble upon a tacit strategy that performed well may
indicate that the task is largely solvable without communication, and so may need revision. If this
were the case, then giving the controllers the ability to communicate at all would be burdensome.
Derandomising the task (although we did limit the degree to which luck could affect fitness) may
also prove more robust results, although preliminary experimentation indicated that these systems
were much easier to game – that is, achieve good results without communication. For instance, we
saw agents predicting the location of the goals.

The other important highlight of the results is that silent controllers evolved faster than opt-
in controllers in both runs. This directly relates to the idea behind this experiment: the added
infrastructure required by communication gives the neural network a lot more information to have
to try to interpret. Opt-in controllers required even more infrastructure than constant controllers
(in terms of inputs and outputs), and this fact most likely slowed their evolution. This in fact
suggests that opt-in controllers could have achieved a bigger differential in performance if we had
let them evolve for more generations.

We observed that penalty controllers performed consistently the worst out of the different types
of controllers. A reason for this could be due to our choice of the fitness penalty incurred for
communication. The difference in performance between penalty controllers and constant and silent
controllers was on the order of the penalty incurred for communication per timestep. Therefore a
penalty controller choosing not to communicate and becoming functionally equivalent to a silent
controller would dominate a communicating penalty controller. We didn’t lower the fitness penalty
incurred as that would put the penalty within the fitness range produced by random variation
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between lifetimes. This suggests that we need a more robust fitness function that produces greater
difference. Alternatively, we could penalise communication more creatively. For instance, if a
controller chooses to communicate, we compare its outputs with and without communication,
and penalise it proportional to the difference in the outputs. This could teach the controller to
request communication only when it is actionable. However, this could also just cause it to behave
erratically every time it requests communication.

It is also possible that our choice of implementation of coevolution was not optimal. Rather
than pick a partner at every timestep, it may have been better to evolve specific pairs of agents
from the very start. This would also have been less computationally intensive, and would have
allowed us to carry out more runs, for more generations. Consistent results over more runs would
help clarify the significance of these results. However, we were constrained by the limitations of
the NEAT library we used for evolution.

Finally, our choices for the communicative inputs may have been overbearing. It is possible for
example that not providing velocities or providing relative positions could have improved perfor-
mance. However, this relates back to the vein of thought of Jim and Giles, Chang and Worlanyo,
as discussed in the introduction. It is hard to predict a priori the type and amount of information
that will be most useful for communicating agents.

5 Conclusion

We find that the idea of allowing controllers to decide when they want to communicate is an
interesting one. Humans excel at distinguishing signal from noise, and giving neuroevolved agents
a similar ability to tune out helped them achieve superior performance on a task that only sometimes
required communication.
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