Competition Between Objective and Novelty Search on a Deceptive
Task

Billy Evers and Michael Rubayo

Abstract

It has been proposed, and is now widely accepted within use of genetic algorithms that a
directly focused, objective based search is not always the most efficient way to best solve a
problem or maximize a fitness score. Past work has shown that on deceptive tasks, in which
local maxima are common in the search space, direct search is outperformed by novelty search,
which is in essence a direct search for behavioral uniqueness instead of increased fitness. Our
past efforts to recreate this result have been underwhelming, and so we have crafted what we
believe is a far more deceptive task and corresponding fitness function on which to test the
efficiency of objective search versus novelty search. We find that while neither method reaches
a fitness peak that is higher than the other by a statistically significant margin, novelty search
reaches top fitness far quicker on average. These results indicate that for tasks with built in
deception, novelty search can be a more effective strategy for problem solving.

1 Introduction

In our previous lab work, we attempted to test the validity of rewarding behavioral novelty as a
search algorithm. Our first experience with genetic algorithms dealt with the more intuitive direct
search, as a general explanation for genetic algorithms as a whole, and stemmed from Mitchell's
1999 work, An Introduction to Genetic Algorithms. The underlying principles for direct search are
easy to grasp: the quickest way from any point in the search space to the ideal point is a straight line.
Individuals who succeed in outperforming their population peers should be the ones who natural
selection rewards and are chosen to procreate, and the only measure of success should be proximity
to the perfect solution as measured by a fitness function. This fitness maximization strategy felt
unbreakably logical, and so we were skeptical upon reading about the apparent benefits of rewarding
novelty instead of fitness in Lehman and Stanley's Abandoning Objectives: Evolution Through the
Search for Novelty Alone. How could a search that seems to be, at its very essence, exhaustive
possibly be more efficient than direct objective based search? The simple answer is deception,
and we will discuss this concept in greater detail later. We were not convinced that novelty could
outperform objective, but we were curious, so we attempted to create a deceptive vacuum coverage
task in which agents had the task of covering certain parts of a simulated area without covering
others. Our results were inconclusive and left us eager to further pursue the performance differences
between direct and novelty search. In order to provide a common arena for these two strategies,
we used and will again use NeuroEvolution of Augmenting Topologies (NEAT) as it is detailed by
Stanley and Miikkulainen in Competitive Coevolution through Evolutionary Complezification. The
algorithms creation of species and continued promotion of a certain quality in a population, whether
it be fitness or unique behavior, will allow the two strategies to compete on an even playing field

with the same simulated task and evolution algorithm. After testing this competition, we believe
that because of the deception level of our task will allow novelty search to outperform objective
search.

2 Genetic Algorithms and Objective Search

In many ways, objective search mirrors the processes of Natural Selection in evolution, and as
a result the loosely defined field of genetic algorithms borrows many concepts from the field of
Natural Biology. Indeed, Mitchell highlights the benefits of using natural selection as a search
tool, saying Evolution is a massively parallel search method: rather than work on one species at
a time, evolution tests and changes millions of species in parallel [2]. In a genetic algorithm, each
individual in a population is a different chromosome, each comprised of different genes which can
be as simple as just binary bits, or built up to be weights and connections in a complex neural
network. Individual chromosomes are tested as possible solutions to a problem and their suitability
is rated by a fitness function. Organisms, which we call chromosomes, that score higher as dictated
by the fitness function are more likely to reproduce and continue into the next generation. When
two of these chromosomes reproduce, they are subject to more processes that mirror what occurs
in evolution, the most important of which is mutation. When any two solutions reproduce their
topologies and genes are brought together to form a representation of their combined strategy, but
they are also subject to the possibility of a mutation occurring in which a new node or connection
is added at random, according to some predetermined probability. Through this process, complex
solutions can arise to tackle the problem in question. When the fitness function on which the
individuals are measured is directly related to solving the task, the search is objective. In other
words, the individuals who are chosen to reproduce are those who achieve the highest, although
of course not necessarily a perfect, fitness score. Additionally, when a chromosome is chosen to
advance to the next generation, it takes information from its previous run and attempts to better
itself, tweaking the weights of connections between nodes in order to raise its fitness for the next
generation. As a result, through both reproduction and self-improvement, organisms in a genetic
algorithm population either strive or die off, and theoretically converge to the optimal solution
over time. As Robert Axelrod demonstrated in 1987, both to evolve solutions to an interesting
problem and to model evolution and coevolution in an idealized way. [2] Undoubtedly, objective
search seems like the most intuitive strategy for guiding genetic algorithms towards the solution to
a complicated problem.

3 Novelty Search

As early as 1990, W. Daniel Hillis had begun to decry objective search in search spaces with mul-
tiple local maxima. Hillis was unsatisfied with the solutions that his genetic algorithm evolved to
optimize a search network, and wondered how it could struggle so mightily to maximize efficiency.
As Mitchell explains, Hillis concluded that, the GA was getting stuck at local optimalocal ”hill-
tops” in the fitness landscaperather than going to the globally highest hilltop. The GA found a
number of moderately good (65comparison) solutions, but it could not proceed further [2]. The
implementation for a novelty based search which exclusively rewards unique behavior that we will
draw from was proposed in tested in 2011 by Joel Lehman and Kenneth Stanley. Because objective
search, particularly when adjusting error with gradient descent, behaves in such a way that actually

Figure 1: Each gameboard contains ten goal spaces radnomly placed throughout the world.

encourages getting stuck in these small hilltops, it can be beneficial to attack certain search spaces
without an explicit objective. Problems that are particularly tricky for a direct search algorithm
to solve are said to be deceptive, and the Chinese finger trap is presented as an example [1]. If the
overall goal is to separate the two fingers, a direct fitness function that grades solutions based on
end distance between the two fingers will reward solutions that pull the fingers apart, even though
the fitness maximizing solution would be to push the fingers together in order to loosen the trap.
The key insight that gives validation to novelty based search as a legitimate strategy is that, while
seeking behavioral novelty will reach all possible solutions over time, novelty search is not neces-
sarily an exhaustive search. If novelty were exhaustive, it would be no different than a linear scan
of the search space, but novelty search proponents argue that task domains on their own provide
sufficient constraints on the kinds of behaviors that can exist or are meaningful, without the need
for further constraint from an objective function [1]. In other words, most problems, by their very
nature, limit the amount of feasible solutions a search algorithm could return. With this insight
in mind we know that novelty search is at least a computationally viable option, but how do we
implement it? Lehman and Stanley argue that a sparseness metric should be computed for every
demonstrated behavior, and solutions with sparseness greater than the solutions already existing
in an archive of sparse behaviors are added to the archive. The sparseness metric can be based
on a number of behavioral aspects, but a simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k is a fixed parameter that is determined
experimentally. If the average distance to a given points nearest neighbors is large then it is in
a sparse area; it is in a dense region if the average distance is small [1] Using this measurement
to quantify sparseness and therefore novelty, we can institute an evolutionary search algorithm in
which those that survive are the most unique, instead of those who record the highest fitness score.

Figure 2: The neural network on the left is an example of an evolved novelty network, while the
one on the right is an evolved objective network.

4 Experiments

NEAT, which as stated before stands for NeuroEvolution of Augmenting Topologies, and it is
a system used to evolve a brain to optimize a certain task. It does this through the usage of an
artificial neural network, or a system of nodes that fall under three types: input, hidden and output.
The network takes the given input values and those values are altered and changed depending on
their values through different hidden nodes, until the output node is reached and the output is
decided upon. The network evolves by introducing new hidden nodes, altering the values of the
hidden nodes, and removing unnecessary hidden nodes every generation to create a more optimized
outcome based on the task at hand [3].

This is how the network evolves over the course of a simulation. For our experiment we had 6
input values, all normalized to be between 0 and 1, and two output values. The six input values
were: inSafe (a check to see if the agent was in the safe zone), energy level, distance to wall
(simulator boundary), stall (not able to move in the direction it is facing), distance to nearest goal
space, and heading to nearest goal space. The outputs were the two needed to move the agent,
translation and rotation. We decided to give the agent these six inputs as we felt it provided
it with enough information to figure out the deceptiveness to the task, without overloading the
network with too much information to process. Now for the actual implementation of NEAT in
both objective and novelty searches, we decided to have a population of 100, run for 30 generations,
a total of 30 unique times, for both search algorithms. This allows for a total of 90,000 unique runs
being made for each search algorithm. They were both judged on the same fitness function, F=
W. Now the novelty of each run is the Euclidean distance between two points,which for our
case is defined as (f1, f2, £3), as using the coordinate points does not necessarily define a unique
solution in the terms of our task.

In order to create a more deceptive task to test novelty and objective search methods, we
devised a task utilizing our simulator made from in-class labs to create an area 1200 by 1200 in
size. Within this region, there was a centrally located square of size 600 by 600 with the four
corners located at points (300, 300), (300, 900), (900, 300), and (900, 900). This center square, was
colored blue. Then, around the central square was ten distinct red circles with radius 50. These
ten circles represented goal spaces and their location was randomized for every run, with the only
limitations being that the center point of the circle must be within a range of [100, 1100] for both
the x and y values, none of the circles may overlap or touch at all with the center square, and none

Parameter Setting
Generations 30
Population size 100
Input nodes 6
Hidden nodes 0
Output nodes 2
Prob. to add link 0.1
Prob. to add node 0.05

Table 1: NEAT parameter settings used in the experiments.

of the circles may overlap or touch with each other. Finally, located at point (600, 600) at the start
of every simulation was the agent, or autonomous aspect of the simulation. The agent, colored
green, had a radius of 15, and its movement was controlled by a brain evolved through NEAT.
The deceptive task that we gave the simulator was based on three parts. First, the simulation
started with an energy level of 2000 that would deplenish linearly on every time step. In order
to avoid the termination of the simulation, if the simulator reached the center of any of the ten
red circles, which we called goal spaces, it would receive back 50 percent of the energy it had lost
from the original 2000, basically replenishing the simulators life to continue on. Every time the
simulator achieved this we took a goal value of 100/e, or 1 if €j100 with e being the energy level
prior to the replenishing, while removing the goal space. Once the simulation had either run out
of energy or attained every goal space, the simulation ended, and we took the average of all the
accrued goal values, which was the first value used within our fitness function. The second aspect
was simply the percentage of time steps that the center point of the agent was located within the
center square, or safe zone. The third and final aspect to our fitness function was the percentage
of the ten goal spaces that were attained during the simulation. These three aspects, which we
labelled f1 , 2, and f3 respectively, were then averaged out in the equation F = W, so each
aspect was a third of the overall fitness function, which was normalized to fall within [0,1]. This
task was created to be deceptive, as it is physically impossible to achieve the maximum fitness value
of 1, for the simulation cannot stay in the safe zone while reaching the goal spaces, creating a task
where the agent has to knowingly suffer a lower fitness score in one aspect of the task to increase
the other two. Also since the agent benefits from gaining the goal spaces with lower energy levels,
it complexifies the deceptiveness as the agent must realize that it needs to waste time between goal
spaces, while still ensuring it can reach the goal space before it runs out of energy. With these
multiple layers of deception we hypothesised that the runs utilizing novelty search would achieve
a higher average fitness level over the course of 30 runs, and achieve the peak fitness in an earlier
generation than its counterpart, objective search, for the randomized task.

5 Results

After running 30 runs for both objective and novelty search, we see in Figure 3 that objective
search actually outperforms in terms of average peak fitness across the runs. On average, the
highest fitness recorded over thirty runs for objective search was .613, while for novelty it was
.6027. At first glance it seems that our hypothesis was incorrect, objective search is actually more

. summarize . su

Variable Obs Mean Std. Dev. Min Max Variahle

Obs Mean Std. Dewv. Min Max

Objective
Novelty

30 .6132833 .0248976 .572 .6535 Objective
30 .6027 .0217501 .5688 672 Novelty

30 17.36667 8.892009 3 29
30 11.7 7.34448 (] 24

. ttest Objective == Novelty . ttest Objective == Novelty

Paired t test Paired t test

Variable Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall variable Obs Mean Std. Err. Std. Dev. [95% Conf. Intervall

Object~e 30 .6132833 .0045457 .0248976 .6039864 .6225802 Object~e 36 17.36667 1.623451 8.892009 14.84634 20.687
Novelty 30 -6027 -003971 -0217501 -5945784 -6108216 Novelty 30 11.7 1.340912 7.34448 8.957526 14.44247

diff 30 -8105833 -8863586 -8348273 -.0024214 -823588 diff 30 5.666667 2.034379 11.14275 1.505895 9.827439

mean{diff) = mean({Objective - Novelty) t= 1.6644 mean(diff) = mean(Objective - Novelty) t = 2.7855
Ho: mean(diff) = @ degrees of freedom = 29 Ho: mean(diff) = @ degrees of freedom = 29

Ha: mean(diff) < @ Ha: mean(diff) != @ Ha: mean(diff) > @ Ha: mean(diff)} < @ Ha: mean{diff) '= @ Ha: mean{diff) = @
Pr(T < t) = 0.9466 Pr|T| > [t]) = 0.1068 PriT > t) = 0.0534 Pr(T < t) = 0.9953 Pr|T| = |t|) = ©.0093 Pr(T > t) = 0.0047

Figure 3: On the left: The average peak fitness for both novelty and objective. On the right: The
average peak fitness generation.

efficient even on a task with various local maxima. However, must check to see if the difference
between the two means is statistically significant. We deliberately chose a sample size of 30 so that
it would be large enough to assume normality in our data, so that we can run a t-test on the two
means to indicate if our results are statistically significant. Using a two tailed t-test and assuming
a null hypothesis that there is a difference between objective search and novelty search, we get a
p-value of just over .1. This tells us that we cannot say with enough certainty that there is any
difference between the true means of objective and novelty search average peak performances, and
therefore our results are not statistically significant.

The lack of significant evidence in our performance test is disappointing, but we do see a
significant difference between the two search strategies in terms of average peak fitness generation.
By average peak fitness generation we mean that we use the average generation at which each
strategy recorded a fitness maximum for the 30 runs as an indication of how quickly the different
strategies find optimal solutions. If this metric is lower, that means that the algorithm is reaching
its peak fitness at an earlier generation, and therefore more efficiently. The average peak fitness
generation for novelty search is much lower than objective: 11.7 as compared to 17.367. Again
running a t-test to see if this difference is significant, we can confirm with over 99 percent certainty
the null hypothesis that the average peak fitness generation for novelty search is lower than for
objective search.

After reaching these results, we became curious about which elements of the fitness function
were being maximized over time in each of the different alogirthms. The average value of each
fitness term over time is displayed in Figure 4, and the results are intuitive with our hypothesis.
Objective search acts as expected, and clearly alternates between focusing primarily on 2 and {3
in order to find the optimal combination. Novelty, however, shows no inclination to maximize the
individual terms, it simply pursues behavioral uniqueness. The most telling observation in this
graph is negative correlation between f2 and f3 in the objective graph, as it struggles to work out
a balance between the two.

Objective Average Fitness Novelty Average Fitness per Generation

Figure 4: The average fitness term value acorss generation for novelty compared to objective.

6 Discussion

Upon first glance it seems that we erred in our hypothesis, and that novelty search offers no
performance benefits over objective search. Ultimately we seek the search method that will solve
the problem successfully and efficiently, and after 30 generations we see no significant difference
between the best solutions provided by each strategy. We observe no significant variation in the max
fitness reached between novelty search and objective search. However, efficiency of search is just as
important as accuracy, and in this metric we see significant evidence that novelty search is more
efficient in reaching the best solution than objective search. As we expected, because novelty search
is not getting repeatedly stuck in local maximum solutions, it finds the best solution more quickly
and therefore efficiently. This fits within the framework of our hypothesis, and indicates perhaps a
potential flaw in our experiment. It makes sense that, given enough time, both search algorithms
will reach an optimal solution. In retrospect, it is possible that our number of generations was too
large in order for us to see any meaningful results in terms of average peak performance. Limiting
the number of generations per run would put the two search algorithms in more of a time crunch,
and the more efficient strategy would theoretically have shown significantly better results in fitness
as well as generation. This is possibly an idea for future work, in which we vary the number of
generations throughout the expriment. Results from this experiment could demonstrate that for
a task of a given difficulty and deception level, we can estimate the amount of generations each
search strategy will need. However, even with no significant difference in peak fitness, we believe
that the significant difference in average peak generation is sufficient to demonstrate that novelty
search is indeed more efficient than objective search when the search space is full of local maxima
and the task in question is of a high level of deception.

References

[1] Joel Lehman and Kenneth Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary Computation, 19(2), 2011.

[2] Melanie Mitchell. Genetic Algorithms: An Overview. 1999.

[3] Kenneth Stanley and Risto Mikkuulainen. Competitive coevolution through evolutionary com-
plexification. Journal of Artificial Intelligence Research, 21, 2004.

