
Comparing Deep Neural Networks and Traditional Vision
Algorithms in Mobile Robotics

Andy Lee
Swarthmore College

alee3@swarthmore.edu

ABSTRACT
We consider the problem of object detection on a mobile
robot by comparing and contrasting two types of algorithms
for computer vision. The first approach is coined ”traditional
computer vision” and refers to using commonly known fea-
ture descriptors (SIFT, SURF, BRIEF, etc.) for object detec-
tion. The second approach uses Deep Neural Networks for
object detection. We show that deep neural networks perform
better than traditional algorithms, but discuss major trade offs
surrounding performance and training time.

Author Keywords
Computer Vision; Deep Neural Network; SIFT,SURF;
Caffe; ROS; CS81; Adaptive Robotics

INTRODUCTION
Computer vision is an integral part of many robotic appli-
cations. In the 90s, we saw the rise of feature descriptors
(SIFT, SURF) as the primary technique used to solve a host
of computer vision problems (image classification, object de-
tection, face recognition). Often these feature descriptors are
combined with traditional machine learning classification al-
gorithms such as Support Vector Machines and K-Nearest
Neighbors to solve the aforementioned computer vision prob-
lems.

Recently there has been an explosion in hype for deep-neural
networks. In fact, there has been a wide-spread adoption of
various deep-neural network architectures for computer vi-
sion because of the apparent empirical success these archi-
tectures have seen in various image classification tasks. In
fact, the seminal paper ImageNet Classification with Deep
Convolutional Neural Networks has been cited over 3000
times.[2] This is also the model used as a standard out-of-
the-box model for a popular deep neural network framework
called Caffe.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, please contact the author.

In this paper, we consider the problem of object detection on
a mobile robot. Specifically, we compare and contrast two
types of algorithms for object detection. The first approach is
coined ”traditional computer vision” and refers to using com-
monly known feature descriptors (SIFT, SURF, BRIEF, etc.)
for object detection alongside common machine learning al-
gorithms (Support Vector Machine, K-Nearest Neighbor) for
prediction. In contrast, the second approach uses Deep Neu-
ral Networks architectures.

Our emphasis will be on analyzing the performance of
two approaches in a mobile-robotic setting characterized by
a real-time environment that constantly changes (lighting,
nearby objects are constantly moving). Specifically, we wish
to detect objects while the mobile agent is moving, differing
from the performance on still-image tasks – the focus of ob-
ject detection papers.

Our paper is broken up as follows.

• Background knowledge on traditional vs deep neural net-
work approaches.

• Survey of relevant litearture in computer vision.

• Discussion of experiments

• Appendix: Implementation details for mobile robotics
(navigation, ROS, hardware)

COMPUTER VISION BACKGROUND
Computer vision can be succinctly described as finding
telling features from images to help discriminate objects
and/or classes of objects. While humans are innately en-
dowed with incredible vision faculties; it is not clear which
features humans use to get such strong performance on vi-
sion tasks. Computer vision algorithms in general work by
extracting feature vectors from images and using these fea-
ture vectors to classify images.

Our experiment considers two different approaches to com-
puter vision. On the one hand are traditional approaches
to computer vision. These approaches date back to the
past 10-20 years and are characterized by extracting human-
engineered features (edges, corners, color) deemed to be rel-
evant in vision tasks. One can say these techniques lean to-
wards a human-driven approach.

1

Figure 1. Example showing scaling changes detection of a corner.

On the other end of the spectrum are techniques stemming
from deep neural networks, which are quickly gaining popu-
larity for their success in various computer vision tasks. Once
again the goal is to extract features that help discriminate ob-
jects; however, this time these features are learned via an au-
tomated procedure using non-linear statistical models (deep
nets). The general idea of deep-neural networks is to learn a
denser and denser (more abstract) representation of the train-
ing image as you proceed up the architecture. In this section,
we provide a brief but more detailed introduction to these
techniques.

Traditional Vision
We now describe some techniques used in traditional vision.
The idea behind each of these techniques is to formulate some
way of representing the image by encoding the existence
of various features. These features can be corners, color-
schemes, texture of image, etc.

SIFT (Scale-Invariant Feature Transform)
The SIFT algorithm deals with the problem that certain im-
age features like edges and corners are not scale-invariant. In
other words, there are times when a corner looks like a corner,
but looks like a completely different item when the image is
blown up by a few factors. The SIFT algorithm uses a series
of mathematical approximations to learn a representation of
the image that is scale-invariant. In effect, it tries to standard-
ize all images (if the image is blown up, SIFT shrinks it; if the
image is shrunk, SIFT enlarges it). This corresponds to the
idea that if some feature (say a corner) can be detected in an
image using some square-window of dimension σ across the
pixels, then we would if the image was scaled to be larger, we
would need a larger dimension kσ to capture the same corner
(see figure 1). The mathematical ideas of SIFT are skipped,
but the general idea is that SIFT standardizes the scale of the
image then detects important key features. The existence of
these features are subsequently encoded into a vector used to
represent the image. Exactly what constitutes an important
feature is beyond the scope of this paper.

SURF (Speeded-Up Robust Features)
The problem with SIFT is that the algorithm itself uses a
series of approximations using difference of Gaussians for

Figure 2. A picture of SIFT feature keypoints from OpenCV.

standardizing the scale. Unfortunately, this approximation
scheme is slow. SURF is simply a speeded-up version of
SIFT. SURF works by finding a quick and dirty approxima-
tion to the difference of Gaussians using a technique called
box blur. A box blur is the average value of all the images
values in a given rectangle and it can be computed efficiently.
[1, 5]

BRIEF (Binary Robust Independent Elementary Features)
In practice, SIFT uses a 128 dimension vector for its feature
descriptors and SURF uses a minimum of 64 dimension vec-
tor. Traditionally, these vectors are reduced using some di-
mensionality reduction method like PCA (Principal Compo-
nents Analysis) or ICA (Independent Components Analysis).
BRIEF takes a shortcut by avoiding the computation of the
feature descriptors that both SIFT and SURF rely on. In-
stead, it uses a procedure to select n patches of pixels and
computes a pixel intensity metric. These n patches and their
corresponding intensities are used to represent the image. In
practice this is faster than computing a feature descriptor and
trying to find features.

Deep Neural Networks
The deep networks we examine in this paper are convoul-
tional neural networks. For those familiar with artificial neu-
ral networks, these are simply multi-level neural networks
with a few special properties in place (pooling, convolution,
etc.). The basic idea is that we will take a raw RGB image and
perform a series of transformations on the image. On each
transformation, we learn a denser representation of the image.
We then take this denser representation, apply the transforma-
tion and learn an even denser representation. It turns out by
using this procedure, we learn more and more abstract fea-
tures with which to represent the original image. At the end,
we can use these abstract features to predict using some tradi-
tional classification method (and it works surprisingly well).
We now discuss the architecture of the convolutional neural
network. Notice that each of the layers we describe below,

2

Figure 3. CNN training process.

transform the input in some fashion and allow us to reach for
more abstract features.

The implementation of the CNN and some of its techniques
are discussed in the below section. Because of space con-
straints, we also skip a detailed discussion on the various lay-
ers (convolution, rectified linear units, max-pooling) because
this was thoroughly explained in class already.

RELEVANT LITERATURE
In this section, we survey 2 related pieces of literature. We
provide a brief summary of the techniques used and discuss
the implications and connections with our project.

ImageNet Classification with Deep Convolutional Neural
Networks
Arguably one of the most influential papers in applying deep
learning to computer vision, this paper discusses a neural net-
work containing over 60 million parameters and 60 million
parameters that significantly beat previous state-of-the-art
approaches to image recognition in a popular computer
vision competition: ISVRC-2012 [2]. For those familiar with
neural networks, the key innovation fo Convolutional Neural
Networks is that the layers are not fully connected; this is to
improve learning time and prevent overfitting.

The architecture of the featured convolutional neural
network is given by 5 convolutional layers that are followed
by max-pooling layers and 3 full-connected layers with a
final 1000-way softmax. Important innovations of this paper
include an alternative to the traditional sigmoid activation
function and methods for reducing over-fitting. Traditionally,
activation functions take the form

f(x) = (1 + e−x)−1 or tanh(x)

However, the paper advocates the use of Rectified Linear
Units (ReLUs), which refers to the activation function

f(x) = max(0, x)

The max function significantly accelerates learning time. To
reduce over-fitting, the authors also artificially enlarged the
data set by generating image translations and horizontal re-
flections on each image, while preserving their labels. This
increased the training set by a factor of 2048. While the new
training examples are highly correlated with the original ex-
amples, this data augmentation forces the network to learn

multiple representations of the same image, thereby encour-
aging generalization. While the exact details are given in the
paper, we simply state that the CNN described in this paper
achieves an error rate of 37.5 as compared to a more tradi-
tional approach of using SIFT + FV features, which achieves
an error rate of 45.7.

CNN Features off-the-shelf: an Astounding Baseline for
Recognition
The authors take a different approach to deep-learning.[4]
Rather than use a deep neural network for prediction, the au-
thors extract features from the first fully-connected layer of
the OverFeat network which was trained to perform object
classification on ILSVRC13. In other words, the deep net
step tells us which features are important to consider when
doing learning on image data; think of this step as dimen-
sionality reduction to learn condensed representations of the
image. The next step is to determine how effective this con-
densed representation is for prediction. Hence, with these
features in mind, the authors train simple classifiers (Support
Vector Machine with linear kernel) on images specific to a
target data set. Here’s a summary of what we discussed.

1. Train a deep-neural network on ILSVRC13

2. Record the featuresF learned from the first fully connected
layer from step (1).

3. Consider a brand-new image data set (Pascal VOC, Oxford
102 Flowers).

4. Extract features F from each image of data set.

5. Train SVM (linear kernel) on this new data set.

6. Report results.

The incredible and perhaps counter-intuitive result is that this
approach performed similarly to networks trained specifically
for the object classification on ILSVRC13. In this way, the
authors have demonstrated an alternative to meticulously tun-
ing a copious amount of hyper-parameters that is commonly
employed in computer vision. Put another way, the authors
provide a compelling claim that the features obtained from
deep-convolutional nets should be the primary features used
in most visual recognition tasks. This SVM + CNN approach
significantly outperformed tradition techniques using SIFT
features.

One final note. The authors tested this approach on a
variety of visual recognition tasks, including attribute de-
tection, image classification and object detection – all of
which performed considerably well. In each task, the au-
thors also experimented with data-augmentation procedures
similar to the techniques described in the previous paper.
Data-augmentation performed slightly better than no data-
augmentation.

3

Implications
While we did not have a chance to fully implement and ex-
plore the techniques presented in these two papers because of
time constraints, we take this time to point out a few observa-
tions and thoughts. Without a doubt, the first paper demon-
strated the efficacy of deep-neural networks in computer vi-
sion tasks. Moreover, the results of both papers demon-
strate that traditional vision techniques are quickly being out-
muscled by deep neural networks. However, that does not
mean traditional vision techniques are obsolete; many of the
image processing tasks for cleaning a data set remain the
same. For example, we saw in both papers that underlying
principles (augmenting a data set by shifting, translating and
rotating) are being used in conjunction with deep neural net-
works.

Often a criticism of deep neural networks is that they require
a massive data set in order to train effectively, otherwise they
are prone to over-fitting. Moreover, there is a long tedious
process of tuning parameters. The second paper, however,
demonstrated that a combined approach of using learned fea-
tures from deep nets on traditional linear classifiers can be
extremely effective. We believe this represents a huge break-
through for robotics as it allows us to leverage the power of
deep neural networks in a way that makes the simple com-
puter vision tasks of our experiment very tractable. In fact,
the authors showed that even a generic model from Caffe is
good enough to begin using this approach.

The papers discussed highlight two computational innova-
tions using machine learning for computer vision. There has
also been recent literature exploring how to use context to bet-
ter detect objects. For instance Torralba, Murphy and Free-
man learn feature global feature descriptors to learn a scene
and use such scene information as a type of prior when per-
forming object detection [3]. Their techniques heavily rely on
performing inference on graphical models. We skip the math-
ematics behind this approach, but it represents yet another ap-
proach to computer vision – translating intuitive principles of
human vision to computers.

EXPERIMENT
We are interested in how traditional computer vision algo-
rithms perform against deep neural networks in a mobile
robotic setting. In our case, we focused specifically on object
detection on a moving turtlebot in the hopes of identifying
factors that determined robustness (or lack thereof) in object
detection. Furthermore, once those factors had been identi-
fied, we pushed to achieve strong object detection for both
algorithms. Admittedly, our experiments are less theoretical
than those covered in our survey of relevant literature; there-
fore our results focus mainly on the practical considerations
of vision in robotics. We were motivated by the following
questions.

1. Would deep neural networks outperform traditional vision

algorithms and vice-versa? If so, by how much? If not,
why not?

2. How robust would object detection in general be? Would
we be able to detect objects all the time, some of the time,
seldomly or none of the time? What factors contribute to
this?

3. What are the practical issues that make it difficult to per-
form vision in the mobile robotic setting (changing lighting
conditions, dynamic environment, stochastic nature of sen-
sors)?

Experiment Hypothesis and Design
Given the recent popularity of deep neural networks, we hy-
pothesized that CNNs would significantly outperform tradi-
tional feature-descriptor algorithms (SIFT, SURF). By how
much, we were not sure. The first step was to design an ex-
periment to benchmark these two approaches. We wanted
our experiment to benchmark computer vision in the mobile-
robotic setting. To accomplish this, we placed our mobile-
agent (turtlebot) in a closed room with a target object to de-
tect. We then start the robot at a fixed position and let it wan-
der using a simple autonomous exploration algorithm for a
set period of time (45 seconds). This interval was chosen to
be long enough so as to ensure the object would appear in
the turtlebot’s camera feed thereby giving our computer vi-
sion algorithms a chance to classify the object. If the vision
correctly identifies the object, then it stops and we record the
iteration as a success. Otherwise, if time runs out we record
the iteration as a failure. The same procedure is run identi-
cally for CNNs and our traditional vision algorithms.

Our experiment took place in the G.R.A.S.P (General
Robotics Automation, Sensing and Perception) laboratory at
the University of Pennsylvania. The lab contains a semi-
closed area to run robotic experiments characterized by a
green-turf carpet. Around are chairs and desks that act as
office space for members of the lab.We set the robot’s au-
tonomous explorer to stay within the confines of the open-
space and not venture to the office areas. Hence, one can
think of the robot exploring the area of the green-turf carpet
until it has found its desired object (see figure 4).

Note there is some stochasticity in the way the robot explores
(sometimes it explores closer to the object, other times far-
ther away). Therefore, on some iterations the robot may be
biased to be in positions that allow it to better detect the ob-
ject. However, the autonomous exploration procedure does
not change when we use CNNs vs traditional algorithms; the
two components are independent. In other words, one type of
algorithm does not have an inherent advantage over the other
in terms of exploration. That means if we run the experiment
a sufficient number of times then we would have data to re-
port statistically rigorous results that indicated whether or not
one algorithm performed better than the other. For our ex-
periment, we run each setup 10 times for each algorithm and

4

record the results. In this context, setups are characterized by
the object the robot is required to detect.

Finally, we make one last comment regarding our experi-
ments. Others have proposed other benchmarks to compare
the two algorithms. For example, we could have recorded (in
addition to successes and failures) on average how quickly
each algorithm identified an object corectly. This is a subject
for future work, but for the time being we were simply in-
terested in knowing which algorithm detected better. We felt
this setup was enough to get some interesting results, but also
easy enough to convey our results. We summarize each run
of our experiment in a setup below and provide a picture that
captures our environment.

Step by step procedure for one run-through

1. Place robot in a fixed position. (same procedure for CNN
and traditional vision)

2. Place the desired object for the robot to find in the con-
trolled area and ensure that the object is in the robot’s line
of vision if robot faces object.

3. Initiate autonomous exploration on the robot and watch it
map the environment.

4. Set a timer for 45 seconds.

5. Record whether or not the robot stopped during this pro-
cess, which would indicate the robot has found a desired
object.

Experiment Results and Discussion
We now discuss the results of our experiments. Firstly, we
decided on two objects for our setups: a soccer ball and a
computer keyboard. Because our turtlebot used a webcam
that was elevated on a mast, we needed to choose objects
that could be elevated enough to be the the turtlebot’s line
of vision. Both those objects could be detected by the built-
in caffe network. In order to test these objects on our tra-
ditional algorithms, we used the find-2d-object package to
extract SIFT,SURF and BRIEF features from those objects
(discussed below). So that we didn’t bias the results, we
trained the find-2d-object algorithm on different but similar
keyboards in an environment outside of the actual experiment
environment.

In earlier experiments, we realized there was an inherent flaw
in our experiment setup. In the original setup, the robot ex-
plores autonomously while the vision algorithms try to detect

Modified Explore (Keyboard) Number of
successful

trials (out of
total trials)

Duration of
each run

Caffe 6/10 45
Find Object 2d 4/10 45

Table 1. Modified exploration with keyboard.

Figure 4. The robot directly faces the target object, a keyboard on an
elevated platform.

the objects coming in from the camera-feed. The problem is
while the robot explores, there is significant movement of the
camera, especially given that our camera is mounted on a thin
mast. It turns out that this movement induces blurry images,
which negatively affects the prediction accuracy. In fact, an
accurate prediction is simply not possible with a blurry im-
age. Therefore, with the original setup it was impossible for
the turtlebot to detect an image. Essentially, the problem was
that there was never enough of a window for the camera to get
an accurate read on its surroundings. To overcome this diffi-
culty, we needed to modify our exploration behavior. Rather
than explore on each iteration, we set up the robot to turn in
place very slowly after each exploration step. This accom-
plished two things. Firstly, by turning in place a small de-
gree each step, the camera was able to get an accurate read
of its environment. Secondly, we paused on each turn so that
each algorithm could make 5 predictions on each turn. This
allowed each algorithm to localize the object and make an
informed prediction.

Modified Explore (Ball) Number of
successful

trials (out of
total trials)

Duration of
each run

Caffe 4/10 45
Find Object 2d 3/10 45

Table 2. Modified exploration with ball.

5

Figure 5. A picture of the keyboard (target object) on an elevated plat-
form that is in the robot’s line of vision.

Discussion and Conclusions
We notice that the performance of the algorithms improved
dramatically using the modified exploration procedure. That
said, we take this time to note a few more aspects of the ex-
periment that the data does not illustrate. It turns out that both
algorithms worked amazingly well when they were extremely
close to the object and could get a good reading. The neural
network always recognized the keyboard and ball when it was
within a few inches of it and find-object-2D recognized the
objects about 70 percent of the time. The problem is that our
autonomous exploration procedure does not always guarantee
that we will get close enough to the object to achieve this re-
sult; this follows from the stochastic nature of our exploration
scheme.

Therefore, to extend this project we would have liked to
implement one additional feature of object localization that
would encourage the robot to move closer to objects when it
sees one. This would guarantee that the robot would achieve
the necessary distance to get a precise reading on an ob-
ject and allow us to strictly consider the vision algorithms
rather than have the autonomous exploration scheme poten-
tially skew our results in the wrong way. Another thing that
was not well illustrated from the data was the fact that find-
object-2D only worked well with objects with prominent fea-
tures. Therefore, objects like paper plates (one solid color,
no edges) fared very poorly. On the other hand, the paper

plates did not fare as poorly with caffe. Hence, deep neural
networks can detect a much wider range of objects, at least
based on our observations.

In addition, it seemed that there was difficulty detecting an
smaller objects such as keyboards and balls. One natural ex-
tension to achieve a more refined comparison between two
computer vision approaches is to run our experiments on
larger objects such as chairs and doors.

To conclude, we note a particularly important tradeoff be-
tween CNNs and traditional vision algorithms. To train our
traditional vision algorithms (extracting feature descriptors),
we only needed to process an object in the camera feed for
about 30 seconds to 1 minute and this allowed us to get 70
percent accuracy. In essence, traditional vision algorithms
represent a quick and dirty (though surprisingly effective)
method for doing computer vision, but they are limited not
just by accuracy but also the objects that they can detect. On
the other hand, had we decided to train a CNN from scratch,
we would have needed a few hundred thousand training ex-
amples of our objects in order to train effectively. This be-
cause deep networks take many many training examples be-
fore they are effective. As such , we can see an immediate
tradeoff between accuracy and an investment of time, energy
and resources. Therefore, we can conclude that for on-the-
fly mobile robotic applications, traditional vision algorithms
still have its place, despite the wide-spread success of deep
networks.

CONCLUSION AND FUTURE DIRECTIONS
In this paper, we discussed a simple computer vision exper-
iment that compared traditional computer vision algorithms
and deep-neural networks. We showed that the deep neural
network performed better, but explained the difficulties that
we faced with running object detection on a moving robot.
We also surveyed a few pieces of literature representing re-
search directions in computer vision. With more time, we
would have particularly liked to explore using CNN features
and running simple classifiers (SVM) to see how such an ap-
proach would fare in the mobile robotic setting. In addition,
we would have also liked to explore scene recognition and
determine how much an improvement we would gain with
object detection given scene knowledge.

ACKNOWLEDGMENTS
We would like to thank Dr. Eric Eaton for letting us audit his
Integrated Intelligence for Robotics class and for providing
the turtlebot resources, without which this experiment would
not have been possible. We would also like to thank the
following Upenn students Yifan Wang, Guan Sun, Christo-
pher Clingerman, Pedro Tecchio for providing assistance in
installing Caffe and OpenCV on the turtlebot as well as pro-
viding a set of helpful eyes when debugging integration is-
sues. Finally, we would like to thank Lisa Meeden for provid-
ing a wonderful classroom experience in her CS81 (Adaptive

6

Figure 6. Caffe predictions based on distance from keyboard.

Robotics) class.

REFERENCES
1. Dsp.stackexchange.com. Understanding surf features

calculation process, 2015.

2. Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
2012.

3. Murphy, K. P., Torralba, A., and Freeman, W. T. Using
the forest to see the trees: A graphical model relating
features, objects, and scenes. In Advances in Neural
Information Processing Systems 16, S. Thrun, L. Saul,
and B. Schölkopf, Eds. MIT Press, 2004, 1499–1506.

4. Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. Cnn features off-the-shelf: an astounding baseline for
recognition, 2014.

5. Stackoverflow.com. How to apply box filter on integral
image? (surf), 2015.

APPENDIX
For the interested reader, we discuss the major components
that powered our turtlebot, including turtlebot hardware, ROS
and navigation software. Note that this section can be safely
skipped because the paper’s focus is on computer vision. We
have simply included this for those that may way to reproduce
our experiments.

Vision Software
In this section, we provide details on the actual vision al-
gorithms used, including their corresponding software pack-
ages.

OpenCV
OpenCV is perhaps the most widely used open-source soft-
ware for computer vision. It supports a variety of functions
like converting RGB images to gray-scale, re-sizing images
and extracting feature descriptors. In our case, the two algo-
rithms deep neural networks and traditional feature descrip-
tors (described below) both depended on many tools found in
openCV. In that sense, OpenCV acts as a fundamental soft-
ware package that a host of computer vision algorithms rely

7

on.

We make a brief digression to talk about the version of
OpenCV that was used. The most current long-term sup-
port version if OpenCV 3.0, however, we experienced a large
number of integration issues when trying to use OpenCV. The
reason is many of our applications (Caffe) has been config-
ured to use openCV 2.4.10. We quickly realized that openCV
3.0 was not backwards compatible and so we decided to stick
to using version 2.4.10, which worked fairly well.

Caffe
Caffe is an open-source deep learning framework developed
by BVLC (Berkeley Vision and Learning Center). There
were many very good, very well-maintained open frame-
works for deep learning, but we ultimately chose Caffe be-
cause it was easiest to integrate with ROS. A few things to
note.

The out-of-the-box model given by Caffe is a slight varia-
tion on the network featured in ImageNet Classification with
Deep Convolutional Neural Networks. We did not make any
changes to this neural network because it was able to detect
the objects in our experiment straight out of the box. In addi-
tion to Caffe, we used a plugin called ROS Caffe which pro-
vides a bridge between ROS and Caffe to facilitate integra-
tion. ROS Caffe allows us to subscribe the the camera-feed
topic and directly publish a prediction on a ROS topic named
”caffe-ret”.

Find Object 2D
We used a ROS package called Find Object 2d for traditional
computer vision. This package is a simple Qt interface to
try OpenCV implementations of SIFT, SURF, FAST, BRIEF
and other feature detectors and descriptors for objects recog-
nition. To use Find Object 2D, we simply needed to place an
object in front of the camera. The package had a very easy-
to-use training procedure to extract features by recording a
series of camera feeds. Using Find Object 2d we can sub-
scribe to the camera-feed topic and directly publish position,
rotation, scale and shear of an object. As an aside, notice that
this package allows us to localize objects, a feature that ROS
Caffe does not support.

Hardware
Our mobile agent is a standard turtlebot manufactured by
Willow Garage. The turtlebot comes with a standard Mi-
crosoft Kinect for Xbox 360, which 3d-sensing in the form
of a depth-sensor and RGB capabilities; the Kinect is used
strictly for localization and obstacle avoidance and not for
any computer vision tasks. We decided on a few additions to
the turtlebot in order enable the use of a webcam for com-
puter vision tasks. These additions include a mast, use of the
NUCi7 for onboard computing and a Microsoft Lifecam for
the webcam.

ROS

Figure 7. Image of using Find-Object-2D to extract keyboard features.

We use the ROS (Robotic Operating System) framework
to program our turtlebot. ROS imposes a standard event-
based programming paradigm primarily involving function-
callbacks for robotics that streamlines the development pro-
cess. In addition, it provides uniform guidelines for the devel-
opment of software packages in an effort to encourage seam-
less integration.

ROS Implementation
”The fundamental concepts of the ROS implementation are
nodes, messages, topics, and services.

Nodes are processes that perform computation. ROS is de-
signed to be modular at a fine-grained scale: a system is typi-
cally comprised of many nodes. In this context, the term node
is interchangeable with software module. Our use of the term
node arises from visualizations of ROS-based systems at run-
time: when many nodes are running, it is convenient to render
the peer-to-peer communications as a graph, with processes
as graph nodes and the peer-to-peer links as arcs.

Nodes communicate with each other by passing messages. A
message is a a strictly typed data structure. Standard prim-
itive types (integer, floating point, boolean, etc.) are sup-
ported, as are arrays of primitive types and constants. Mes-
sages can be composed of other messages, and arrays of other
messages, nested arbitrarily deep.

A node sends a message by publishing it to a given topic,
which is simply a string such as odometry or map. A node
that is interested in a certain kind of data will subscribe to the
appropriate topic. There may be multiple concurrent publish-
ers and subscribers for a single topic, and a single node may
publish and/or subscribe to multiple topics. In general, pub-
lishers and subscribers are not aware of each others existence.
” 1

Navigation Software

1Taken from http://www.robotics.stanford.edu/ ang/papers/icraoss09-
ROS.pdf

8

We use a variety of software packages to both execute simple
functionality on our turtlebot (navigation) and carry out ob-
ject detection algorithms. We defer the software for computer
vision for a later section. This section focuses strictly on the
packages we used to do navigation on the turtlebot.

Move base
Move base is a package that comes standard with turtlebot.
Given a map, it allows the user to issue goal-based navigation
directives to the turtlebot. Subsequently, move base executes
this goal and abstracts away the path planning process. Be-
cause most of our applications provides a location-based nav-
igation goal (object position, autonomous mapping), move
base is called for nearly every navigation task.

Gmapping
”The gmapping package provides laser-based SLAM (Simul-
taneous Localization and Mapping), as a ROS node called
slam gmapping. Using slam gmapping, you can create a 2-
D occupancy grid map (like a building floor plan) from laser
and pose data collected by a mobile robot.” 2

Gmapping is currently the most popular algorithm used for
SLAM. It uses Rao-Blackwellized particle filters to map
the environment and is a critical component to any form of
autonomous exploration (described below). To the novice
robotics programmer, gmapping can be thought of as primar-
ily a package for using kinect camera feeds to map the envi-

ronment. This map is subsequently used for path-planning,
obstacle avoidance and autonomous exploration.

Hector Navigation
It will be clear later, but our experiment relies on the ability
for a robot to autonomously explore its environment. Since
gmapping only provides a method for localizing and map-
ping, we need an additional component that allows the robot
to explore unknown areas (points that have not been mapped).

To accomplish this task, we use a sub-module of the Hector
Navigation package called Hector Explore. Hector Explore
works by looking at unmapped regions and generating a host
of possible routes. The algorithm then selects one of these
routes and calls move base to execute the route.

A very popular alternative to Hector Navigation for au-
tonomous exploration is the Frontier Exploration package.
In fact, the Frontier Exploration package is well-documented
and maintained; it works for not just the turtlebot but for a se-
ries of other mobile robotics. We tried Frontier Exploration,
but quickly ran into multiple issues that was very difficult to
debug. For some reason, Frontier Explore generated a series
of routes that were deemed impossible to execute by move
base, despite working in simulations. For this reason, we de-
cided it was simply easier to switch to Hector Explore rather
than try debugging the problem.
2Taken from http://wiki.ros.org/gmapping

9

	Introduction
	Computer Vision Background
	Traditional Vision
	SIFT (Scale-Invariant Feature Transform)
	SURF (Speeded-Up Robust Features)
	BRIEF (Binary Robust Independent Elementary Features)

	Deep Neural Networks

	Relevant Literature
	ImageNet Classification with Deep Convolutional Neural Networks
	CNN Features off-the-shelf: an Astounding Baseline for Recognition
	Implications

	Experiment
	Experiment Hypothesis and Design
	Experiment Results and Discussion
	Discussion and Conclusions

	Conclusion and Future Directions
	Acknowledgments
	REFERENCES
	Appendix
	Vision Software
	OpenCV
	Caffe

	Find Object 2D
	Hardware
	ROS
	ROS Implementation

	Navigation Software
	Move base
	Gmapping
	Hector Navigation

