Evolving Mario to Maximize Coin Score Using Neat and Novelty

Amy Han and Jeremy Han

Abstract

Genetic algorithms can be used to evolve agents that will complete game tasks in a given game environment.
In this paper, we discuss our experimental results using NEAT and Novelty to evolve Mario, from the popular
game Super Mario Bros, to maximize his coin score. To conduct our experiments, we developed our own Mario
simulator, creating a small world and a big world. Each world has an easy and hard version; the addition of coin
boxes is what defines a world to be difficult. Just like in the original SMB, we added hidden rooms that contain
many coins. However, finding the hidden room is the most difficult part. We hypothesized that Novelty would
outperform NEAT because of its exploratory nature, while NEAT would focus more on getting the coins that
are easy to obtain. Our results indicated that without an input that tells Mario what type of coin is nearest
to him, Novelty significantly outperforms NEAT. However, with the input, NEAT can perform on par, or even
better than Novelty at times. We argue that the reason for his discrepancy is that the addition of the input
makes the task less deceptive for NEAT, which closes the performance gap between NEAT and Novelty.

1 Introduction

Video and computer games often use artificial intelligence (AI) code to give life to non-playable characters (NPCs)
in the game. For example, enemy NPCs are programmed to attack your in-game character while ally NPCs are
programmed to help. In our experiments, we used artificial intelligence for an entirely different purpose: to evolve
an agent to excel at a certain task. Inspired by Seth Bling’s “Marl/O Machine Learning for Video Games” video [1],
we decided to conduct experiments on Mario. In Super Mario Bros. (SMB), a popular two-dimensional platform
game, the human player controls a character named Mario and tries to clear each level of the game by exploring and
finding the finish flag. Along the way, the player can collect coins, kill enemies, be killed off by enemies, and more.
Most levels are predictable so that the player can expect exactly what will happen, such as when and where an
enemy will appear or where the coins are. Players often memorize key features in each level to optimize their score.

In Seth Bling’s video, Mario evolved to excel at finishing the level. Our experiments focus on evolving Mario
to obtain as many coins as possible. To evolve Mario, we used NEAT and Novelty Search. While NEAT alone
can be used to solve this coin-collecting task, it is not ideal for solving deceptive tasks - tasks that force the agent
to explore areas with lower fitnesses during evolution. Instead, another approach is to use Novelty Search in the
hopes that the search for novel behaviors will result in a more promising solution. In this paper, we conducted
NEAT and Novelty experiments in a custom Super Mario Bros. simulation environment. Our goal was to find
Mario behaviors that could collect many coins. Deception was added to the task by creating hidden coin bonus
rooms in coin-sparse areas to observe the strengths and weaknesses between the NEAT and Novelty solutions.

NEAT is a genetic algorithm that evolves neural networks using genetic encodings with historical markings to
create a population of individuals that are judged on how they perform based on a user-defined measure of fitness
[5]. For NEAT, the goal is to find high fitness scoring individuals (global maxima in the behavior space). Thus,
during its search for high scoring individuals, NEAT often falls victim to local maxima and is unable to find better
solutions. Novelty Search uses NEAT but focuses on finding novel behaviors, as opposed to finding global maxi-
mum, in the behavior space [4]. To accomplish this, Novelty keeps an archive of unique behaviors and compares
the most recent behavior with those in the archive. If the new behavior is novel, it gets a higher uniqueness score.
This uniqueness score is then fed into the underlying NEAT network so that it can find more novel behaviors.

1.1 Previous Research

Of course, our study is not the first to incorporate evolutionary algorithms in video games. One well-cited paper,
co-authored by one of the creators of the NEAT algorithm, Kenneth O. Stanley, used neural networks to evolve
NPCs and weapons in a game that they created called NERO [3]. In NERO, the human player acts as a trainer for
NPCs equipped with rtNEAT, a real-time version of NEAT. The human player sets up a training scenario so that
the NPCs can learn combat tactics and strategy in real time. Then, the NPCs fight against a team that the human
player controls using what they learned during the training session. This evolutionary algorithm shows promise
because it can add more flavor to NPCs’ predictable behavior, making gameplay more interesting. However, since
rtNEAT is run in real-time, it is not useful for quickly optimizing the ability to excel in one task.

There are two other studies that are similar to the NERO study in the way that the genetic algorithms used
also react to their environment in real time. In the first study, Mario uses reinforcement learning to react to his
surroundings [2].While the main goal is for Mario to reach the end of the level, there are auxiliary goals such as
maximizing the coin count, game score, enemies killed, and so on. Information on the surroundings is constantly
fed as an input. Mario’s input, however, does not encompass the entire screen, but either a 3x3, 5x5, or 7x7 grid
in which he is at the center. This grid keeps track of the objects or enemies in Mario’s vicinity. While this paper
did use a genetic algorithm in Super Mario Bros., it did not address how the algorithm fared when faced with
deceptive choices during the course of evolution in the SMB environment. The second study uses deep reinforce-
ment learning to create a generalized learning algorithm that is tested on 49 different video games [6]. However,
it uses the entire screen as input and uses past experiences to predict the best move in a situation it has never
seen. Interestingly, this algorithm does better than average human ability in around half of the games. Again,
this paper did not go into any details of how the evolved agents behaved when put in deceptive situations.

These papers focus more on the real-time aspect of video games and how the in-game character behaves in
the moment while our paper focuses more on excelling at one task. While these papers make excellent cases for
why their algorithms are suited to the game at hand, there aren’t any papers that compare the performances
of different algorithms in one game environment. Specifically, we use two different methods of evolution on a
deceptive task while the other three papers only use one, making it is difficult to see how those other algorithms
compare relatively. Also, this paper explores the merits of both NEAT and Novelty search, showing experimentally
the benefits and drawbacks of each evolutionary algorithm.

2 Hypotheses

Two hypotheses were tested. The first hypothesis was that Novelty would find the hidden rooms more often and
in fewer generations than NEAT. Since Novelty does not get ensnared by deceptive tasks, its exploratory nature
should help it discover the hidden rooms in fewer generations. On the other hand, NEAT is unlikely to find the
hidden room as often and as quickly because it must be willing to explore an area with fewer coins. Additionally,
finding the hidden room requires Mario to execute a duck move, a move that does virtually nothing elsewhere. We
predict that NEAT will evolve to avoid duck movements because when executed, it rarely results in an increase in
fitness.

The second hypothesis was that NEAT will earn a higher fitness than Novelty on average. NEAT will focus
on collecting all the possible coins in the non-hidden level area and will eventually learn to perform actions such
as successfully killing enemies and getting coins from the coin box. Novelty, however, will be more focused on
finding new behaviors independent of how many coins the new behaviors collect. Thus, Novelty will not perform
as well as NEAT in terms of coins collected unless Novelty finds the hidden room.

3 Simulation Environment

Though SMB simulators exist, the levels and gameplay details are hard coded so that users cannot access and
modify how game levels are structured. Thus, we designed and developed a custom Mario simulation environment
using Python and the Python Zelle graphics library. This environment allowed us to create game levels used solely
for experimentation purposes. Although our simulation environment still retained most of the key features, such
as the inclusion of Goombas, coins and coin boxes, the levels were much smaller and the in-game physics were not
identical to that of SMB. The simulation environment is based on a two dimensional cartesian grid system whose
origin is at the top left corner. The size of the environment, as well as how the game objects were arranged, were
determined by parameters that the user set.

3.1 The World

The eight game objects in our Mario simulation world included ground tiles, platforms, coins, coin boxes, hidden
rooms, the finish flag, Goombas, and Mario. The ground tiles (green squares) and platform objects (blue lines)
gave structure to the world and defined where Mario (red circle) could travel. Mario could collect coins (yellow
circles) by walking or jumping through them, which removed them from the world and incremented Mario’s coin
score. Coin boxes (brown box) worked differently. Mario could earn a coin by jumping into a coin box while stand-
ing underneath it. Afterwards, the box became white and contained no further coin value. The hidden rooms (red
crosses) were accessible by ducking at a secret entrance and gave Mario a coin bonus of fifteen. Once a hidden
room was visited, it was closed off. If Mario reached the finish flag (blue cross), he was rewarded with 5 coins
and the run was terminated. Goombas (brown ovals) were hard coded to patrol back and forth in a predictable
manner. When a Goomba walked into Mario, he died. However, if Mario jumped on top of a Goomba, it was
removed from the game and Mario was given a coin.

In our simulator, we created a small world (27 x 7 grids) and a large world (49 x 9), each with an easy and
hard version. In the easy version, all of the coin boxes were taken out. The hard, small world (Fig 1) consisted of
3 goombas, 9 coins, 4 coin boxes, and 2 hidden rooms. The easy, small world (Fig 2) was similar, except that the
coin boxes were removed. The hard world had a total of 46 coins and the easy world had 42 coins.

CIQOCIO H O
— —

Figure 1: Small, Hard World

- test + - X

Figure 2: Small, Easy World

For the hard, large world (Fig 3), there were 4 Goombas, 25 coins, 13 coin boxes and 2 hidden rooms. The
easy, large world (Fig 4) was the same except that all coin boxes were removed. The total coin score possible for
the hard world was 78 and that for the easy world was 65.

Figure 4: Large, Easy World

We included experiments in the large world for three reasons. First, we wanted to see if the results from NEAT
and Novelty would be similar for both worlds. Second, we wanted to see if the size of the world had influence
on Mario’s evolved behavior. Third, by creating a larger world, we had more space to work on the design. For
example, in the middle of the big world, Mario can take one of two paths: the path going up the platforms and the
path below. By traveling the top path, Mario can earn 12 coins, but by traveling the bottom path, Mario can earn
23 coins. However, the bottom path also contains a hidden entrance, which is more difficult for Mario to exploit.
This diverging path is somewhat deceptive. We were testing to see if Mario could learn to travel backwards to
collect the coins he missed. An ideal behavior is Mario taking the top path, collecting all the coins, falling off and

collect the three coins in the air, and then collecting all the coins that can only be obtained by taking the other
path.

3.2 Mario

Mario was able to execute five different actions: moveLeft, moveRight, jumpLeft, jumpRight, and duck. MoveLeft
and moveRight each consisted of 1 grid box translation in their respective directions. The jump moves required at
least 2 timesteps. If Mario executed a jumpRight movement, he translated one grid space up, then one grid space
to the right, then fell until landing on a valid standing space. The duck move kept Mario in place and was used
as a special movement that allowed Mario to visit the hidden rooms. If Mario executed a duck movement on top
of the entrance to a hidden room, he stood in place and gained a fifteen coin bonus for visiting the room. Finding
the hidden room was the most difficult way to obtain coins.

4 Methods
4.1 NEAT

In this paper, we used standard NEAT with tanh activation. The fitness function was the normalized coin score. It
is important to note that the NEAT fitness function represents the percentage of coins obtained. When comparing
fitness scores between easy and hard worlds, keep in mind that the easy world has fewer coins than the hard world.
It is meaningless to compare the fitness values between the small, easy world and the small, hard world. However,
the number of generations required to find hidden rooms can be directly compared because the location of the
hidden room was constant regardless of the difficulty.

4.2 Novelty

For the Novelty component, we also used tanh activation. Each behavior consisted of a list of unique (x, y) grid
spots that Mario visited in the order that Mario visited them. The behaviors were padded with (0, 0) tuples so
the behavior list lengths were equal to the max number of visitable squares in the world. The sparseness of a new
behavior was calculated by averaging the Cartesian distances between the new behavior and the existing archived
behaviors. The Cartesian distance between two behaviors is the sum of all the distances between corresponding
behavior points in each list. The novelty fitness was calculated as the normalized average distance between the
newest behavior and the kth nearest behaviors in the archive. We used a k of 15, a limit of 100 and a threshold of
0.25. For each generation, we also saved the best performing chromosome in terms of the objective fitness function
that was described in the NEAT section above.

4.3 Experiments

To observe NEAT and Novelty, we conducted six experiments total using the four different worlds aforementioned,
shown in Fig. 1-4, respectively. For the small world, we ran 4 experiments: two experiments with the Coin Type
input and two experiments without. Each of those two experiments consisted of an easy and hard version.

The coin type, which will be explained a little bit later in this paper, was included as an experimental input to
observe how impactful knowing the type of coin was on performance. For the large world, we ran 2 experiments.
For both the easy and hard versions, we ran an experiment in which the coin type was included as an input. For
each experiment, out of 10 runs, we recorded the frequency of finding one hidden room, the average generation at
which the first room was found, the frequency of finding both hidden rooms, the generation at which the second
hidden room was found and the average best fitness.

Experiment Number | Used Coin Type Input? | Size of World | Difficulty Setting
1 No Small Easy
2 No Small Hard
3 Yes Small Easy
4 Yes Small Hard
5 Yes Large Easy
6 Yes Large Hard

Table 1: Experiments Summary

4.4 Experiment Setup

For both NEAT and Novelty, each experiment was run ten times. Each run was evolved using 30 generations
of populations of 100 individuals. We let each simulation run for 1500 time steps. However, the simulation was
terminated early if Mario was either killed off by a Goomba or if he reached the finish flag. In addition, since
human players often memorize key features in levels, where enemies are located, where power ups can be obtained,
etc., we allowed the learning algorithm to evolve in a structured game environment that did not change in between
runs so that the algorithms could take advantage of the predictability.

The 4 inputs into the neural networks were Mario’s current coin score, the signed x-direction Cartesian dis-
tance to the nearest coin giving object, a stall sensor, and a coin type sensor. By coin giving object, we mean that
Mario was given the distance to the nearest object that could give a coin. This could be a Goomba, coin box,
finish flag, hidden entrance, or coin. The Coin Type input tells Mario what type of coin giving object is nearest
to him. This sensor was implemented by assigning an integer value to each of the coin types. The stall sensor was
implemented such that it outputted True if Mario’s X position had not changed for 3 or more time steps. The
stall sensor was included to help NEAT learn how to navigate coin boxes. Without the stall input, Mario would
get stuck jumping into a coin box from the side. Only the coin type input returned values between -1 and 1; the
rest of the inputs were not normalized.

5 Evolution Results

In this section, the results of the six experiments are presented. The behaviors are analyzed in more detail in
Sections VI. For simplicity, we will refer to NEAT-Mario and Novelty-Mario as NEAT and Novelty respectively.

5.1 Small World

The experiments in this section tested NEAT and Novelty in the small world environment. Table 1 shows that
in the easy world (no coin boxes) without the coin type input, NEAT and Novelty both had the same average
best fitness. However, while NEAT and Novelty were both able to find the first and second room with the same
frequencies, Novelty was able to find the first and second rooms in fewer generations than NEAT: 0.3 vs. 1.7
generations for the first room and 12.3 vs 18.5 generations for the second room. For the hard world, NEAT and
Novelty were both only able to find one of the hidden rooms twice out of the ten runs. The average fitness always
decreased drastically, from 0.83 to around 0.2. Evidently, the addition of coin boxes complicated the task. While
both algorithms were able to find the first hidden room at the same frequency, Novelty was also able to find it in
fewer generations than NEAT (3.33 vs 18 generations).

In Table 2, both NEAT and Novelty were given the coin type as an input. For the easy world, NEAT and
Novelty were able to find both rooms at similar frequencies and had average best fitnesses that were higher than
their counterparts that didn’t have the coin type input. While Novelty found the first room slightly faster, NEAT
was able to find the second room faster. For the hard world, Novelty was once again faster at finding the first
room but slower at finding the second room. In terms of average best fitness, NEAT outperformed Novelty in the
easy world but Novelty outperformed NEAT in the hard world. However, comparing the values between Table 1
and Table 2, clearly both algorithms performed better with the Coin Type input.

The results in this section show that Novelty sometimes performs better in situations in which less informa-
tion is passed in as input data. When the coin type was not provided, Novelty was consistently able to find
the hidden rooms at earlier generations than NEAT and generally had a higher average best fitness. However,
when more information was provided as input, NEAT’s performance was on par with that of Novelty’s and NEAT
even outperformed Novelty in the easy world. NEAT was also able to find the second hidden room at an earlier
generation than Novelty. Thus, when faced with the easier task of navigating a world with no coin boxes and
given enough sensor input, NEAT and Novelty both performed similarly. However, for the harder task of navi-
gating a world with coin boxes, even with more input information, NEAT was not able to keep up with Novelty’s
performance in terms of average best fitness.

Freq. 1st | Freq. 2nd | Avg. Gen. 1st | Avg. Gen 2nd | Avg. Best

Found Found Found Found Fitness
NEAT (Easy) 10/10 8/10 1.7 18.5 0.83
Novelty (Easy) | 10/10 8/10 0.3 12.3 0.83
NEAT (Hard) | 2/10 0/10 18 n.a 0.192
Novelty (Hard) | 2/10 0/10 3.33 n.a 0.235

Table 2: Small World Without Coin Type Input

Freq. 1st | Freq. 2nd | Avg. Gen. 1st | Avg. Gen 2nd | Avg. Best

Found Found Found Found Fitness
NEAT (Easy) 10/10 8/10 0.9 7.14 0.8812
Novelty (Easy) | 10/10 8/10 0.7 12.3 0.8443
NEAT (Hard) | 9/10 2/10 11.66 14 0.4823
Novelty (Hard) | 9/10 3/10 5.44 15.33 0.5449

Table 3: Small World With Coin Type Input

5.2 Large World

This experiments in this section tested NEAT and Novelty in a large world with the coin type input. Table 5.1
shows that for the easy world, NEAT and Novelty were able to find the hidden rooms at the same frequencies and
that Novelty was consistently able to find the rooms at earlier generations than NEAT. Novelty search resulted in
a higher average best fitness. For the hard world, while NEAT was able to find the first room earlier than Novelty
(13.57 vs. 20.57 generations), only Novelty was able to find both hidden rooms.

The results in this section further confirm what we observed in Section V. Since the world for these experi-
ments already added difficulty to the task, it is no surprise that Novelty consistently outperformed NEAT in terms

of when it found the hidden rooms and in terms of the average best fitness. The one outlier, however, is that in
the hard world, NEAT was able to find the first hidden room faster than Novelty. This is offsetted though because
while it took longer for Novelty to find the first room, Novelty was still the only algorithm to be able to find the
second hidden room in the large, hard world.

Freq. 1st | Freq. 2nd | Avg. Gen. 1st | Avg. Gen 2nd | Avg. Best

Found Found Found Found Fitness
NEAT (Easy) 10/10 3/10 10 12.67 0.6130
Novelty (Easy) | 10/10 4/10 2.86 10.29 0.6594
NEAT (Hard) | 7/10 0/10 13.57 n.a. 0.4795
Novelty (Hard) | 8/10 1/10 20.57 26 0.4807

Table 4: Large World With Coin Type Input

6 Analysis of Evolved Behaviors

In this section, the evolved NEAT and Novelty behaviors for the small and large world are analyzed in terms of
evolved behaviors and performances.

6.1 Small World Behavior

In general, the coin type input did not significantly alter Mario’s actions, it only sped up the evolution. In other
words, the coin type input did not make Mario learn new behaviors, it only decreased the learning time. Adding
the coin type input decreased the number of generations needed for NEAT to learn how to deal with coin boxes,
obtain coins and kill Goombas. For Novelty, the coin type input decreased the number of generations before it
found the hidden rooms. Additionally, for both the easy and hard worlds, the behaviors exhibited were generally
similar. The addition of the coin boxes made the learning process longer for NEAT and increased the number of
generations needed to find the hidden rooms.

For both the easy and hard small worlds, NEAT generally evolved to travel over the top platforms (top route) to
find the right-most hidden room before exiting the level by reaching the finish flag. Often times, NEAT would
find the left-most hidden room early on in evolution but would abandon the hidden room once it learned how
to get coins from the top route. This shows that NEAT does indeed fall for the deception present in the task -
even though NEAT could collect the maximum number of coins by going the bottom route and finding both hid-
den rooms, it chose to give up the bottom room and go for the top route in order to get a temporarily higher fitness.

Novelty’s general behavior was split between either going through the top route and getting the right-most hidden
room before reaching the finish flag or going the bottom route and getting both hidden rooms before reaching the
finish flag.

6.2 Large World Behavior

NEAT exhibited three distinct behaviors: 1. take the bottom route, find the left-most room, walk past the right-
most room and reach the finish flag, 2. take the top route, find the right-most room and reach the finish flag, and
3. take the bottom route, find both rooms and reach the finish flag. The third behavior rarely occurred. NEAT
also evolved so that it’s behavior reflected the structure of the world. In the beginning portion, Mario would just
translate under the coin boxes until it reached the first goomba. After that, Mario would change strategies and
just jump right until it either died or reached the finish flag. For the easy world, out of ten runs, NEAT exhibited

behavior 1 three times, behavior 2 two times and behavior 3 two times. For the remaining two runs, the last
generation of NEAT actually took the top route and didn’t enter any of the bonus rooms even though it had found
the first bonus room previously during evolution. For the hard world, NEAT exhibited behavior 2 seven times out
of the ten runs. In three of the ten runs, NEAT found the first hidden room but then regressed and abandoned
the hidden room in favor of the top route. The distribution of exhibited behaviors suggests that NEAT fell for the
deception and evolved to take the top route over the bottom route.

The highest scoring Novelty behaviors were behaviors 1 and 2 from above and behavior 4 (take the bottom
route, find the right-most room and reach the flag). For the easy world, the best scoring behaviors always took
the bottom route. Out of ten runs, Novelty exhibited behavior 1 three times, behavior 2 two times, behavior 3
four times and behavior 4 one time. This shows that Novelty’s exploratory nature allows it to roam more often
along the more promising bottom route without any evolutionary pressure. For the hard world, the best behaviors
also prefered to take the bottom route and out of ten runs, Novelty exhibited behavior 1 five times, behavior 2
three times, behavior 3 one time. For the remaining run, Novelty took the top route, didn’t find any hidden rooms
and reached the finish flag. Once again, the behavior distribution confirms that Novelty is more likely to find
the hidden room along the bottom route. By frequently exploring along the bottom route, Novelty has greater
potential for finding both rooms than NEAT has.

7 Discussion

7.1 Were our Hypotheses Supported?

Based on the number of runs we ran, we can see that, at least for the small world, giving NEAT and Novelty the
Coin Type input made a significant difference. Before giving NEAT and Novelty the Coin Type input, there were
clear differences in the number of generations required to find both the first and the hidden room. However, after
giving them the input, that gap decreased noticeably. For example, without the input, it took NEAT roughly
fifteen more generations on average in the small hard world to find the first hidden room than it took Novelty.
After giving it the input, NEAT only required around six more generations. The number of generations required
to find the second hidden room in the same setting was roughly equal for both NEAT and Novelty. By giving
Mario the Coin Type input, we make the task less deceptive because Mario learns to map the coin type with the
number of coins obtained. Since the task is less deceptive, NEAT is able to perform better than if it did not have
the input, and is sometimes able to perform even better than Novelty search. Regardless, both NEAT and Novelty
performed much better with the Coin Type input than without. Specifically for the small hard world with the
Coin Type input, Mario was able to collect roughly two to three times more coins and the number of generations
required to find both hidden rooms was smaller.

In the easy large world, Novelty finds the first room in roughly seven fewer generations than NEAT, and in
the hard large world, NEAT finds the first room in roughly seven fewer generations than Novelty. We predicted
that Novelty would find the hidden rooms in fewer generations than NEAT, so these results go against our hy-
potheses. One reason why the results seem to deviate from what we expected is that perhaps a bigger world
requires more runs, or more timesteps for actual results to manifest. Randomness could be a factor, and if we were
to conduct another ten runs, Novelty could perform better. Another potential reason is that the Coin Type input
simply works greatly in NEAT’s favor. That extra bit of information makes the task significantly less deceptive
because NEAT knows exactly what type of coin is nearby.

7.2 Drawbacks

By simplifying the simulation environment and changing some of the in-game physics, we inadvertently introduced
challenges into the simulation world. One such problem lies in the way that the jump commands were implemented.

By limiting the jump height to only one unit high, we caused the coin boxes to become major obstacles for Mario.
Mario’s only way then to get past a coin box is to translate. Thus, the coin boxes drastically slowed down evolution
and it increased the number of generations needed before Mario was able to explore the world beyond the coin
boxes. In the original game, Mario’s jump was several units high and he was able to easily jump over the coin boxes.

For Novelty, another potential problem was the way that behaviors were defined. Since we defined a behav-
ior as the set of unique locations that Mario visited in the order that Mario visited them, we didn’t encode
anything about the coin locations into the behavior description. Perhaps a better definition for the behavior could
be the set of unique coins that Mario collected in the order that he collected them. This behavior definition would
probably encourage more diversity in the evolved behaviors.

8 Conclusion

In conclusion, our hypotheses were partially confirmed. Our results show that both NEAT and Novelty found
both hidden rooms at roughly equal frequencies and they produced roughly equal average fitness values. So, we
focused on the number of generations required to find the hidden rooms. In the small world, the addition of the
coin input made a significant difference. Without the input, Novelty would find the hidden rooms much quicker
than NEAT. With the coin input, however, NEAT found the hidden rooms just as quickly as Novelty, with the
exception of the hard world’s first hidden entrance. The results from the big world show that NEAT is able to
outperform Novelty when used in hard mode, and that the addition of coin boxes made it difficult for Novelty to
find the first hidden room. This could have resulted from the lack of enough runs or that NEAT simply performs
very well with the Coin Type input. From these results, we conclude that there is some correlation between the
size of the world and performance and that NEAT can perform on par, and sometimes even better, than Novelty
if it is equipped with the Coin Type input. However, Novelty did not significantly outperform NEAT as we had
hypothesized.

References

[1] Seth Bling. Mari/o - machine learning for video games. 2015.
[2] Togelius, Julian, et al. Super mario evolution. Computational Intelligence and Games, CIG 2009, 2009.

enneth Stanley, Bobby D. Bryant, Risto Miikkulainen. Evolving neural network agents in the video
3] K h Stanley, Bobby D. B Ri Miikkulai Evolvi 1 k in the NERO vid
game. Proceedings of the IEEE(2005), pages 182-189, 2004.

[4] Joel Lehman, Kenneth Stanley. Abandoning objectives: Evolution through the search for novelty alone.
FEvolutionary Computation, 19(2), 2011.

[5] Kenneth Stanley. Competitive coevolution through evolutionary complexification. Journal of Artificial Intel-
ligence Research, 21, 2004.

[6] Mnih, Volodymyr, et al. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

10

