
To appear in: G. Tesauro, D. S. Touretzky and T. K. Leen, (eds.),Advances in Neural Information Processing Systems 7,MIT Press, Cambridge MA, 1995.A Growing Neural Gas Network LearnsTopologiesBernd FritzkeInstitut f�ur NeuroinformatikRuhr-Universit�at BochumD-44780 BochumGermanyAbstractAn incremental network model is introduced which is able to learnthe important topological relations in a given set of input vectors bymeans of a simple Hebb-like learning rule. In contrast to previousapproaches like the \neural gas" method of Martinetz and Schulten(1991, 1994), this model has no parameters which change over timeand is able to continue learning, adding units and connections, untila performance criterion has been met. Applications of the modelinclude vector quantization, clustering, and interpolation.1 INTRODUCTIONIn unsupervised learning settings only input data is available but no informationon the desired output. What can the goal of learning be in this situation?One possible objective is dimensionality reduction: �nding a low-dimensional sub-space of the input vector space containing most or all of the input data. Linearsubspaces with this property can be computed directly by principal component anal-ysis or iteratively with a number of network models (Sanger, 1989; Oja, 1982). TheKohonen feature map (Kohonen, 1982) and the \growing cell structures" (Fritzke,1994b) allow projection onto non-linear, discretely sampled subspaces of a dimen-sionality which has to be chosen a priori. Depending on the relation betweeninherent data dimensionality and dimensionality of the target space, some informa-tion on the topological arrangement of the input data may be lost in the process.



This is not astonishing since a reversible mapping from high-dimensional data tolower-dimensional spaces (or structures) does not exist in general.Asking how structures must look like to allow reversible mappings directly leads toanother possible objective of unsupervised learning which can be described as topol-ogy learning: Given some high-dimensional data distribution P(�), �nd a topologicalstructure which closely re
ects the topology of the data distribution. An elegantmethod to construct such structures is \competitive Hebbian learning"(CHL) (Mar-tinetz, 1993). CHL requires the use of some vector quantization method. Martinetzand Schulten propose the \neural gas" (NG) method for this purpose (Martinetzand Schulten, 1991).We will brie
y introduce and discuss the approach of Martinetz and Schulten. Thenwe propose a new network model which also makes use of CHL. In contrast tothe above-mentioned CHL/NG combination, this model is incremental and hasonly constant parameters. This leads to a number of advantages over the previousapproach.2 COMPETITIVE HEBBIAN LEARNING ANDNEURAL GASCHL (Martinetz, 1993) assumes a number of centers in Rn and successively insertstopological connections among them by evaluating input signals drawn from a datadistribution P(�). The principle of this method is:For each input signal x connect the two closest centers (measuredby Euclidean distance) by an edge.The resulting graph is a subgraph of the Delaunay triangulation (�g. 1a) corre-sponding to the set of centers. This subgraph (�g. 1b), which is called the \inducedDelaunay triangulation", is limited to those areas of the input space Rn whereP(�)> 0 . The \induced Delaunay triangulation" has been shown to optimallypreserve topology in a very general sense (Martinetz, 1993).Only centers lying on the input data submanifold or in its vicinity actually developany edges. The others are useless for the purpose of topology learning and are oftencalled dead units. To make use of all centers they have to be placed in those regionsof Rn where P(�) di�ers from zero. This could be done by any vector quantization(VQ) procedure. Martinetz and Schulten have proposed a particular kind of VQmethod, the mentioned NG method (Martinetz and Schulten, 1991). The mainprinciple of NG is the following:For each input signal x adapt the k nearest centers whereby k isdecreasing from a large initial to a small �nal value.A large initial value of k causes adaptation (movement towards the input signal)of a large fraction of the centers. Then k (the adaptation range) is decreased until�nally only the nearest center for each input signal is adapted. The adaptationstrength underlies a similar decay schedule. To realize the parameter decay one hasto de�ne the total number of adaptation steps for the NG method in advance.



a) Delaunay triangulation b) induced Delaunay triangulationFigure 1: Two ways of de�ning closeness among a set of points. a) The Delau-nay triangulation (thick lines) connects points having neighboring Voronoi poly-gons (thin lines). Basically this reduces to points having small Euclidean distancew.r.t. the given set of points. b) The induced Delaunay triangulation (thick lines)is obtained by masking the original Delaunay triangulation with a data distribu-tion P(�) (shaded). Two centers are only connected if the common border of theirVoronoi polygons lies at least partially in a region where P(�)> 0 (closely adaptedfrom Martinetz and Schulten, 1994)For a given data distribution one could now �rst run the NG algorithm to dis-tribute a certain number of centers and then use CHL to generate the topology.It is, however, also possible to apply both techniques concurrently (Martinetz andSchulten, 1991). In this case a method for removing obsolete edges is required sincethe motion of the centers may make edges invalid which have been generated ear-lier. Martinetz and Schulten use an edge aging scheme for this purpose. One shouldnote that the CHL algorithm does not in
uence the outcome of the NG method inany way since the adaptations in NG are based only on distance in input space andnot on the network topology. On the other hand NG does in
uence the topologygenerated by CHL since it moves the centers around.The combination of NG and CHL described above is an e�ective method for topol-ogy learning. A problem in practical applications, however, may be to determinea priori a suitable number of centers. Depending on the complexity of the datadistribution which one wants to model, very di�erent numbers of centers may beappropriate. The nature of the NG algorithm requires a decision in advance and,if the result is not satisfying, one or several new simulations have to be performedfrom scratch. In the following we propose a method which overcomes this prob-lem and o�ers a number of other advantages through a 
exible scheme for centerinsertion.



3 THE GROWING NEURAL GAS ALGORITHMIn the following we consider networks consisting of� a set A of units (or nodes). Each unit c 2 A has an associated referencevector wc 2 Rn. The reference vectors can be regarded as positions in inputspace of the corresponding units.� a set N of connections (or edges) among pairs of units. These connec-tions are not weighted. Their sole purpose is the de�nition of topologicalstructure.Moreover, there is a (possibly in�nite) number of n-dimensional input signals obey-ing some unknown probability density function P (�).The main idea of the method is to successively add new units to an initially smallnetwork by evaluating local statistical measures gathered during previous adapta-tion steps. This is the same approach as used in the \growing cell structures" model(Fritzke, 1994b) which, however, has a topology with a �xed dimensionality (e.g.,two or three).In the approach described here, the network topology is generated incrementallyby CHL and has a dimensionality which depends on the input data and may varylocally. The complete algorithm for our model which we call \growing neural gas"is given by the following:0. Start with two units a and b at random positions wa and wb in Rn.1. Generate an input signal � according to P (�).2. Find the nearest unit s1 and the second-nearest unit s2.3. Increment the age of all edges emanating from s1.4. Add the squared distance between the input signal and the nearest unit ininput space to a local counter variable:�error(s1) = kws1 � �k25. Move s1 and its direct topological neighbors1 towards � by fractions�b and �n, respectively, of the total distance:�ws1 = �b(� � ws1)�wn = �n(� � wn) for all direct neighbors n of s16. If s1 and s2 are connected by an edge, set the age of this edge to zero. Ifsuch an edge does not exist, create it.27. Remove edges with an age larger than amax. If this results in points havingno emanating edges, remove them as well.1Throughout this paper the term neighbors denotes units which are topological neigh-bors in the graph (as opposed to units within a small Euclidean distance of each other ininput space).2This step is Hebbian in its spirit since correlated activity is used to decide uponinsertions.



8. If the number of input signals generated so far is an integer multiple of aparameter �, insert a new unit as follows:� Determine the unit q with the maximum accumulated error.� Insert a new unit r halfway between q and its neighbor f with thelargest error variable: wr = 0:5 (wq +wf):� Insert edges connecting the new unit r with units q and f , and removethe original edge between q and f .� Decrease the error variables of q and f by multiplying them with aconstant �. Initialize the error variable of r with the new value of theerror variable of q.9. Decrease all error variables by multiplying them with a constant d.10. If a stopping criterion (e.g., net size or some performance measure) is notyet ful�lled go to step 1.How does the described method work? The adaptation steps towards the inputsignals (5.) lead to a general movement of all units towards those areas of the inputspace where signals come from (P (�) > 0). The insertion of edges (6.) betweenthe nearest and the second-nearest unit with respect to an input signal generates asingle connection of the \induced Delaunay triangulation" (see �g. 1b) with respectto the current position of all units.The removal of edges (7.) is necessary to get rid of those edges which are no longerpart of the \induced Delaunay triangulation" because their ending points havemoved. This is achieved by local edge aging (3.) around the nearest unit combinedwith age re-setting of those edges (6.) which already exist between nearest andsecond-nearest units.With insertion and removal of edges the model tries to construct and then trackthe \induced Delaunay triangulation" which is a slowly moving target due to theadaptation of the reference vectors.The accumulation of squared distances (4.) during the adaptation helps to identifyunits lying in areas of the input space where the mapping from signals to unitscauses much error. To reduce this error, new units are inserted in such regions.4 SIMULATION RESULTSWe will now give some simulation results to demonstrate the general behavior of ourmodel. The probability distribution in �g. 2 has been proposed by Martinetz andSchulten (1991) to demonstrate the non-incremental \neural gas" model. It can beseen that our model quickly learns the important topological relations in this rathercomplicated distribution by forming structures of di�erent dimensionalities.The second example (�g. 3) illustrates the di�erences between the proposed modeland the original NG network. Although the �nal topology is rather similar for bothmodels, intermediate stages are quite di�erent. Both models are able to identify theclusters in the given distribution. Only the \growing neural gas" model, however,



Figure 2: The \growing neural gas" network adapts to a signal distribution whichhas di�erent dimensionalities in di�erent areas of the input space. Shown are theinitial network consisting of two randomly placed units and the networks after 600,1800, 5000, 15000 and 20000 input signals have been applied. The last networkshown is not the necessarily the \�nal" one since the growth process could in prin-ciple be continued inde�nitely. The parameters for this simulation were: � = 100,�b = 0:2, �n = 0:006, � = 0:5, amax = 50, d = 0:995.could continue to grow to discover still smaller clusters (which are not present inthis particular example, though).5 DISCUSSIONThe \growing neural gas" network presented here is able to make explicit the impor-tant topological relations in a given distribution P (�) of input signals. An advantageover the NG method of Martinetz and Schulten is the incremental character of themodel which eliminates the need to pre-specify a network size. Instead, the growthprocess can be continued until a user-de�ned performance criterion or network sizeis met. All parameters are constant over time in contrast to other models whichheavily rely on decaying parameters (such as the NG method or the Kohonen featuremap).It should be noted that the topology generated by CHL is not an optional feature



\neural gas" and\competitive Hebbian learning" \growing neural gas"(uses \competitive Hebbian learning")

Figure 3: The NG/CHL network of Martinetz and Schulten (1991) and the author's\growing neural gas" model adapt to a clustered probability distribution. Shownare the respective initial states (top row) and a number of intermediate stages.Both the number of units in the NG model and the �nal number of units in the\growing neural gas" model are 100. The bottom row shows the distribution ofcenters after 10000 adaptation steps (the edges are as in the previous row but notshown). The center distribution is rather similar for both models although theintermediate stages di�er signi�cantly.



of our method (as it is for the NG model) but an essential component since it isused to direct the (completely local) adaptation as well as insertion of centers. It isprobably the proper initialization of new units by interpolation from existing oneswhich makes it possible to have only constant parameters and local adaptations.Possible applications of our model are clustering (as shown) and vector quantization.The network should perform particularly well in situations where the neighborhoodinformation (in the edges) is used to implement interpolation schemes betweenneighboring units. By using the error occuring in early phases it can be determinedwhere to insert new units to generate a topological look-up table of di�erent densityand di�erent dimensionality in particular areas of the input data space.Another promising direction of research is the combination with supervised learning.This has been done earlier with the \growing cell structures" (Fritzke, 1994c) andrecently also with the \growing neural gas" described in this paper (Fritzke, 1994a).A crucial property for this kind of application is the possibility to choose an arbitraryinsertion criterion. This is a feature not present, e.g., in the original \growing neuralgas". The �rst results of this new supervised network model, an incremental radialbasis function network, are very promising and we are further investigating thiscurrently.ReferencesFritzke, B. (1994a). Fast learning with incremental rbf networks. Neural ProcessingLetters, 1(1):2{5.Fritzke, B. (1994b). Growing cell structures { a self-organizing network for unsu-pervised and supervised learning. Neural Networks, 7(9):1441{1460.Fritzke, B. (1994c). Supervised learning with growing cell structures. In Cowan, J.,Tesauro, G., and Alspector, J., editors, Advances in Neural Information Pro-cessing Systems 6, pages 255{262. Morgan Kaufmann Publishers, San Mateo,CA.Kohonen, T. (1982). Self-organized formation of topologically correct feature maps.Biological Cybernetics, 43:59{69.Martinetz, T. M. (1993). Competitive Hebbian learning rule forms perfectly topol-ogy preserving maps. In ICANN'93: International Conference on Arti�cialNeural Networks, pages 427{434, Amsterdam. Springer.Martinetz, T. M. and Schulten, K. J. (1991). A \neural-gas" network learns topolo-gies. In Kohonen, T., M�akisara, K., Simula, O., and Kangas, J., editors,Arti�cial Neural Networks, pages 397{402. North-Holland, Amsterdam.Martinetz, T. M. and Schulten, K. J. (1994). Topology representing networks.Neural Networks, 7(3):507{522.Oja, E. (1982). A simpli�ed neuron model as a principal component analyzer.Journal of Mathematical Biology, 15:267{273.Sanger, T. D. (1989). An optimality principle for unsupervised learning. In Touret-zky, D. S., editor, Advances in Neural Information Processing Systems 1, pages11{19. Morgan Kaufmann, San Mateo, CA.


