i

St

FUNCTION
APPROKIMATION

BASS FUNGTIONS

521.4 GENERALIZATION IN REINFORCEMENT LEARNING

So far, we have assumed that the utility functions and ¢J-functions learned by the agents are
represented in tabular form with one output value for each input tuple. Such an approach
works reasonably well for small state spaces, but the time to convergence and (for ADP) the
time per iteration increase rapidly as the space gets larger. With carefully controlled, approx-
imate ADP methods, it might be possible to handle 10,000 states or more. This suffices for
two-dimensional maze-like environments, but more realistic worlds ate out of the question.
Chess and backgammon are tiny subsets of the real world, yet their state spaces contain on
the order of 16°Y o 1010 states. It would be absurd to suppose that one must visit all these
states in order to learn how to play the game!

One way to handle such problems is to use fumction approximation, which simply
means using any sort of representation for the function other than a table. The representation
is viewed as approximate because it 1oight not be the case that the frue utility function or
(2-function can be represented in the chosen form. For example, in Chapter & we described
ap evaluation function for chess that is represented as a weighted linear function of a set of

features (or basis functions) fy, ..., fu
Ug(s) = 81 f1(5) + Oa fol8) 4+ + On fuls) .

A reinforcement learning algorithm can leara values for the parameters § ==y, ..., 0, such
that the evaluation function U, approximates the true utility function, Instead of, say, 1012
values in a table, this function approximator is characterized by, say, n= 20 parameters—
an enormous compression, Although no one knows the true utility function for chess, no
one believes that it can be represented exactly in 20 numbers. If the approximation is good
enough, however, the agent might still play excellent chess,?

Function approximation makes it practical to yepresent utility functions for very large
state spaces, but that is not its principal benefit. The compression achivved by « function
approximator allows the learning agent to generalize from states it has visited to states it
has not visited. That is, the most important aspect of function approximation s not that it

4 We do know that the exact utility function can be reprosented in z page or two of Lisp, Java, av G+, That is,
it can be represented by a program that selves the game exactly every time it iy called. We are inferested only in
function approximators that use a reasonable amount of computation. 1t might in fact be betler fo Jearn & very
stmple function approxinator and combine iL wilh a certain amonnt of Jook-ahead search. The trade-offs invelved

are currently not well understood.,

718

Chapter 21 Reinforcement Learning

WIDRGW-HOFF AULE
DELTA HULE

requires less space, but that it allows for inductive generalization over input states. To give
you some idea of the power of this effect: by examining only one in every 10% of the possible
backgammon states, it is possible 1o learn a utifity function that allows a program to play ay
well as any human (Tesauro, 1992).

On the {lip side, of course, there is the problem that there could fail to be any function
in the chosen hypothesis space that approximates the true utility function sufficiently well.
As in all inductive learning, there is a frade-off between the size of the hypothesis space and
the time it takes to fearn the function. A targer hypothesis space increases the likelihood that
a good approximation can be found, but also means that convergence is likely to be delayed.

Let us begin with the simplest case, which is direct utility estimation. (See Section 21.2.)
With function approximation, this is an instance of supervised Jearning. For example, sup-
pose we represent the utilities for the 4 x 3 world vsing a simple Jinear function. The features
of the squares ace just their = and y coordinates, so we have

{}a{,’!}, y) = g + Oro -+ Ooy 2L
Thus, if {8y, 01, 07) = (0.5,0.2,0.1), then Ua(1, 1) = 0.8. Given & collection of trials, we ob-
tain a set of sample values of Up{z, y), and we can find the best it, i the sense of minimizing
the squared error, using standard linear regression. (Sce Chapter 20.)

For reinforcement learning, it makes more sense (0 use an online learning algorithm
that updates the parameters after each frigl. Suppose we run a trial and the total reward
obtained starting at (1,1) is 0.4, This suggests that Up(1,1), currently 0.8, is too large and
must be reduced. How should the parameters be adjusted to achieve this? As with neural
network learning, we write an error function and compute its gradient with respect to the
parameters. If uz(s) is the observed total reward from state s onward in the fth wial, then
the error is defined as (half) the squared difference of the predicted (otal and the actual (otal:
By(s) = (Us(s) ~ us(s))2/2. The rate of change of the ertor with respect to each parameter
6; is OF;/88;, so to move the parameter in the direction of decreasing the error, we want

L OBs) o ey 8lals)
0; — G; “&éf}:q s Oy v (g (8} — Up(s)) 5 (21.10)

This is called the Widrow-Hoff rule, or the delta rule, for online least-squarcs. For the
linear function approximator [g{s) in Equation (21.9), we get three simple update rules:

bo « Oy + a(ui(s) ~ Ugls)},

01 «— th -+ o (ug{s) — Up(s)

b2 o~ O+ o (uls) ~ Up(s))y - .
We can apply these rules to the example where Up(1,1) is 0.8 and wz(1, 1) is 0.4, o, 05,
and 0 are all decreased by (0.4c, which reduces the error for (1,1). Notice that changing the
0,5 also changes tie values of Uy for every other stare! This is what we mean by saying thal
function approximation allows a reinforcement learner to generalize from ils experiences.

We expect that the agent will learn faster if it uses & function approximator, provided
that the hypothesis space is not 100 large, but includes some {unctions that are & reasonably
good fit to the true utility function. Exercise 21.7 asks you to evaluate the performance of
direct utility estimation, both with and without function approximation. The improvement

Section 21.4.

Generalization in Reinforcement Learning 779

is smooth and nearly linear, (See Exercise 21.10) If we put the +1 reward at (5,5), the
true utility is more like a pyramid and the function approximator in Equation (21.9) will
fail miserably. All is not lost, however! Remember that what matters for linear function
approximation is that the function be lincar in the paramerers—ihe features themselves can
be arbitrary nonlinear functions of the state variables, Hence, we can include a term such as
fg \ﬁx —%g)? -+ (y — y,)? that measures the distance to the goal.

We can apply these ideas equally well to temporal-difference learners. All we need do
Is adjust the parameters fo try to reduce the temporal difference between successive states.
The new versions of the TD and @-learning equations (21.3 and 21.8) are

00 = 054 @A) + Do) — Dofe)) 202) @LI)
for utilities and
O 0; + a[R(s) + ~ max Qola’, ') - Qs(a, s)]?g%g—ﬂ (21.12)

for (Q-values. These update rules can be shown to converge to the closest possible’ approxi-
mation to the true function when the function approximator is /inear in the parameters. Un-
fortunately, all bets are off when nonlinear functions—such as neural networks—are used.
There are some very simple cases in which the parameters can go off to infinity even though
there are good solutions in the hypothesis space. There are more sophisticated algorithms
that can avoid. these problems, but at present reinforcement learning with general function
approximators remains a delicate art.

Function approximation can also be very helpful for learning a model of the environ-
ment, Remember that learning a model for an observable environment is a supervised learn-
ing problem, because the next percept gives the outcome state, Any of the supervised learning
methods in Chapter 18 can be used, with suitable adjustments for the fact that we need to pre-

We now turn to examples of large-scale applications of reinforcement learning., We
will sce that, in cases where a utility function (and hence a model) is used, the model is
usually taken as given. For example, in learning an evaluation function for backgammon, it
is normally assumed that the legal moves and their effects are known in advance.

. T
° The defi nition of distance between, utility functions is rather technical; see Tsitsiklis and Van Roy {1997),

Chapter 21, Reinforcemient Learning

it g

Applications to game-playing

The first significant application of reinforcement learning was also the first sigaificant learn-
ing program of any kind—the checker-playing program written by Arthur Samuel (1959,
1967). Samuel first used a weighted linear function for the evaluation of positions, using up
to 16 terms at any one time. He applied a version of Equation (21.11) to update the weighs,
There were some significant differences, however, between his program and current methods,
First, he updated the weights using the difference between the current state and the backed-up
value generated by full look-ahead in the search tree. This works fine, because it amounts to
viewing the state space at a different granularity, A second difference was that the program
did not use any observed rewards! That ig, the values of terminal states were ignored. This
means that it is quite possible for Samucl's program not (o converge, or {0 converge on g
strategy designed to lose rather than to win, He managed to avoid this fate by insisting that
the weight for malerial advantage should always be positive. Remarkably, this was sufficient
to direct the program info areas of weight space corresponding 1o good checker play,

Gerry Tesauro's TD-Gammeon system (1992) forcefully illustrates the potential of re.
inforcement learning techniques. In earlier work (Tesauro and Sejnowski, 1989), Tesawro
tried learning a neural network representation of Q(a, 8) directly from examples of moves
labeled with relative values by a human expert. This approach proved extremely tedious for
the expert. It resulted in a program, called NEUROGAMMON, that was strong by computer
standards, but not competitive with human experts. The TD-Gammon project was an attempt
fo learn from sclf-play alone. The only reward signal was given at the end of each game. The
evaluation function was represented by a fully connected neural network with a single hidden
layer containing 40 nodes. Siniply by repeated application of Equation (21.11), TD)-Gammon
learned to play considerably better than Neurogammaon, even though the input representation
contained just the raw board position with no computed features. This took about 200,000
training games and two weeks of computer time. Although that may seem like a Jot of games,
it is only a vanishingly small fraction of the state space. When precomputed features were
added to the input representation, a network with 80 hidden vnits was able, after 300,000
training games, to reach a standard of play comparable (o that of the top three human players
worldwide. Kit Woolsey, a top player and analyst, said that “There is no question in my mind
that its positional judgment is far better than mine.”

Application to robot control

The setup for the famous cart—pole balancing problem, also known as the inverted pendu-
luan, is shown in Figore 21.9. The problem is to controf the position z of the cart so that
the pole stays roughly upright (¢ =~ #/2), while staying within the limits of the cart track
as shown. Qver two thousand papers in reinforcement tearning and control theory have been
published on this seemingly simple problem. The cart—pole problem differs from the prob-
lems described earlier in that the state variables @, 0, &, and @t are continuous. The actions are
usually discrete: jerk left or jerk right, the so-called bang-bang control regime.

‘The earliest work on learning for this problem was carried out by Michie and Cham-
bers (1968). Their Box s algorithm was able to balance the pole for over an hour after only

AR e STy

Section 21.5.

Policy Search 781

i

Figure 21,9 Setup for the problem of balancing a long pole on top of a moving cart. The
cart can be jerked left or right by a controller that observes x, 8, &, and 0,

about 30 trials, Moreover, unlike many subsequent systems, BOXES was implemented with a
real cart and pole, not a simulation. The algorithm first discretized the four-dimensional state
space info boxes—hence the name. It then ran trials until the pole fell over or the cart hit the
end of the track. Negative reinforcement was associated with the final action in the final box
and then propagated back through the sequence. It was found that the discretization caused
some problems when the apparatus was initialized in a position different from those used in
fraining, suggesting that generalization was not perfect. fmproved generalization and faster
learning can be obtained using an algorithm that adaptively partitions the state space accord-
ing to the observed variation in the reward, Nowadays, balancing a triple inverted pendulum
is 4 comymon exercise-—a feat far bevond the capabilities of most humaus.

