MAKING COMPLEX
DECISIONS

In which we examine methods for deciding what to do today, given that we may
decide again tomorrow.

In this chapter, we address the computational issues involved in making decisions. Whereas
Chapter 16 was concerned with one-shot or episodic decision problems, in which the util-
ity of each action’s outcome was well known, we will be concerned here with sequential
decision problems, in which the agent’s utility depends on a sequence of decisions. Se-
guential decision problems, which include utilities, uncertainty, and sensing, generalize the
search and planning problems described in Parts IT and IV. Section 17.1 explains how se-
quential decision problems are defined, and Sections 17.2 and 17.3 explain how they can
be solved to produce optimal behavior that balances the risks and rewards of acting in an
uncertain environment. Section 17.4 extends these ideas to the case of partially observable
environments, and Section 17.5 develops a complete design for decision-theoretic agents in
partially observable environments, combining dynamic Bayesian networks from Chapter 15
with decision networks from Chapter 16, _

The second part of the chapter covers environments with mulitiple agents. In such envi-
ronments, the notion of optimal behavior becomes much more complicated by the interactions
among the agents. Section 17.6 introduces the main ideas of game theory, including the idea
that rational agents might need to behave randomly. Section 17.7 looks at how multiagent
systems can be designed so that multiple agents can achieve a common goal,

SEQUENTIAL DECISION PROBLEMS

An example

Suppose that an agent is situated in the 4 x 3 environment shown in Figure 17.1(a). Begin-
ning in the start state, it must choose an action at each time step. The interaction with the
environment terminates when the agent reaches one of the goal states, marked +1 or —1. In
each location, the available actions are called Up, Down, Left, and Right. We will assume for
now that the environment is fully observable, so that the agent always knows where it is.

613

614

TRANSITION MODEL

REWARD

Chapter 17. Making Complex DeciSi()
—— i

= 0.1

1 START

(a) (b}

Figure 17.1 (a} A simple 4 x 3 environment that presents the agent with a sequentia]
decision problem. (b) llustration of the transition model of the environment: the “intendeq”
ouicome occurs with probability 0.8, but with probability 0.2 the agent moves at right angles
to the intended direction. A collision with a wall results in no movement. The two terming]
states have reward +1! and -1, respectively, and all other states have a reward of —(.04.

If the environment were deterministic, a solution would be easy: [Up, Up, Righ, Righ, §
Right]. Unfortunately, the environment won’t always go along with this solution, because the §
actions are unreliable. The particular model of stochastic motion that we adopt is illustrated a
in Figure 17.1(b). Each action achieves the intended effect with probability 0.8, but the rest
of the time, the action moves the agent at right angles to the intended direction. Furthermore, §
if the agent bumps into a wall, it stays in the same square. For example, from the start squar
(1,1), the action Up moves the agent to (1,2) with probability 0.8, but with probability 0.1, it §
moves right to (2,1), and with probability 0.1, it moves left, bumps into the wall, and staysin §
(1,1). In such an environment, the sequence [Up, Up, Right, Right, Right] goes up around §
the barrier and reaches the goal state at (4,3) with probability 0.8° = 0.32768. There is alsoa §
small chance of accidentally reaching the goal by going the other way around with probability
0.14 x 0.8, for a grand total of 0.32776. (See also Exercise 17.1.)

A specification of the outcome probabilities for each action in each possible state is
called a transition model (or just “model,” whenever no confusion can arise). We will use §
T(s,a,s') to denote the probability of reaching state s’ if action a is done in state s. We will §
assume that transitions are Markovian in the sense of Chapter 15, that is, the probability of :
reaching s’ from s depends only on s and not on the history of earlier states. For now, you |
can think of T'(s, a, s’) as a big three-dimensional table containing probabilities. Later, it
Section 17.5, we will see that the transition model can be represented as a dynamic Bayesian
network, just as in Chapter 135.

To complete the definition of the task environment, we must specify the utility functio?
for the agent. Because the decision problem is sequential, the utility function will depel}d
on a sequence of states—an environment history—rather than on a single state. Later 10§
this section, we will investigate how such utility functions can be specified in general; for
now, we will simply stipulaic that in each state s, the agent receives a reward R(s), whi<? §
may be positive or negative, but must be bounded. For our particular example, the reward 5 3
—0.04 in all states except the terminal states (which have rewards +1 and -1}, The utility @

Section 17.1,

Sequential Decision Problems 615

o

MARKOV DECISION
PROCESS

POLICY

OPTIMAL POLICY

an environment history is just (for now) the sum of the rewards received. For example, if the
agent reaches the +1 state afier 10 steps, its total utility will be 0.6. The negative reward of
-0.04 gives the agent an incentive to reach (4,3} quickly, so our environment is a stochastic
generalization of the search problems of Chapter 3. Another way of saying this is that the
agent does not enjoy living in this environment and so wants to get out of the game as soon
as possible.

The specification of a sequential decision problem for a fully observable environment
with a Markovian transition model and additive rewards is called a Markov decision process,
or MDP. An MDP is defined by the following three components:

Initial State: .Sy

Transition Model: T'(s, a, ')

Reward Function:! R(s)

The next question is, what does a solution to the problem look like? We have seen that any
fixed action sequence won't solve the problem, because the agent might end up in a state
other than the goal. Therefore, a solution must specify what the agent should do for any state
that the agent might reach. A solution of this kind is called a policy. We usuaily denote a
policy by , and (s) is the action recommended by the policy r for state s. If the agent has a
complete policy, then no matter what the outcome of any action, the agent will always know
what to do next. '

Each time a given policy is executed starting from the initial state, the stochastic nature
of the environment will lead to a different environment history. The quality of a policy is
therefore measured by the expected utility of the possible environment histories generated
by that policy. An eptimal policy is a policy that yields the highest expected utility. We
use 7™ to denote an optimal policy. Given 7*, the agent decides what to do by consulting
its current percept, which tells it the current state s, and then executing the action 7*(s). A
policy represents the agent function explicitly and is therefore a description of a simple reflex
agent, computed from the information used for a utility-based agent,

An optimal policy for the world of Figure 17.1 is shown in Figure 17.2(a). Notice
that, because the cost of taking a step is fairly small compared with the penalty for ending
up in (4,2) by accident, the optimal policy for the state (3,1) is conservative. The policy
recommends taking the long way round, rather than taking the short cut and thereby risking
entering (4,2).

The balance of risk and reward changes depends on the value of R(s) for the nonter-
minal states. Figure 17.2(b) shows optimal policies for four different ranges of R(s). When
R(s) < —~1.6284, life is so painful that the agent heads straight for the nearest exit, even if
the exit is worth ~1. When —0.4278 < R(s) < -0.0850, life is quite unpleasant; the agent
takes the shortest route to the +1 state and is willing to risk falling into the 1 state by acci-
dent. In particular, the agent takes the shortcut from (3.1). When life is only slightly dreary
(—0.6221 < R(s) < 0}, the optimal policy takes no risks ar all, In (4,1) and (3,2), the agent

! Some definitions of MDPs allow the reward to depend on the action and outcome too, so the reward function
is R{s,a,s’). This simplifics the description of some environments but does not change the problem in any
fundamental way.

616

Chapter 17, Making Complex Decigg

FINITE HORIZON
{NFINITE HORIZON

¥
oG
2| 4B

o
==
o0

R(s) < ~1.628

B[

BREIE

‘ - | -t

(=1 e

~0.0221 <R(s) <
(a) G))

R(s)>0

Figure 17.2 (a) An optimal policy for the stochastic environment with R(s) = — 0.04 in
the nonterminal states. (b) Optimal policies for four different ranges of R(s}.

heads directly away from the 1 state so that it cannot fall in by accident, even though this
means banging its head against the wall quite a few times. Finally, if R(s) > 0, then life is
positively enjoyable and the agent avoids both exits. As long as the actions in (4,1}, (3,2),
and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be-
cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal
policies for various ranges of R(s); Exercise 17.7 asks you to find them. .

The careful balancing of risk and reward is a characteristic of MDPs that does not
arise in deterministic search problems; moreover, it is a characteristic of many real-world
decision problems. For this reason, MDPs have been studied in several fields, including Al
operations research, economics, and control theory. Dozens of algorithms have been proposed
for calculating optimal policies. In sections 17.2 and 17.3 we will describe two of the most
important algorithm families. First, however, we must complete our investigation of utilities
and policies for sequential decision problems.

Optimality in sequential decision problems

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum
of rewards for the states visited. This choice of performance measure is not arbitrary, but it
is not the only possibility. This section investigates the possible choices for the performance
measure—that is, choices for the utility function on environment histoties, which we will
write as Up([s0, 51, . - .+]). The section draws on ideas from Chapter 16 and is somewbat
technical; the main points are summarized at the end.

The first question to answer is whether there is a finite horizon or an infinite horizon
for decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus, Up([s0, 51, - - -, vk)) = Un([s0, 51, . . . , 1)
for all k > 0. For example, suppose an agent starts at (3,1) in the 4 x 3 world of Figure 17.1,

—

Section 17.1.

Sequential Decision Problems 617

-

NONSTATIONARY
POLICY

STATIONARY POLICY

STATIONARY
PREFERENCE

ADDITIVE REWARDS

DISCOUNTED
REWARDS

DISCOUNT FACTOR

and suppose that NV = 3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N =100
then there is plenty of time to take the safe route by going Left. So, with a finite horizon,
the optimal action in a given state could change over time. We say that the optimal policy
for a finite horizon is nonstationary. With no fixed time limit, on the other hand, there
is no reason to behave differently in the same state at different times. Hence, the optimal
action depends only on the current state, and the optimal policy is stationary. Policies for
the infinite-horizon case are therefore simpler than those for the finite-horizon case, and we
will deal mainly with the infinite-horizon case in this chapter.? Note that “infinite horizon”
does not necessarily mean that all state sequences are infinite; it just means that there is no
fixed deadline. In particular, there can be finite state sequences in an infinite-horizon MDP
containing a terminal state,

The next question we must decide is how to calculate the utility of state sequences.
We can view this as a question in multiattribute utility theory (see Section 16.4), where
each state s; is viewed as an attribute of the state sequence [sg, 81, $2 . . .|. To obtain a simple
expression in terms of the attributes, we will need to make some sort of preference inde-
pendence assumption. The most natural assumption is that the agent’s preferences between
state sequences are stationary. Stationarity for preferences means the following: if two state
sequences [so, 51,82, . - -] and [sh, 81, sh, . ..] begin with the same state (i.e., so=sp) then
the two sequences should be preference-ordered the same way as the sequences {s1,82,--.)
and [s, s, ...]. In English, this means that if you prefer one future to another starting to-
morrow, then you should still prefer that future if it were to start today. Stationarity is a
fairly innocuous-looking assumption with very strong consequences: it turns out that under
stationarity there are just two ways to assign utilities to sequences:

1. Additive rewards: The utility of a state sequence is
Un([80, 81, 82,...]) = R{30) + R(s1) + R(s2) + - -
The 4 x 3 world in Figure 17.1 uses additive rewards. Notice that additivity was used
implicitly in our use of path cost functions in heuristic search algorithms (Chapter 4).
2. Discounted rewards: The utility of a state sequence is
Un([s0, 51, 52, .. .]) = R(s0) + vR(s1) +¥*R(s2) + -+,
where the discount factor -y is a number between 0 and 1. The discount factor describes
the preference of an agent for current rewards over future rewards. When « is close
to 0, rewards in the distant future are viewed as insignificant. Wheun vy is 1, discounted
rewards are exactly equivalent to additive rewards, so additive rewards are a special
case of discounted rewards. Discounting appears to be a good model of both animal
and human preferences over time. A discount factor of vy is equivalent to an inferest rate
of (1/7) - L
For reasons that will shortly become clear, we will assume discounted rewards in the remain-
der of the chapter, although sometimes we will allow 7 = I.

2 This is for completely observable environments. We will see later that for partially observable environments,
the infinite-horizon case is not so simple.

618

Chapter 17. Making Complex Decisig;

PROPER POLICY

AVERAGE REWARD -

Lurking beneath our choice of infinite horizons is a problem: if the environment do
not contain a terminal state, or if the agent never reaches one, then all environment historieg
will be infinitely long, and utilities with additive rewards will generally be infinite. Now, we
can agree (hat 400 is better than —oo, but comparing {two state sequences, both having +oo .
utility is more difficult. There are three solutions, two of which we have seen already: :

1. With discounted rewards, the utility of an infinite sequence is finite. In fact, if rewards
are bounded by Ry and v < 1, we have

o0 o0
Uh([SO,ShSQa =]) = Z ’YiR(St) < Z 'YiRmax = Rmax/(l = ’)’)) (7.1
t=0 t=0
using the standard formula for the sum of an infinite geometric series.

2. If the environment contains terminal states and if the agent is guaranteed 1o gel to one
eventually, then we will never need to compare infinite sequences. A policy that is
guaranteed (o reach a terminal state is called a proper policy. With proper policies, we
can use v = 1 (i.e., additive rewards). The first three policies shown in Figure 17.2(b)
are proper, but the fourth is improper. It gains infinite total reward by staying away from
the terminal states when the reward for the nonterminal states is positive. The existence
of improper policies can cause the standard algorithms for solving MDPs to fail with
additive rewards, and so provides a good reason for using discounted rewards.

3. Another possibility is to compare infinite sequences in terms of the average reward
obtained per time step. Suppose that square (1,1) in the 4 X 3 world has a reward of
0.1 while the other nonterminal states have a reward of 0.01. Then a policy that does
its best to stay in (1,1) will have higher average reward than one that stays elsewhere,
Average reward is a useful criterion for some problems, but the analysis of average-
reward algorithms is beyond the scope of this book.

In sum, the use of discounted rewards presents the fewest difficulties in evaluating state se-
quences. The final step is to show how to choose between policies, bearing in mind that
a given policy 7 generates not one state sequence, but a whole range of possible state se-
quences, each with a specific probability determined by the transition model for the envi-
ronment. Thus, the value of a policy is the expected sum of discounted rewards obtained,
where the expectation is taken over all possible state sequences that could occur, given that
the policy is executed. An optimal policy #* satisfies

(oo}

7 = argmax F {Z Y R(ss) | ’.’T] . (17.2)
T £=0

The next two sections describe algorithms for finding optimal policies.

