T

Section 20.6. Kernel Machines 749

20.6 KERNEL MACHINES

Our discussion of neural networks left us with a dilemma. Single-layer networks have a
| simple and efficient learning algorithm, but have very limited expressive power—they can
; learn only linear decision boundaries in the input space. Multilayer networks, on the other
hand, are much more expressive-—they can represent general nonlinear functions—but are
very hard to train because of the abundance of local minima and the high dimensionality
of the weight space. In this section, we will explore a relatively new family of learning
| ERORIVECTOR - methods called support vector machines (SVMs) or, more generally, kernel machines. To
KEANEL MACHINE some extent, kernel machines give us the best of both worlds. That is, these methods use an
efficient training algorithm and can represent complex, nonlinear functions.

The full treatment of kernel machines is beyond the scope of the book, but we can
| Hlustrate the main idea through an example. Figure 20.27(a) shows a two-dimensional input
};. space defined by attributes x = (z1, z»), with positive examples (y = + 1) inside a circular
E:q region and negative examples (y = - 1) outside. Clearly, there is no linear separator for this
2 problem. Now, suppose we re-express the input data using some computed features—i.e., we
map each input vector X to a new vector of feature values, F'(x). In particular, let us use the
three features

h=2, fo=z28, fa=V2mag. (20.16)

We will see shortly where these came from, but, for now, just look at what happens. Fig-
ure 20.27(b) shows the data in the new, three-dimensional space defined by the three features;
the data are linearly separable in this space! This phenomenon is actually fairly general: if
data are mapped into a space of sufficiently high dimension, then they will always be linearly
separable. Here, we used only three dimensions,'* but if we have N data points then, ex-
cept in special cases, they will always be separable in a spacc of N - 1 dimensions or more
{(Exercise 20.21).
So, is that it? Do we just produce loads of computed features and then find a linear
separator in the corresponding high-dimensional space? Unfortunately, it’s not that easy.
Remember that a linear separator in a space of d dimensions is defined by an equation with d
parameters, o we are in serious danger of overfitting the data if d &~ N, the number of data
points. (This is like overfitting data with a high-degree polynomial, which we discussed in
Chapter 18.) For this reason, kernel machines usually find the optimal linear separator—the
HARaN one that has the largest margin between it and the positive examples on one side and the
negative examples on the other. (See Figure 20.28.) It can be shown, using arguments from
computational learning theory (Section 18.5), that this separator has desirable properties in
i terms of robust generalization. to new examples.
PROGRAMMING Now, how do we find this separator? It turns out that this is a quadratic programming
optimization problem. Supposc we have examples x; with classifications y; = + 1 and we
want to find an optimal separator in the input space; then the quadratic programming problem

14 The reader may notice that we could have used just f1 and fa, but the 31 mapping illustrates the idea better. ; : i

750

Chapter 20. Statistical Learning Megj;

X

(b)

Figure 20.27 () A two-dimensional training set with positive examples as black cir-
cles and negative examples as white circles. The true decision boundary, 2% + 23 < 1,
is also shown. (b) The same data after mapping into a three-dimensional input space
(m%, zc%, V2q x7). The circular decision boundary in (a) becomes a linear decision boundary

in three dimensions.

Figure 2028 A close-up, projected onto the first two dimensions, of the optimal separator
shown in Figure 20.27(b). The separator is shown as a heavy line, with the closest points-*—me
support vectors—marked with circles. The margin is the separation between the positive

and negative examples,

=

Section 20,6, Kernel Machines 751

is to find values of the parameters ¢v; that maximize the expression
. .
Z oy — -2- Z QY Yy (X?; . Xj) (20. 17)
i (2

subject to the constraints ; > 0 and 3, o;y; = 0. Although the derivation of this expression
is not crucial to the story, it does have two important properiies. First, the expression has a
!Eé_g- single global maximum that can be found efficiently. Second, the data enter the expression
i only in the form of dot products of pairs of points. This second property is also true of the
equation for the separator itself; once the optimal ;s have been calculated, it is

h(x) == sign (Z (X - xi)) } (20.18)

A final important property of the optimal separator defined by this equation is that the weights
oy associated with each data point are zere except for those points closest to the separator—
sweeorTvecton the so-called support vectors. (They are called this because they “hold up” the separating
plane.) Because there are usually many fewer support vectors than data points, the effective
number of parameters defining the optimal separator is usually much less than N. =
Now, we would not usually expect to find a linear separator in the input space x, but it
is easy to see that we can find linear separators in the high-dimensional feature space F'(x)
simply by replacing x; - x; in Equation (20.17) with F(x;) - F(x;). This by itself is not
remarkable—replacing x by F'(x) in any learning algorithm has the required effect—but the
dot product has some special properties. It turns out that F'(x;} - F'(x;) can often be computed
without first computing F' for each point. In our three-dimensional feature space defined by
Equation (20.16), a little bit of algebra shows that

F(x¢) - P(%5) = (% - %)% .

The expression (x; - x;)? is called a kernel function, usually written as K (x;,x;). In the
kernel machine context, this means a function that can be applied to pairs of input data to
evaluate dot products in some corresponding feature space. So, we can restate the claim at the
beginning of this paragraph as follows: we can find linear separators in the high-dimensional
feature space F'(x) simply by replacing x; - x; in Equation (20.17) with a kernel function
K(x;,x;). Thus, we can learn in the high-dimensional space but we compute only kernel
functions rather than the full list of features for each data point.

The next step, which should by now be obvious, is to see that there’s nothing special
about the kernel K (x;,%;) = (x; - x;)%. It corresponds to a particular higher-dimensional
feature space, but other kernel functions correspond to other feature spaces. A venerable

ueroersTHEOREM result in mathematics, Mercer’s theorem (1909), tells us that any “reasonable” ' kernel
function corresponds to some feature space. These feature spaces can be very large, even for

P . . . i
ERpOMAL innocuous-looking kernels. For example, the polynemial kernel, K (x;, x;) = (1 + x; - x;)%, ‘
corresponds to a feature space whose dimension is exponential in d. Using such kernels in
i|§§';' Equation (20.17), then, optimal linear separators can be found efficiently in feature spaces
)

with billions (or, in some cases, infinitely many) dimensions. The resulting linear separators,

5 Here, “reasonable’™ means that the matrix Ky; = K (x;, x;) is positive definite; see Appendix A.

P 752

Chapter 20. Statistical Learning Methg .

KERNELZATION

20.7 CASE STUDY: HANDWRITTEN DIGIT RECOGNITION

when mapped back to the original input space, can correspond to arbitrarily wiggly, nonling,
boundaries between the positive and negative examples.

We mentioned in the preceding section that kernel machines excel at handwritten dig
recognition; they are rapidly being adopted for other applications—especially those With
many input features. As part of this process, many new keinels have been designed thy,
work with strings, trees, and other non-numerical data types. It has also been observed thy;
the kerne! method can be applied not only with learning algorithms that find optimal lineg,
separators, but also with any other algorithm that can be reformulated to work only with de;
products of pairs of data points, as in Equations 20.17 and 20.18. Once this is done, the (g
product is replaced by a kernel function and we have a kernelized version of the algorithy,
This can be done easily for k-nearest-neighbor and perceptron learning, among others.

Recognizing handwritten digits is an important problem with many applications, including
automated sorting of mail by postal code, automated reading of checks and tax returns, and
data entry for hand-held computers. It is an area where rapid progress has been made, in part
because of better learning algorithms and in part because of the availability of better training
sets. The United States National Institute of Science and Technology (NIST) has archived a
database of 60,000 labeled digits, each 20 x 20 =400 pixels with 8-bit grayscale values. It
has become one of the standard benchmark problems for comparing new learning algorithms.
Some example digits are shown in Figure 20.29.

2RIt dielIVAL IS

Figure 20.29 Examples from the NIST database of handwritten digits. Top row: examples
of digits 0-9 that are easy to identify. Bottom row: more difficult examples of the same digits.

Many different Jearning approaches have been tried. One of the first, and probably the
simplest, is the 3-nearest-neighbor classifier, which also has the advantage of requiring no
training time. As a memory-based algorithm, however, it must store all 60,000 images, and
its runtime performance is slow. It achieved a test error rate of 2.4%.

A single-hidden-layer neural network was designed for this problem with 400 input
units (one per pixel) and 10 output units (one per class). Using cross-validation, it was found
that roughly 300 hidden units gave the best performance. With full interconnections betweel
layers, there were a total of 123,300 weights. This network achieved a 1.6% error rate.

