110 6. APPROXIMATION ALGORITHMS

on ending up in a dead end from a given state, it has to sample many deterministic futures,
exacting a steep price in the speed of computing a solution.

* RFF, although aware of dead ends’ existence, does little to avoid them. When, as a result of
expansion, its policy graph includes a dead end, the basic RFF version does not modify the
policy to avoid the dead end. Rather, it simply excludes the dead end from the policy graph
and marks it in order to prevent its re-inclusion in the future. A more sophisticated RFF
version performs policy optimization [228] on the solution graph using Bellman backups,
which improves its ability to eschew dead ends when possible.

* HMDPP detects dead-end states explicitly with the help of a dedicated heuristic. Its approach
appears to strike a good balance between the quality of a solution according to the MAXPROB
criterion and the efficiency of finding it.

Our discussion of approximating solutions to MAXPROB,, MDPs with determinization-
based algorithms would be incomplete without considering a natural alternative: why not solve
MAXPROB problems optimally? After all, perhaps solving MAXPROB is easy enough that it can
be done reasonably efficiently without resorting to tricks such as determinization? Unfortunately, too
little is known about MAXPROB,, MDPs to answer these questions conclusively. MAXPROB is
known not to be a subclass of SSP with an initial state [137], since in MAXPROB,, MDPs, improper
policies do not accumulate an infinite cost, as the SSP definition requires. Rather, MAXPROB;, is a
subclass of GSSP [137], a type of MDPs with complicated mathematical properties briefly covered in
Chapter 7. The most efficient currently known method of optimally solving MAXPROB, MDPs is
heuristic search, although of a more sophisticated kind [137] than presented in Chapter 4. However,
at present its effectiveness is limited by the lack of admissible heuristics for MAXPROB problems.
The only nontrivial (i.e., more involved than setting the value of every state to 1) such heuristic
known so far is SixthSense [133], which soundly identifies dead ends in the MDP’s state space
and sets hgs(s) =0 for them. Curiously, computing SixthSense itself heavily relies on domain
determinization. We revisit it in some more detail in Section 7.4.3.

6.2 SAMPLING-BASED TECHNIQUES

Both the optimal and the approximate MDP algorithms discussed so far work well as long as the
number of outcomes of each action in different states is, on average, small. For a factored MDP,
“small” means constant or polynomial in the number of state variables. There are plenty of scenarios
for which this is not the case. To illustrate them, we use a toy problem named Sysadmin, introduced
in Section 2.5.3. Recall that it involves a network of n servers, in which every running server has
some probability of going down and every server that is down has some probability of restarting at
every time step. There are n binary variables indicating the statuses of all servers, and at each time
step the system can transition to virtually any of the 2" states with a positive probability. Some MDP
specification languages, e.g., RDDL [204], which we saw in the same section, can easily describe
such MDPs in a compact form (polynomial in the number of state variables).




6.2. SAMPLING-BASED TECHNIQUES 111

What happens to the algorithms we have explored in this book so far if they are run on an
MDP with an exponentially sized transition function, as above? Let us divide these techniques into
two (non-mutually exclusive) groups, those that compute Q-values via Definition 3.7 (e.g., RTDP)
and those that use determinizations (e.g., FF-Replan). Computing a Q-value requires iterating over
all of an action’s successors, whose number for the MDPs we are considering is exponential in the
problem description size. Thus, the first group of methods will need to perform a prohibitively
expensive operation for every state transition, rendering them impractical. The second group of
methods does not fare much better. In the presence of a large transition function, their preprocessing
step, generating the determinization, requires an exponential effort as well. Thus, all the machinery

we have seen seems defeated by such MDPs.

6.2.1 UCT

UCT [128] is a planning algorithm that can successfully cope even with exponential transition
functions. Exponential transition functions plague other MDP solvers ultimately because these
solvers attempt to enumerate the domain of the transition function for various state-action pairs,
e.g., when summing over the transition probabilities or when generating action outcomes to build
determinizations. As a consequence, they need the transition function to be explicitly known and
efficiently enumerable. Instead, being a Monte Carlo planning technique [89], UCT only needs
to be able to efficiently sample from the transition function and the cost function. This is often
possible using an environment simulator even when the transition function itself is exponentially
sized. Moreover, the fact that UCT only needs access to the transition and cost functions in the
form of a simulator implies that UCT does 70 need to know the transition probabilities (and action
costs) explicitly.

As Algorithm 6.2 shows, UCT works in a similar way to RTDP. It samples a number of
trajectories, or ro/louts in UCT terminology, through the state space, and updates Q-value approxi-
mations for the state-action pairs the trajectories visit. The rollouts have the length of at most T4y,
a user-specified cutoff, as is common for RTDP as well. However, the way UCT selects an action
in a state, and the way it updates Q-value approximations is somewhat different from RTDP. For
each state s, UCT maintains a counter ng of the number of times state s has been visited by the
algorithm. The n counter is incremented every time a rollout passes through s. For each state-action
pair (s, a), UCT maintains a counter n, , of how many times UCT selected action a when visiting
state 5. Clearly, for each s, ng = ), 4 15,. Finally, for each (s, a), UCT keeps track of 0(s, a),
an approximation of the Q-value of @ in s equal to the average reward accumulated by past rollouts
after visiting s and choosing @ in s (line 30). In every state s, UCT selects an action

In(ny)

d =argmin { Q(s,a) — C (6.2)
acA

s,a

IThe use of ADDs may alleviate the problem of computing Q-values in some, though not all, such problems.



112 6. APPROXIMATION ALGORITHMS

Algorithm 6.2: UCT
1 while there is time left do
2 § <— current state
3 cumulativeCost[0] < 0
4 maxNumSteps < 0
5 // Sample a rollout of length at most Tyuayx, as specified by the user
6 for i = 1 through Tipax do
7 if s has not been wisited before then
8 ng < 0
9 for alla € Ado
10 ng,a < 0
11 Q(s, a) <0
12 end
13 end
14 maxNumSteps < i
15 // C = 0 is a user-specified weight of the exploration term
16 a @argminaeA{Q(s,a) -C %}
17 s’ < execute action a’ in s
18 // cumulativeCost[i] is the cost incurred during the first i steps of the current rollout
19 cumulativeCost[i] < cumulativeCost[i — 1]+ C(s, a, s’)
20 N
21 a; <—a
22 s <«
23 if s € G then
24 ‘ break
25 end
26 end
27 for i = 1 throughmaxNumSteps do
28 // Update the average Q(si, a;) with the total cost incurred in the current rollout
29 // after visiting the state-action pair (s;, a;)
30 OGsi, aj) < nsi,aiQ(s,,a,)+(cumulattveCostE:t:;ljzlJ\;l;mSteps] cumulativeCost[i—1])
31 ng; < ng +1
32 Ng;a; < Ngja; + 1
33 end
34 end

35 return argmin, 4 Q(current state, a)

The algorithm then samples an outcome of a” and continues the trial.
UCT effectively selects an action in each state based on a combination of two characteristics
— an approximation of the action’s Q-value (Q (s, a)) and a measure of how well-explored the action

in this state is (C mn(s—";)) Intuitively, UCT can never be “sure” of how well O(s, a) approximates

the quality of an action because Q(s, a) is computed via sampling and may fail to take into account



6.2. SAMPLING-BASED TECHNIQUES 113

some of a’s possible effects. Therefore, there is always the danger of O(s, a) failing to reflect some
particularly good or bad outcome of a, which could affect the ordering of actions in a state by quality.
In other words, UCT needs to always be aware that some actions are not explored well enough. One
way to implement this insight is to have UCT from time to time try an action that currently seems
suboptimal but has not been chosen for a long time. This is exactly what the exploration term
C lnn(s—";) does for UCT. If a state s has been visited many times (In(ny) is large) but a in s has been
tried few times (ny,q is small), the exploration term is large and eventually forces UCT to choose a.
The constant C > 0 is a parameter regulating the relative weight of the exploration term and the
Q-value approximation [128]. The value of C greatly affects UCT’s performance. Setting it too low
causes UCT to under-explore state-action pairs. Setting it too high slows down UCT’s convergence,
since the algorithm spends too much time exploring suboptimal state-action pairs.

The exploration term may appear to make UCT’s action selection mechanism somewhat
arbitrary. When UCT starts exploring the MDP, this is so indeed; the exploration term encourages
UCT to try a lot of actions that, purely based on Q(s, a), look suboptimal. However, notice: as the
denominator ny , grows, it is harder and harder for the numerator In(ny) to “keep up the pace,”
i.e., the growth of the exploration term for (s, a) slows down. That is, the more times UCT visits
a state-action pair, the smaller this pair’s exploration term and the bigger the role of Q(s, a) in
deciding whether a is selected in 5. The longer the algorithm runs, the more its action selection
strategy starts resembling RTDP’s.

UCT has no termination criterion with solution quality guarantees, but the following result
holds regarding its convergence.

Theorem 6.6 In a finite-horizon MDP where all action costs have been scaled to lie in the [0,1]
interval and for each augmented state (s, ) the constant C of the exploration term is set to f,
the probability of UCT selecting a suboptimal action in the initial state so converges to zero at a
polynomial rate as the number of rollouts goes to infinity [128].

Note that this result pertains to finite-horizon MDPs and does not directly apply to the goal-
oriented setting. However, if for an SSPy; MDP it is known that there is a policy that reaches the
goal from s within H steps with probability 1, one can set the Tju4, parameter (line 6) to H and
expect that UCT will approach a near-optimal policy as the theorem describes.

In an online setting, UCT can be used by giving it some amount of time to select an action in
the current state and making it return an action when the time is up. The amount of planning time to
allocate for good results is problem-dependent and needs to be determined experimentally. UCT can
also greatly benefit from a good initialization of its Q-value approximations Q(s, a). Well-tuned
UCT versions are responsible for several recent, as of 2012, advances in computer game playing
(e.g., bringing Al to a new level in 9 x 9 Go [93]). It is also the basis of a successful planner for
finite-horizon MDPs called PROST [124; 204]. The family of Monte Carlo planning algorithms
to which UCT belongs is a vast research area, most of which is beyond the scope of this book, and
we encourage the reader to use external sources to explore it [89].




	Preface
	Introduction
	Characteristics of an MDP
	Connections with Different Fields
	Overview of this Book

	MDPs
	Markov Decision Processes: Definition
	Solutions of an MDP
	Solution Existence
	Expected Linear Additive Utility and the Optimality Principle
	Finite-Horizon MDPs
	Infinite-Horizon Discounted-Reward MDPs
	Indefinite-Horizon MDPs

	Stochastic Shortest-Path MDPs
	Definition
	Stochastic Shortest-Path MDPs and Other MDP Classes

	Factored MDPs
	Factored Stochastic Shortest-Path MDPs
	PPDDL-style Representation
	RDDL-style Representation
	Factored Representations and Solving MDPs

	Complexity of Solving MDPs

	Fundamental Algorithms
	A Brute-Force Algorithm
	Policy Evaluation
	Policy Evaluation by Solving a System of Equations
	An Iterative Approach to Policy Evaluation

	Policy Iteration
	Modified Policy Iteration
	Limitations of Policy Iteration

	Value Iteration
	Bellman equations
	The Value Iteration Algorithm
	Theoretical Properties
	Asynchronous Value Iteration

	Prioritization in Value Iteration
	Prioritized Sweeping
	Improved Prioritized Sweeping
	Focused Dynamic Programming
	Backward Value Iteration
	A Comparison of Prioritization Algorithms

	Partitioned Value Iteration
	Topological Value Iteration
	External Memory/Cache Efficient Algorithms
	Parallelization of Value Iteration

	Linear Programming Formulation
	Infinite-Horizon Discounted-Reward MDPs
	Bellman equations
	Value/Policy Iteration
	Prioritized and Partitioned Algorithms

	Finite-Horizon MDPs
	MDPs with Dead Ends
	Finite-Penalty SSP MDPs with Dead-Ends


	Heuristic Search Algorithms
	Heuristic Search and SSP MDPs
	FIND-and-REVISE: a Schema for Heuristic Search
	LAO* and Extensions
	LAO*
	ILAO*
	BLAO* and RLAO*: Expanding the Reverse Envelope
	AO*: Heuristic Search for Acyclic MDPs

	RTDP and Extensions
	RTDP
	LRTDP
	BRTDP, FRTDP, VPI-RTDP: Adding an Upper Bound

	Heuristics and Transition Graph Pruning
	Action Elimination
	Focused Topological Value Iteration

	Computing Admissible Heuristics
	Adapting Classical Planning Heuristics to MDPs
	The haodet Heuristic
	The hmax Heuristic

	Heuristic Search and Dead Ends
	The Case of Avoidable Dead Ends
	The Case of Unavoidable Dead Ends


	Symbolic Algorithms
	Algebraic Decision Diagrams
	The REDUCE Operator
	The APPLY Operator
	Other ADD Operators

	SPUDD: Value Iteration using ADDs
	Symbolic LAO*
	Other Symbolic Algorithms
	Other Symbolic Representations
	Approximations using Symbolic Approaches

	Approximation Algorithms
	Determinization-based Techniques
	FF-Replan
	FF-Hindsight
	RFF
	HMDPP
	Determinization-based Approximations and Dead Ends

	Sampling-based Techniques
	UCT

	Heuristic Search with Inadmissible Heuristics
	hadd
	hFF
	hGOTH

	Dimensionality Reduction-based Techniques
	ReTrASE
	Approximate Policy Iteration and Linear Programming
	FPG

	Hierarchical Planning
	Options
	Task Hierarchy
	Hierarchy of Abstract Machines
	Other Approaches
	State Abstraction in Hierarchical MDP
	Learning Hierarchical Knowledge
	Discussion

	Hybridized Planning
	A Comparison of Different Algorithms

	Advanced Notes
	MDPs with Continuous or Hybrid States
	Value Function Representations
	Heuristic Search for Hybrid MDPs
	Continuous Actions

	MDP with Concurrency and Durative Actions
	Durative Actions
	Concurrent Actions
	Concurrent, Durative Actions

	Relational MDPs
	Solution Representations
	Algorithms

	Generalized Stochastic Shortest Path MDPs
	Mathematical Properties
	Algorithms for GSSP MDPs
	SixthSense: A Heuristic for Identifying Dead Ends

	Other Models
	Issues in Probabilistic Planning
	The Importance of Planning Competitions
	The Bane of Many Conferences

	Summary

	Bibliography
	Authors' Biographies
	Index

