3 The Fundamental Problems of Classical Artificial Intelligence and
Cognitive Science

So far we have looked at the nature of intelligence and discussed
the cognitivistic paradigm, which still by far dominates scientific
and everyday thinking about intelligence. In a number of places,,
however, we have alluded to potential problems with this para-
digm, In this chapter, we inspect more closely what these prob-
lems really are and why they have arisen in the first place. As we
argue, the cognitivistic paradigm’s neglect of the fact that intelli-
gent agents, humans, animals, and robots are embodied agents
that live in a real physical world leads to significant shortcomings
in explaining intelligence.

Qutlining the cognitivistic paradigm’s problems and under-
standing their origins helps us, on the one hand, to avoid making
the same mistakes again; on the other hand, it provides us with
inspiration about what needs to be done differently. The chapter
is relatively short. Most of the issues it raises have been discussed
at length in the literature (e.g., Brooks 1991a,b; Clancey 1997;
Franklin 1995; Hendriks-Jansen 1996; Winograd and Flores 1986),
and an overview of those issues is sufficient here without repeating
the details of the arguments. The goal is to outline the main prob-
lems that historically have led researchers to reconsider their
approach to the study of intelligence.

We proceed as follows in the chapter: first, we work out the main
distinctive characteristics of real and virtual worlds. We then
present an overview of some of the well-known problems of tradi-
tional systems, followed by an inspection of some of the fundamen-
tal issues involved. We conclude with a number of suggestions as
to what might be to be done in order to overcome these problems.

3.1 Real Worlds versus Virtual Worlds
Classical models, that is, models developed within the cognitivistic
paradigm, focus on high-level processes like problem solving, rea-
soning, making inferences, and playing chess. Much progress has
been made, as we have seen, for example, in the case of chess, with




Chapter 3 60

computers able to play well enough to defeat world champions. In
other areas, progress has been less rapid; for example, in computer
vision. It has turned out to be far more involved than expected to
extract information from camera images, typically in the form of a
pixel array, and map them onto internal representations of the
world. The main reason for these difficulties—and the reason for
the fundamental problems of Al in general—is that the models do
not take the real world sufficiently into account. Much work in
classical Al has been devoted to abstract, virtual worlds with pre-
cisely defined states and operations, quite unlike the real world.

To illustrate our argument, let us return to the game of chess
(figure 3.1a). Chess is a formal game. It represents a virtual world
with discrete, clearly defined states, board positions, operations,
and legal moves. It is also a game involving complete information:
If you know the board position, it is possible to know all you need
to know to play the game, because given a certain board position,
the possible moves are precisely defined and finite in number. Even
though you may not know the particular move your opponent will
make, you know that he will make a legal move; if he did not, he
would cease to be playing chess any longer. (Breaking the chess
board over the opponent’s head is not part of the game itself.) Chess
is also a static game, in the sense that if no one makes a move,
nothing changes. Moreover, the types of possible moves do not
change over time,

By contrast, consider soccer (figure 3.1b). Soccer is clearly a
nonformal game. It takes place in the real world, where there are no
uniquely defined states. The world of soccer—the real world—is
continuous. As humans, we can make a model of a soccer game,
and that model may have states, but not the soccer game as such.
Having no uniquely defined states also implies that two situations
in the real world are never identical. Moreover, in contrast to
virtual worlds, the available information an agent can acquire
about the real world is always incomplste. A soccer player cannot
know about the activities of all other players at the same time, and
those activities are drawn from a nearly infinite range of possi-
bilities. In fact, it is not even defined what “complete” information
means where a game like soccer is concerned. Completeness can be
defined only within a closed, formal world. Since completeness is
not defined, it is better to talk in terms of limited information. A
soccer player has only limited information about the overall situa-
tion. In fact, information that can be acquired about the real world
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Real worlds and virtual words. (a) Chess is'a format game. It represants a virtual
waorld with pracisely defined states, board positions, and operations, that is, the legal
moves. (b} Soccer is an example of a nonformal game. There are no precisely de-
fined states and operations. In contrast to chess, two situations in soccer are never
exactly identical.

is always limited because of embodiment: the field of view is
restricted, the range of the sensors is limited, and the sensory and
motor systems take time to operate. Moreover, in the real world
there is time pressure: things happen even if we do not do any-
thing, and they happen in real time. If we want to avoid getting hit
by cars, we may have to run away quickly. If we are jumping off
a wall, the laws of physics act on the body (gravity), and we have
to react quickly in order not to get hurt. Other laws of physics are
also relevant: Friction is required for locomotion, motion requires
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energy, and physical organisms all have a certain metabolism that
also needs energy. These are physical phenomena. They do not
have to be represented somehow in order to function. They are
simply there.

In the real world, any physical device is subject to noise, dis-
turbances, and malfunctions, This point holds in principle for any
sensory or motor system. In other words, information gathered from
the sensors is therefore always subject to errors. Finally, the real
world is indefinitely rich: there is always more to be known about
it. More precisely, since acquisition of information takes time, one
has to restrict oneself to knowledge about a certain part of the’
real world. This point also holds in principle. It does not de-
pend, say, on the sensory system’s sophistication. Given these
properties of the real world and the limitations of any kind of
physical agent, it follows that the real world is only partially
knowable, and this in turn implies that it is predictable only to a
limited extent.

Let us conclude our comparison of real and virtual worlds with a
note on terminology. We have used the term “virtual” to designate
closed, formal worlds such as chess. The term “virtual world” or
“simulated world” is often used in a different sense in the areas of
artificial life (e.g., Langton 1995) and virtual reality (Kalawsky
1993). Video games are a case in point; another example are Karl
Sims’s simulated physical worlds, in which artificial creatures
evolve under various conditions, for example, on land or in the
water (Sims 1994a,b). In these worlds, one can define new physical
laws, new laws of nature, which is one of the things that makes
them so fascinating. For example, if gravity is simulated in a virtual
world, one can adjust g, the constant of gravity, and one can observe
the change in the behavior of the (simulated) organisms that inhabit
this world. From the perspective of the agents that live in such a
virtual world, this virtual world does have some of the character-
istics that we pointed out for real worlds. For example, unexpected
and novel things happen—irom the point of view of the agent!
Often, new kinds of enemies emerge who have unknown powers.
However, from the point of view of the programmer who created
the virtual world, the very same events are neither new nor un-
expected: he designed them into the system.

In summary, real worlds differ significantly from virtual ones.
The problems of classical Al and cognitive science have their origin
largely in a neglect of these differences.
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3.2 Some Well-Known Problems with Classical Systems

In what follows we summarize some of the better-known problems
with classical Al systems. Throughout the discussion we use the
term classical Al systems to denote pure symbolic systems such as
expert systems or traditional planning systems like STRIPS. The
goal in this section is to describe the issues and problems that his-
torically have motivated researchers te look for alternatives. There
seems to be consensus within a large part of the research commu-
nity in Al that classical systems, lack robustness and generalization
capabilities, and cannot perform in real time. This makes them
poorly suited Tor behaving in the real world, Morecver, they are, 1o
essence, sequential; that is, they perform one operation after an-
other. They also run on sequential machines, whereas the human
brain is massively parallel in its processing. Let us briefly examine
each of these points.

Robustness and Generalization: Traditional Al systems often lack
robustness, which means that they lack tolerance of noise and
fault tolerance and cannot behave appropriately in new situations.
A system has noise tolerance if it functions appropriately when the
data contain noise i.e. there are random fluctuations in the data.
Sensors are always noisy, because they are physical devices, and
motor acts are always imprecise, because they arise from physical
devices. A system has fault tolerance if it performs adequately
when some of its components break down. Standard symbol pro-
cessing models are neither noise nor fault tolerant unless their
programming explicitly provides for noise and particular types of
faults. The most important deficiency of traditional Al systems in
terms of robustness, however, is their inability to perform appro-
priately in novel situations, that is, their lack of generalization
capacity. If a situation arises that has not been predefined in its
programming, a traditional system breaks down or stops operating.
Generalization ability is especially important in the real world,
where no two situations are ever exactly the same.

Real-Time Processing: Because the real world has its own
dynamics, systems must be able to react quickly in order to survive
and perform their tasks. Systems based on the classical paradigm
embedded in real Tobots are typically slow, because they process
information centrally. Recall our overview of JL in chapter 2, in
which a central information processing module was postulated (see
principle ¢6 in table 2.3), and the discussion in chapter 1 of the
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view that the brain is the “seat of intelligence”. If all sensor signals
have to be transmitted to a central device for processing (integra-
tion with other sensory signals, mapping onto internal representa-
tions, planning of action sequences) and finally generation of motor
signals, real-time response can hardly be achieved.
Sequential Nature of Programs: The architecture of today’s Al
programs is essentially sequential, and they work on a step-by-step
basis. By contrast, the human brain’s processing is massively par-
allel, with activity occurring in many parts of the brain at all
times. This problem arises from the fact that current computer
technology is largely based on architectures of the von Neumann
type which are, at the information processing level, sequential
machines. As an aside, note that at the physical level a von Neu-
mann machine is also massively paralle], just like any other system
in nature.
Other Problems: Additional criticisms have been that classical
systems are goal-based, are hierarchically organized, and process
information centrally. The problems with goal-based systems are
discussed in Montefiore and Noble 1989; the latter two problems
are considered in chapter 11.

The criticisms of AI models presented so far are well-known and
long-standing. Since the mid-1980s a number of additional ones
have been raised pertaining to fundamental issues. Specifically, it
has been argued that traditional Al models suffer from the frame
problem and the problem of symbol grounding, and that they lack
the properties of embodiment and situatedness.

3.3 The Fundamental Problems

In section 3.1 we pointed out that one of the problems with classi-
cal Al is that it did not give the real world suflicient consideration.
In fact, all the fundamental problems of classical Al concern the
relation of an agent and the real world, in particular its interaction
with it. Chapter 4 outlines a systematic way of dealing with these
relations. In this section, we discuss some specific problems: the
frame problem, the symbel-grounding problem, and lack of em-
bodiment and situatedness are treated in detail, and we briefly dis-
cuss the homunculus problem and the problem of the substrate
required for intelligence.
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The Frame Problem

The frame problem was originally pointed out by McCarthy and
Hayes (1969) and has more recently attracted a lot of interest (e.g.,
Pylyshyn 1987}. It comes in several variations and lacks one single,
overriding interpretation. The central point concerns how to model
change (Janlert 1987): How can a model of a continuously changing
environment be kept in tune with the real world? Assuming that
the model consists of a set of logical propositions (which essentially
holds for any representation), any proposition can change at any
point in time. Let us explain the frame problem using an example
given by Daniel Dennett (1987}, who has been working in the field
of philosophy of the mind for many years. The initial situation
described in Dennett’s example is illustrated in figure 3.2, depict-
ing a robot employing a propositional representation. It consists
of a set of propositions like INSIDE(R1,ROOM)}, ON(BATTERY,
WAGON), and so forth.

Once upon a fime there was a robot, named R1 by its creators. Its
only task was to fend for itself. One day its designers arranged for it
to learn that its spare battery, its precious energy supply, was
locked in a room with a time bomb set to go off soon. R1 located the
room, and the key to the door, and formulated a plan to rescue its
battery. There was a wagon in the room, and the battery was on the
wagon, and R1 hypothesized that a certain action which it called
PULLOUT{WAGON, ROOM) would result in the baflery removed
from the room. Straightaway it acted, and did succeed in getting
the battery out of the room before the bomb went off. Unfortunately,
however, the bomb was also on the wagon. R1 knew that the bomb
was on the wagon in the room, but didn’t realize that pulling the
wagon would bring the bomb out along with the battery. Poor R1
had missed that obvious implication of its planned act.

Back to the drawing board. ““The solution is obvious,” said the
designers. “Our next robot must be made to recognize not just the
intended implications of its acts, but also the implications about
their side-effects, by deducing these implications from the descrip-
tions it uses in formulating its plans.” They called their next
model, the robot-deducer, R1D1. They placed H1D1, in much the
same predicament that R1 had succumbed to, and as it too hit
upon the idea of PULLOUT{WAGON, ROOM] it began, as designed,
to consider the implications of such a course of action. It had just
finished deducing that pulling the wagon out of the room would not
change the colour of the room’s walls, and was embarking on a
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proof of the further implication that pulling the wagon out would
cause its wheels to turn more revolutions than there were wheels on
the wagon—when the bomb exploded.

Back to the drawing board. “We must teach it the difference be-
tween relevant implications and irrelevant implications,” said the
designers, “and teach it to ignore the irrelevant ones.” So they
developed a method of tagging implications as either relevant or
irrelevant to the project at hand, and installed the method in their
next model, the robot-relevant-deducer, R2D1 for short. When they
subjected R2D1 to the test that had so unequivocally selected
its ancestors for extinction, they were surprised to see it sitting,
Hamlet-like, outside the room coniaining the ticking bomb, the
native hue of its resolution sicklied o'er with the pale case of
thought, as Shakespeare (and more recently Fodor) has aptly put it.
“Do something!” they yelled at it. “T am,” it retorted. “I'm busily
ignoring some thousands of implications I have determined to be
irrelevant. Just as soon as I find an irrelevant implication, I put it
on the list of those I must ignore, and ..."” the bomb went off. (pp.
41-42)

Let us briefly summarize the essential points of Dennett’s example.

Assume that the symbolic description of the situation given in
figure 3.2 is stored in R1’s memory. It then has the problem of

INSIDE(R]1,ROOM)
INSIDE(BATTERY,ROOM)
INSIDE(BOMB,ROOM)
INSIDE(WAGON,ROOM)
ON{BATTERY,WAGON)
COLOR(WALLS,BLUE)
HEIGHT(ROOM,9FEET)
ON(BOMB, WAGON)
PULLOUT(WAGON,ROOM)
ETC.
ETC.

The frame praoblem. The robot R1/R1D1/R2D1 (R1 stands for robot, R1D1 for robot-
deducer, and R2D1 robot-relevant-deducer)} is standing near the wagon with a bat-
tery and a bomb, R1/R1D1/R2D1 uses a symbofic representation of the situation to
draw inferences and guide its behavior.
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determining the implications of an action. In this particular situa-
tion, the action of moving the wagon has the side effect that the
bomb is also moving, since it is sitting on the wagon. Unfortu-
nately, the robot does not-know that this is relevant. What is
obvious to a human observer has to be made explicit for R1.

R1D1 tries to take a vast number of potential side effects into
account. Assessing all of these potential side effects takes a lot of
time, and most are entirely irrelevant. For example, the fact that
moving the cart does not change the color of the room is totally
irrelevant in the current situation.

R2D1 tries to distinguish between relevant and irrelevant infer-
ences. But in order to do this it has to consider all of them anyhow,
which implies that R2D1 has no significant advantage over R1D1.

T}}_g_gg_};gve been a number of proposals for resolving the frame
problem. One is the ‘‘sleeping dog strategy,” in which the robot is
programmed to assume that if something is not explicitly changed,
it has not changed at all. Physical objects normally do not cease
to exist if nothing happens to them, or they do not start to fly
without reason, or the color of the room does not change signifi-
cantly in a short period of time unless it is painted, and so forth.
The robot then relies on this assumption in planning its course
of action. However, ice cubes can melt, that is, they can cease to
exist without an explicit manipulation of them. The bomb on the
wagon changes its position if the wagon is moved. Either this
fact must be represented explicitly, which would imply that there
are very many relations of this kind, requiring significant mem-
ory space, collectively, for their representation, or the robot has
to infer that the bomb will also move. As we have seen, however,
there are typically a very large number of possible inferences
that can be drawn and determining the relevance alone does not
help (as poor R2D1 found). While the sleeping dog strategy is often
useful, it does not completely resolve the frame problem. For exam-
ple, it does not solve the problem of finding a way for the robot to
determine the relevance of relations without having to check all
the inferences.

Minsky (1975) and Schank and Abelson (1977) suggested that the
robot’s attention be focused on the relevant inferences by employ-
ing frames (or scripts). (Figure 2.7 offered an example of a script
that focuses the attention on things happening in restaurants.)
McCarthy (1980) suggested circumscription, which is also a
way to restrict the number of inferences. All of these suggested
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ON(TABLE,BALL)
ON(TABLE,CUP)
BEHIND(CUPBALL)
EYC,

Figure 3.3 The frame problem and situatedness. R1/R101/R2D1 is standing in front of a table.
From s current perspective, the cup is behind the ball, and this relationship is re-
flected in the symbolic description it uses to represent its environment. if R1/R1D1/ "
R2D1 moves to the other side of the table, the symbolic description has to be up-
dated, from the rohot's perspective, the ball is now behind the cup. If a robot has a
large set of such descriptions, many of them, but not all, may have to be updated as
it moves around. Finding the right ones is a fundamental problem. For example, if
R1/R1D1/R2D1 moves to the other side of the tahle, the relative position of the ball
and the cup change, but the ball and the cup are still in exactly the same place. In the
symbolic approach a way must therefore be found to reflect the change in the posi-
tion of the objects relative to the robot without altering the robot’s representation of
their absclute positions. A situated agent can merely “look at” the situation.

solutions try to tackle the problem at the logical level, in a sense, on
the inside. The problem, however, is really about the system-
environment interaction: how models of a changing environment
can be kept in tune with the environment. This is not a problem of
logic, but rather one of modeling the world.

Another problem arises when modeling the real world that is
related to the frame problem. R1D1 represents the situation shown
on the right in figure 3.3 by means of a number of propositions. If
R1D1 moves around the table, many of the propositions in the
model R1D1 uses have to be updated, even though only the posi-
tion of R1D1 is changing. In the real world it is not necessary for us
to build a representation of the situation in the first place: We can
simply look at it, which relieves us of the need for cumbersome

updating processes. Moreover we can point to things when talking
about them. As a robot, R1D1 could also take advantage of these
possibilities—if designed properly.

1
|
i
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According to Janlert {1987) the frame problem has two aspects.
Our robots R1, R1D1, and R2D1 were suffering from one, the pre-
diction problem, which has to do with determining what is rele-
vant. The other, called the qualification problem, is equally nasty:
It involves the preconditions under which an action can be applied.
For example, if you are getting into a car, you have to assume that
there is no bomb in the car, that nobody put sugar into the gas tank,
that nobody has taken out the engine, that no skunk is in the car,
that no lion is in the car, that the clutch is still in the same place,
and so forth almost infinitely. Another example is that when sitting
down on a chair, you do not explicitly assume that it will not break.
You do not have to do that because you can be confident that if
there were a problem you would recognize it. (But note that this
strategy may occasionally fail, and you might indeed land on your
behind on the floor.) Humans certainly do not explicitly assume
that these preconditions are given. Because we are “grounded” in
our environment, we know the things we have to check. To func-
tion properly in a changing environment, a robot must somehow be
provided with the same capacity.

The frame problem is a fundamental one, and it is intrinsic to any
- world modeling approach whatsoever. Any model of a changing
environment presents a frame problem; the more sophisticated and
~ elaborate the model, the more the frame problem shows up. Thus,
we see that the frame problem exists not only for traditional Al
models but for models in general. An important goal of intelligent
systems design is to minimize the implications of the frame prob-
lem. Embodied cognitive science’s approach is to minimize the
amount of world modeling in the first place.

The Symboi-Grounding Problem

The symbol-grounding problem, which refers to how symbols
relate to the real world, was first discussed by Steven Harnad
(1990). In traditional Al, symbols are typically defined in a purely
syntactic way by how they relate to other symbeols and how they are
processed by some interpreter (Newell and Simon 1976; Quillian
1968); the relation of the symbols to the outside world is rarely
discussed explicitly. In other words, we are dealing with closed
systems, not only in Al but in computer science in general. Except
in real-time applications, the relation of symbols {e.g., in database
applications) to the outside world is never discussed; it is assumed
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Figure 3.4 The symbol-grounding problem. The scientist has no difficulty associating the cup in
the real world with the symbol “cup” on the screen standing on top of the robot. But

if the robot is programmed with symbols representing objects and has to interact -

with its environment on its own, it has to be able to map the sensory stimulation
(from the cup itself) onto its internal symbolic representation (the word “cup™)—
a very hard problem.

as somehow given, with the (typically implicit) assumption that
designers and potential users know what the symbols mean {e.g.,
the price of a product). This idea is also predominant in linguistics:
it is taken for granted that the symbols or sentences correspond in
some way with the outside world. The study of meaning then
relates to the translation of sentences into some kind of logic-based
representation whose semantics are clearly defined (Winograd and
Flores 1986, p. 18).

Using symbols in a computer system is no problem as long as
there is a human interpreter who can be safely expected to be
capable of establishing the appropriate relations to some outside
world: the mapping is “grounded” in the human's experience of his
or her interaction with the real world., However, once we remove
the human interpreter from the loop, as in the case of autonomous
agents, we have to take into account that the system needs to inter-
act with the environment on its own. Thus, the meaning of the
symbols must be grounded in the system’s own interaction with
the real world, as figure 3.4 illustrates. Symbol systems, such as
computer programs, in which symbols refer only to other symbols
are not grounded because they do not conmect the symbols they
employ to the outside world. The symbols have meaning only to a
designer or a user, not to the system itself. The robot in figure 3.4 is
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in trouble because it is trying to map a sensory stimulation, a cup,
onto an internal symbol, the word “cup.” Providing the robot with
this capacity is very hard to do, even in simple cases, let alone
for more complex ones. But this mapping will always have to be
present if there are symbols in the system. {As we argue later, the
symbol grounding problem is really an artifact of symbolic systems
and “disappears” if a different approach is used. Specifically, in
chapter 12 we show how “concepts” can evolve in the interaction
of an autonomous agent with its environment, without the need for
introducing symbols of any sort within the agent. We put “con-
cepts” in quotes to indicate that we do not mean symbolic con-
cepts.) For a long time, the symbol-grounding problem attracted
little attention in Al or cognitive science, and it has never been an
issue in computer science in general. Only with the renewed inter-
est in autonomous robots has it reemerged.

The Problems of Embodiment and Situatedness
The probiem of embodiment refers to the fact that abstract algo-
rithms do not interact with the real world. Rodney Brooks force-
fully argued that intelligence requires a body (Brooks 1991a,b).
Only if a system is embodied do we know for sure that it is able to
deal with the real world, Moreover, systems that are not embodied -
all suffer from the symbol-grounding problem. Their connection to
the outside world requires a human interpreter in the loop.

Many researchers in Al have recognized this problem. For ex-
ample, Margaret Boden noted, in Artificial Intelligence and Natural
Man (1977):

In everyday life you usually remember your ‘“place” largely
because the external world is there to remind you what you have or
haven’t done. For instance, you can check up on whether you have
already added the vanilla essence by sniffing or tasting the mixture,
or perhaps by referring to the pencil and paper representation of
the culinary task that you have drawn up for this mnemonic pur-
pose. A computational systemn that solves its problems “in its
head” rather than by perceiving and acting in the real world, or
pencil and paper models of it, has to have all its memory aids in
the form of internal representations. {p. 373)

At the time the importance of real-world interaction in control-
ling behavior was fully recognized, however, the implications—
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embodiment—had not been further elaborated; they were fully
understood only when people started to use robots for the study of
intelligence. As embodied systems, robots have the potential to
“solve” the symbol-grounding problem, but this requires them to
have “situatedness.”

An agent is “situated” if it can acquire information about the
current situation through its sensors in_interaction with the envi-
ronment. A situated agent interacts with the world on its own,
without an intervening human. To illustrate this point, let us look
at an example of a system entirely lacking situatedness. Imagine
a remote-controlled device without sensors, such as a remote-
controlled toy car. The toy car is controlled only by information
from the operator; it has no information about the current situation
from its own perspective. A situated agent has the potential to
acquire its own history, if equipped with appropriate mechanisms.
To understand situatedness and to design situated agents, we have_
to adopt the agent’s perspective, rather than the observer’s. For
understanding situated agents {e.g., animals), it is important to
realize that the world may look very different from the perspective
of the animal than from our own. Ants, for example, have com-
pletely different eyes so what they see is not what we see. In
designing situated agents, adopting the agent’s perspective is
important because the programs that control the agent’s actions are
based on the sensor data the robot gets. Since the relation between
observer and agent is of fundamental importance, we discuss it in
more detail in chapter 4. It turns out that situated agents, that is,
agents having the property of sitnatedness, are much better at per-
forming in real time because they exploit the system-environment
interaction and therefore minimize the amount of world modeling

required.

Note that embodiment does not automatically imply situated-
ness. Agents can be equipped with detailed models of their envi-
ronment to be used in the planning processes. If these plans are
employed significantly in controlling the agent’s behavior, it will
not be situated. Moreover, as we saw in the last chapter when dis-
cussing, plan-based systems quickly run into combinatorial prob-
lems (cf. also Chapman 1987). If the real world changes, one of the
main problems is keeping the models in tune with the environ-
ment. Inspection of the problem of behaving in the real world
shows that it is neither necessary nor desirable to develop very
comprehensive and detailed models (e.g., Brooks 1991a; Suchman
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1987; Winograd and Flores 1986): the more comprehensive and the
more detailed the models, the more strongly the agent is going to
be affected by the frame problem. Typically only a small part of
an agent’s environment is relevant for its behavior. In addition,
instead of performing extensive inference operations on internal
models or representations, the situated agent can interact with the
current situation: The real world is, in a sense, part of the “knowl-
edge’? the agent needs to behave appropriately. It can merely “look
at it” through the! sensors. In a sense, the world is its own best
model. Figure 3.3 illustrates this point. T

The concept of situatedness has recently attracted a lot of interest
and led to heated debates about the nature of intelligence and the
place of symbol-processing systems in studying intelligence. For
example, a complete issue of the journal Cognitive Science in 1993
was dedicated to the role of situatedness in cognitive science (see
alse Clancey 1997).

Other Fundamental Problems

A number of other problems with classical systems can be found in
the literature, for example, the homunculus problem and the prob-
lem of the underlying substrate. “Homunculus” literally means
“little man”; as used here, it designates a “little man in the head.”
The homunculus problem, or the homunculus fallacy, as it is also
called, refers to circular accounts of psychological processes. These
processes are circular because they ascribe to some internal mech-
anism {the homunculus) the very psychological properties being
investigated in the first place. For example, a theory of vision might
postulate that there is within the brain a mechanism that scans,
views, or imspects images on the retina. Such a theory would be
vacuous, however, since scanning, viewing, and inspecting are all
instances of the very visual processes the theory was supposed to
illuminate in the first place {Gregory 1987, p. 313). In other words,
the theory has assumed the very things it set out to explain. When
used to criticize Al systems, the term “homunculus” designates a
subsystem that executes a function specified in purely formal terms
(as in the cognitivistic paradigm). In a sense, a homunculus is
required to perform the function that the formal system is intended

!We put “knowledge”’ within quotation marks te indicate that this is not the standard way
of using knowledge in AL The standard way refers to knowledge structures that are rep-
resented internally.
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to explain. For example, we saw that the robot R2D1 was lacking a
means to determine the relevant inferences. With respect to the
homunculus problem, the real problem is that it is not possible to
determine the relevance of an inference on a purely formal basis
(i.e., by inspecting only its database of symbolic representations
and drawing inferences}): a link to the environment and thus to the
meaning of the representation is required. In other words, the
homunculus problem and the symbol grounding problem are
closely related: a system containing ungrounded symbols will
. always require a homunculus giving meaning to them, We do not
explore the subtleties of this argument, any further {for a more com-
prehensive discussion, see, e.g., Edelman 1992 or Bursen 1980).
To bring our review of some fundamental problems to an end let
us mention one which is still fairly prominent, the problem of the
underlying substrate. There is a folklore that true intelligence
requires a biological substrate as a basis. Only natural brains can, in
this folklore, exhibit “true intelligence.” Note that this issue does
not only apply to classical Al but rather concerns any endeavor to
build intelligent systems. As far as we can tell there is to date no
ovidence demonstrating the in-principle impossibility of having
intelligence based on substrates other than natural brains. But even
if it turned out to be true that a biological substrate were required,
we could still use computers and robots to build models.

3.4 Remedies and Alternatives

In this final section, we briefly examine a number of possible ways
to deal with the problems we have raised. Again, the overview is
very short and the field is very large. Because we want to leave
room to present embodied cognitive science, we cannot possibly
do justice to all the research that has been done. We have labeled
the various positions we present ‘‘pessimist,” “traditionalist,”
“pragmatist,” and “‘optimist.”” These labels are not to be taken too
seriously.

The Pessimist: Giving Up. The pessimist knows the fundamental
problems of traditional approaches to Al believes these criticisms
to be universally valid, and strongly doubts that there are viable
alternatives. For him, the only solution is to give up on the endea-
vor to build intelligent systems. An example of this position can be
seen in the implications of Winograd and Flores’ Understanding
Computers and Cognition (1986), which represents a fundamental
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criticism of traditional Al and the traditional understanding of
intelligence, in particular, natural language. Winograd and Flores’
suggestion is to build computer systems that support human activ-
ity, in order to support and enhance human intelligence, rather
than trying to build computer systems that are themselves in-
telligent, which is, in their opinion, a futile effort. This view is
maintained by a relatively strong group in the area of software
engineering that capitalizes on “designing for humans,” Green-
baum and Kyng (1991) offer an interesting overview of this field.
The Traditionalist: Improving Classical Methods. Many research-
ers in traditional Al and psychology have realized the problems
with classical approaches. Clearly, there is a lot of room for im-
provement. Such researchers have pursued solutions intended to
overcome the problems classical approaches present. Problems
with generalization and robustness, for example, can largely be
overcome with neural networks. Neural networks are also mas-
sively parallel and thus less subject to the criticism of being
sequential. Then, there is a large field dealing with situated plan-
ning where high-level plans are used but they are no longer
employed to tightly control behavior, but as resources that can be
accessed whenever required (For reviews of this approach, see, e.g.,
Hasemann 1995; Wolfe and Chun 1992). Methods in computational
vision have also been improved significantly. The processors have
become so fast that real-time issues become less and less of a
problem. This list could still be extended considerably.

The Pragmatist: Working Toward Practical Applications. The
pragmatist is not worried about the foundations: His goal is to get
things to work. For him, the ultimate test of whether a solution
works is if it can be deployed and routinely used in everyday
working environments. Whether a program is labeled “expert
system,” “decision support system,” or “intelligent agent” is
entirely irrelevant to the pragmatist—except insofar as it might
help sales. The pragmatist is also free to combine various tech-
niques and approaches. For example, neural networks have wonder-
ful properties: They can learn and are adaptive. They are ideal for
taking care of low-level sensory-motor control. Rule-based systems
have the advantage that they can be quickly built and are easy to
understand. Moreover, they can be connected to symbolic plan-
ning systems, with the idea that neural networks connect the low-
level sensory-motor systems to the high-level symbolic layers,
The presence of a symbolic layer has the advantage of facilitating
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communication between the human and the robot. The pragma-
tist’s point is, Does it work? Do people think they are getting their
money’s worth? This is a perfectly acceptable position, but not the
one adopted in this book. It is our conviction that ultimately, the
pragmatist will benefit from the research described here.

The Optimist: Embodied Cognitive Science. In spite of the
improvements achieved by the traditionalist we feel that a radically
different approach is required. We now embark on this endeavor.

Issues to Think About

Issue 3.1: Prerequisites for Intelligence

In our discussion of the fundamental problems of classical Al, we
briefly mentioned the problem of the underlying substrate, the view
that a biological substrate is a prerequisite for intelligence. The’
implication is that there can in principle be no artificial systems
that exhibit intelligent behavior. The remainder of this book, how-
ever, is for the better part concerned with such synthetic agents,
Before reading on, we would like you to reflect for a moment on
your own view on this topic. Do you think that, indeed, a biological
brain and body is needed for intelligent behavior to emerge, or are
you willing to ascribe intelligence to artificial agents? In the latter
case, what would agents have to do in order for you to describe
their behavior as intelligent?

Issus 3.2: The Symbol-Grounding Problem

Take a concept from your everyday life, for example, “drinking.”
Now try to make explicit what “drinking” means to you. You may
be surprised how tightly concepts are tied to the body, are
grounded in sensory-motor experiences. Just to get you started,
here are a few points. Drinking relates to liquids; liquids are kept in
particular containers like cups or glasses. They can be hot or cold;
if they are hot you can get burned. If you grasp the coffee cup, you
move it to your mouth slowly. Why? Because you know that liquids
spill when you move the cup fast. You then move it close to your
lips until it touches them, which you can feel both on your lips and
from the feedback from your arm muscles. You then tilt the cup
and move your lower lip forward so the liguid can drop into your
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mouth. You are applying the physical law that the surface of the
liquid stays horizontal as the container moves. Then you sense the
liquid and its temperature in your mouth, on your lips, and per-
haps in your throat and stomach. You also recognize various lig-
uids by their specific reflective properties, viscosity, and so forth.
This is what sensory-motor grounding is all about. Now try to do
the same thing with an object like a newspaper. How about with
more abstract concepts, like “responsibility”?

Points to Remember

Classical AI systems have been criticized on various grounds: that
they lack robustness and generalization capabilities, and cannot
perform in real time. Moreover, they are sequential and run on
sequential machines. Additional points of criticism have been that
they are goal based and organized hierarchically, and that their
processing is done centrally: '

Real worlds differ significantly from virtual ones. Virtual worlds
have states, there is complete information about them, the possible
operators within them are given, and they are static. The real
world is quite different. In particular, the real world has its own
dynamics, which force the agents to act in real time.

The frame problem concerns how models of parts of the real world
can be kept in tune with the real world as it is changing, It is espe-
cially hard to determine which changes in the world are relevant to
a given situation without having to test all possible changes. The
frame problem has two aspects, a prediction problem and a quali-
fication problem.

The symbol-grounding problem concerns how symbols relate to the
real world. The symbol-grounding problem becomes obvious if the
human observer is taken out of the loop and the system must
interact on its own with the environment. It is a characteristic
of symbolic approaches; nonsymbolic approaches do not have a
symbol-grounding problem.

An agent is situated if it acquires information about its environ-
ment only through its sensors in interaction with the environment.
A situated agent interacts with the world on its own, without an
intervening human. It has the potential to acquire its own history if
equipped with appropriate mechanisms.

Although there have been many suggestions for resolving the fun-
damental problems with classical systems, we think that the solu-
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tion can be achieved only through a new approach that capitalizes
on an agent’s interaction with the world. This is the major concern
of embodied cognitive science,
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