
CHAPTER 

INSTANCE-BASED 
LEARNING 

In contrast to learning methods that construct a general, explicit description of 
the target function when training examples are provided, instance-based learning 
methods simply store the training examples. Generalizing beyond these examples 
is postponed until a new instance must be classified. Each time a new query 
instance is encountered, its relationship to the previously stored examples is ex- 
amined in order to assign a target function value for the new instance. Instance- 
based learning includes nearest neighbor and locally weighted regression meth- 
ods that assume instances can be represented as points in a Euclidean space. It 
also includes case-based reasoning methods that use more complex, symbolic rep- 
resentations for instances. Instance-based methods are sometimes referred to as 
"lazy" learning methods because they delay processing until a new instance must 
be classified. A key advantage of this kind of delayed, or lazy, learning is 
that instead of estimating the target function once for the entire instance space, 
these methods can estimate it locally and differently for each new instance to be 
classified. 

8.1 INTRODUCTION 
Instance-based learning methods such as nearest neighbor and locally weighted re- 
gression are conceptually straightforward approaches to approximating real-valued 
or discrete-valued target functions. Learning in these algorithms consists of simply 
storing the presented training data. When a new query instance is encountered, a 
set of similar related instances is retrieved from memory and used to classify the 
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new query instance. One key difference between these approaches and the meth- 
ods discussed in other chapters is that instance-based approaches can construct 
a different approximation to the target function for each distinct query instance 
that must be classified. In fact, many techniques construct only a local approxi- 
mation to the target function that applies in the neighborhood of the new query 
instance, and never construct an approximation designed to perform well over the 
entire instance space. This has significant advantages when the target function is 
very complex, but can still be described by a collection of less complex local 
approximations. 

Instance-based methods can also use more complex, symbolic representa- 
tions for instances. In case-based learning, instances are represented in this fashion 
and the process for identifying "neighboring" instances is elaborated accordingly. 
Case-based reasoning has been applied to tasks such as storing and reusing past 
experience at a help desk, reasoning about legal cases by referring to previous 
cases, and solving complex scheduling problems by reusing relevant portions of 
previously solved problems. 

One disadvantage of instance-based approaches is that the cost of classifying 
new instances can be high. This is due to the fact that nearly all computation 
takes place at classification time rather than when the training examples are first 
encountered. Therefore, techniques for efficiently indexing training examples are 
a significant practical issue in reducing the computation required at query time. 
A second disadvantage to many instance-based approaches, especially nearest- 
neighbor approaches, is that they typically consider all attributes of the instances 
when attempting to retrieve similar training examples from memory. If the target 
concept depends on only a few of the many available attributes, then the instances 
that are truly most "similar" may well be a large distance apart. 

In the next section we introduce the k-NEAREST NEIGHBOR learning algo- 
rithm, including several variants of this widely-used approach. The subsequent 
section discusses locally weighted regression, a learning method that constructs 
local approximations to the target function and that can be viewed as a general- 
ization of k-NEAREST NEIGHBOR algorithms. We then describe radial basis function 
networks, which provide an interesting bridge between instance-based and neural 
network learning algorithms. The next section discusses case-based reasoning, an 
instance-based approach that employs symbolic representations and knowledge- 
based inference. This section includes an example application of case-based rea- 
soning to a problem in engineering design. Finally, we discuss the fundarnen- 
tal differences in capabilities that distinguish lazy learning methods discussed in 
this chapter from eager learning methods discussed in the other chapters of this 
book. 

8.2 k-NEAREST NEIGHBOR LEARNING 
The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm. This 
algorithm assumes all instances correspond to points in the n-dimensional space 
8". The nearest neighbors of an instance are defined in terms of the standard 
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Euclidean distance. More precisely, let an arbitrary instance x  be described by the 
feature vector 

where ar ( x )  denotes the value of the rth attribute of instance x .  Then the distance 
between two instances xi and xj is defined to be d ( x i ,  x j ) ,  where 

In nearest-neighbor learning the target function may be either discrete-valued 
or real-valued. Let us first consider learning discrete-valued target functions of the 
form f : W -+ V, where V is the finite set {vl, . . . v,}. The k-NEAREST NEIGHBOR 
algorithm for approximatin5 a discrete-valued target function is given in Table 8.1. 
As shown there, the value f (x , )  returned by this algorithm as its estimate of f (x , )  
is just the most common value of f among the k training examples nearest to 
x,. If we choose k = 1, then the 1-NEAREST NEIGHBOR algorithm assigns to f ( x , )  
the value f ( x i )  where xi is the training instance nearest to x, .  For larger values 
of k, the algorithm assigns the most common value among the k nearest training 
examples. 

Figure 8.1 illustrates the operation of the k-NEAREST NEIGHBOR algorithm for 
the case where the instances are points in a two-dimensional space and where the 
target function is boolean valued. The positive and negative training examples are 
shown by "+" and "-" respectively. A query point x ,  is shown as well. Note the 
1-NEAREST NEIGHBOR algorithm classifies x, as a positive example in this figure, 
whereas the 5-NEAREST NEIGHBOR algorithm classifies it as a negative example. 

What is the nature of the hypothesis space H implicitly considered by the 
k-NEAREST NEIGHBOR algorithm? Note the k-NEAREST NEIGHBOR algorithm never 
forms an explicit general hypothesis f regarding the target function f .  It simply 
computes the classification of each new query instance as needed. Nevertheless, 

Training algorithm: 
For each training example ( x ,  f ( x ) ) ,  add the example to the list trainingaxamples  

Classification algorithm: 
Given a query instance xq to be classified, 

Let xl . . .xk denote the k instances from trainingaxamples  that are nearest to xq 
Return 

G 

where S(a, b )  = 1 if a = b and where 6(a ,  b )  = 0 otherwise. 

TABLE 8.1 
The k-NEAREST NEIGHBOR algorithm for approximating a discrete-valued function f : 8" -+ V .  
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FIGURE 8.1 
k-NEAREST NEIGHBOR. A set of positive and negative training examples is shown on the left, along 
with a query instance x, to be classified. The I-NEAREST NEIGHBOR algorithm classifies x, positive, 
whereas 5-NEAREST NEIGHBOR classifies it as negative. On the right is the decision surface induced 
by the 1-NEAREST NEIGHBOR algorithm for a typical set of training examples. The convex polygon 
surrounding each training example indicates the region of instance space closest to that point (i.e., 
the instances for which the 1-NEAREST NEIGHBOR algorithm will assign the classification belonging 
to that training example). 

we can still ask what the implicit general function is, or what classifications 
would be assigned if we were to hold the training examples constant and query 
the algorithm with every possible instance in X. The diagram on the right side 
of Figure 8.1 shows the shape of this decision surface induced by 1-NEAREST 
NEIGHBOR over the entire instance space. The decision surface is a combination of 
convex polyhedra surrounding each of the training examples. For every training 
example, the polyhedron indicates the set of query points whose classification 
will be completely determined by that training example. Query points outside the 
polyhedron are closer to some other training example. This kind of diagram is 
often called the Voronoi diagram of the set of training examples. 

The k-NEAREST NEIGHBOR algorithm is easily adapted to approximating 
continuous-valued target functions. To accomplish this, we have the algorithm 
calculate the mean value of the k nearest training examples rather than calculate 
their most common value. More precisely, to approximate a real-valued target 
function f : !)In + !)I we replace the final line of the above algorithm by the line 

8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm 
One obvious refinement to the k-NEAREST NEIGHBOR algorithm is to weight the con- 
tribution of each of the k neighbors according to their distance to the query point 
x,, giving greater weight to closer neighbors. For example, in the algorithm of 
Table 8.1, which approximates discrete-valued target functions, we might weight 
the vote of each neighbor according to the inverse square of its distance from x,. 



This can be accomplished by replacing the final line of the algorithm by 

where 

To accommodate the case where the query point x, exactly matches one of the 
training instances xi and the denominator d(x,, xi12 is therefore zero, we assign 
f(x,) to be f (xi) in this case. If there are several such training examples, we 
assign the majority classification among them. 

We can distance-weight the instances for real-valued target functions in a 
similar fashion, replacing the final line of the algorithm in this case by 

where wi is as defined in Equation (8.3). Note the denominator in Equation (8.4) is 
a constant that normalizes the contributions of the various weights (e.g., it assures 
that if f (xi) = c for all training examples, then f(x,) t c as well). 

Note all of the above variants of the k-NEAREST NEIGHBOR algorithm consider 
only the k nearest neighbors to classify the query point. Once we add distance 
weighting, there is really no harm in allowing all training examples to have an 
influence on the classification of the x,, because very distant examples will have 
very little effect on f(x,). The only disadvantage of considering all examples is 
that our classifier will run more slowly. If all training examples are considered 
when classifying a new query instance, we call the algorithm a global method. 
If only the nearest training examples are considered, we call it a local method. 
When the rule in Equation (8.4) is applied as a global method, using all training 
examples, it is known as Shepard's method (Shepard 1968). 

8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm 
The distance-weighted k-NEAREST NEIGHBOR algorithm is a highly effective induc- 
tive inference method for many practical problems. It is robust to noisy training 
data and quite effective when it is provided a sufficiently large set of training 
data. Note that by taking the weighted average of the k neighbors nearest to the 
query point, it can smooth out the impact of isolated noisy training examples. 

What is the inductive bias of k-NEAREST NEIGHBOR? The basis for classifying 
new query points is easily understood based on the diagrams in Figure 8.1. The 
inductive bias corresponds to an assumption that the classification of an instance 
x, will be most similar to the classification of other instances that are nearby in 
Euclidean distance. 

One practical issue in applying k-NEAREST NEIGHBOR algorithms is that the 
distance between instances is calculated based on all attributes of the instance 



(i.e., on all axes in the Euclidean space containing the instances). This lies in 
contrast to methods such as rule and decision tree learning systems that select 
only a subset of the instance attributes when forming the hypothesis. To see the 
effect of this policy, consider applying k-NEAREST NEIGHBOR to a problem in which 
each instance is described by 20 attributes, but where only 2 of these attributes 
are relevant to determining the classification for the particular target function. In 
this case, instances that have identical values for the 2 relevant attributes may 
nevertheless be distant from one another in the 20-dimensional instance space. 
As a result, the similarity metric used by k-NEAREST NEIGHBOR--depending on 
all 20 attributes-will be misleading. The distance between neighbors will be 
dominated by the large number of irrelevant attributes. This difficulty, which 
arises when many irrelevant attributes are present, is sometimes referred to as the 
curse of dimensionality. Nearest-neighbor approaches are especially sensitive to 
this problem. 

One interesting approach to overcoming this problem is to weight each 
attribute differently when calculating the distance between two instances. This 
corresponds to stretching the axes in the Euclidean space, shortening the axes that 
correspond to less relevant attributes, and lengthening the axes that correspond 
to more relevant attributes. The amount by which each axis should be stretched 
can be determined automatically using a cross-validation approach. To see how, 
first note that we wish to stretch (multiply) the jth axis by some factor zj ,  where 
the values z l  . . . z, are chosen to minimize the true classification error of the 
learning algorithm. Second, note that this true error can be estimated using cross- 
validation. Hence, one algorithm is to select a random subset of the available 
data to use as training examples, then determine the values of z l  . . . z, that lead 
to the minimum error in classifying the remaining examples. By repeating this 
process multiple times the estimate for these weighting factors can be made more 
accurate. This process of stretching the axes in order to optimize the performance 
of k-NEAREST NEIGHBOR provides a mechanism for suppressing the impact of 
irrelevant attributes. 

An even more drastic alternative is to completely eliminate the least relevant 
attributes from the instance space. This is equivalent to setting some of the zi 
scaling factors to zero. Moore and Lee (1994) discuss efficient cross-validation 
methods for selecting relevant subsets of the attributes for k-NEAREST NEIGHBOR 
algorithms. In particular, they explore methods based on leave-one-out cross- 
validation, in which the set of m training instances is repeatedly divided into a 
training set of size m - 1 and test set of size 1, in all possible ways. This leave-one- 
out approach is easily implemented in k-NEAREST NEIGHBOR algorithms because 
no additional training effort is required each time the training set is redefined. 
Note both of the above approaches can be seen as stretching each axis by some 
constant factor. Alternatively, we could stretch each axis by a value that varies over 
the instance space. However, as we increase the number of degrees of freedom 
available to the algorithm for redefining its distance metric in such a fashion, we 
also increase the risk of overfitting. Therefore, the approach of locally stretching 
the axes is much less common. 



One additional practical issue in applying k-NEAREST NEIGHBOR is efficient 
memory indexing. Because this algorithm delays all processing until a new query 
is received, significant computation can be required to process each new query. 
Various methods have been developed for indexing the stored training examples so 
that the nearest neighbors can be identified more efficiently at some additional cost 
in memory. One such indexing method is the kd-tree (Bentley 1975; Friedman 
et al. 1977), in which instances are stored at the leaves of a tree, with nearby 
instances stored at the same or nearby nodes. The internal nodes of the tree sort 
the new query x, to the relevant leaf by testing selected attributes of x,. 

8.2.3 A Note on Terminology 
Much of the literature on nearest-neighbor methods and weighted local regression 
uses a terminology that has arisen from the field of statistical pattern recognition. 
In reading that literature, it is useful to know the following terms: 

0 Regression means approximating a real-valued target function. 
Residual is the error { ( x )  - f ( x )  in approximating the target function. 
Kernel function is the function of distance that is used to determine the 
weight of each training example. In other words, the kernel function is the 
function K such that wi = K(d(xi ,  x,)) .  

8 3  LOCALLY WEIGHTED REGRESSION 
The nearest-neighbor approaches described in the previous section can be thought 
of as approximating the target function f ( x )  at the single query point x = x,. 
Locally weighted regression is a generalization of this approach. It constructs an 
explicit approximation to f over a local region surrounding x,. Locally weighted 
regression uses nearby or distance-weighted training examples to form this local 
approximation to f .  For example, we might approximate the target function in 
the neighborhood surrounding x, using a linear function, a quadratic function, 
a multilayer neural network, or some other functional form. The phrase "locally 
weighted regression" is called local because the function is approximated based a 

only on data near the query point, weighted because the contribution of each 
training example is weighted by its distance from the query point, and regression 
because this is the term used widely in the statistical learning community for the 
problem of approximating real-valued functions. 

Given a new query instance x,, the general approach in locally weighted 
regression is to construct an approximation f̂  that fits the training examples in the 
neighborhood surrounding x,. This approximation is then used to calculate the 
value f"(x,), which is output as the estimated target value for the query instance. 
The description of f̂  may then be deleted, because a different local approximation 
will be calculated for each distinct query instance. 
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8.3.1 Locally Weighted Linear Regression 
Let us consider the case of locally weighted regression in which the target function 
f is approximated near x, using a linear function of the form 

As before, a i ( x )  denotes the value of the ith attribute of the instance x .  
Recall that in Chapter 4 we discussed methods such as gradient descent to 

find the coefficients wo . . . w, to minimize the error in fitting such linear func- 
tions to a given set of training examples. In that chapter we were interested in 
a global approximation to the target function. Therefore, we derived methods to 
choose weights that minimize the squared error summed over the set D of training 
examples 

which led us to the gradient descent training rule 

where q is a constant learning rate, and where the training rule has been re- 
expressed from the notation of Chapter 4 to fit our current notation (i.e., t + f  ( x ) ,  
o -+ f ( x ) ,  and xj  -+ a j ( x ) ) .  

How shall we modify this procedure to derive a local approximation rather 
than a global one? The simple way is to redefine the error criterion E  to emphasize 
fitting the local training examples. Three possible criteria are given below. Note 
we write the error E(x , )  to emphasize the fact that now the error is being defined 
as a function of the query point x,. 

1. Minimize the squared error over just the k nearest neighbors: 
1 

E l ( x q )  = - C ( f  ( x )  - f^(xN2 
x c  k nearest nbrs of xq 

2. Minimize the squared error over the entire set D of training examples, while 
weighting the error of each training example by some decreasing function 
K of its distance from x, : 

3. Combine 1 and 2: 

Criterion two is perhaps the most esthetically pleasing because it allows 
every training example to have an impact on the classification of x,.  However, 



this approach requires computation that grows linearly with the number of training 
examples. Criterion three is a good approximation to criterion two and has the 
advantage that computational cost is independent of the total number of training 
examples; its cost depends only on the number k of neighbors considered. 

If we choose criterion three above and rederive the gradient descent rule 
using the same style of argument as in Chapter 4, we obtain the following training 
rule (see Exercise 8.1): 

Notice the only differences between this new rule and the rule given by Equa- 
tion (8.6) are that the contribution of instance x to the weight update is now 
multiplied by the distance penalty K(d (x , ,  x ) ) ,  and that the error is summed over 
only the k nearest training examples. In fact, if we are fitting a linear function 
to a fixed set of training examples, then methods much more efficient than gra- 
dient descent are available to directly solve for the desired coefficients wo . . . urn. 
Atkeson et al. (1997a) and Bishop (1995) survey several such methods. 

8.3.2 Remarks on Locally Weighted Regression 
Above we considered using a linear function to approximate f in the neigh- 
borhood of the query instance x,. The literature on locally weighted regression 
contains a broad range of alternative methods for distance weighting the training 
examples, and a range of methods for locally approximating the target function. In 
most cases, the target function is approximated by a constant, linear, or quadratic 
function. More complex functional forms are not often found because (1) the cost 
of fitting more complex functions for each query instance is prohibitively high, 
and (2) these simple approximations model the target function quite well over a 
sufficiently small subregion of the instance space. 

8.4 RADIAL BASIS FUNCTIONS 
One approach to function approximation that is closely related to distance-weighted 
regression and also to artificial neural networks is learning with radial basis func- 
tions (Powell 1987; Broomhead and Lowe 1988; Moody and Darken 1989). In 
this approach, the learned hypothesis is a function of the form 

where each xu is an instance from X and where the kernel function K,(d(x, ,  x ) )  
is defined so that it decreases as the distance d (x , ,  x )  increases. Here k is a user- 
provided constant that specifies the number of kernel functions to be included. 
Even though f ( x )  is a global approximation to f ( x ) ,  the contribution from each 
of the Ku(d (xu ,  x ) )  terms is localized to a region nearby the point xu. It is common 
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to choose each function K, (d  (xu,  x ) )  to be a Gaussian function (see Table 5.4) 
centered at the point xu with some variance a;. 

+d2(xu,x)  
K,(d(x, ,  x ) )  = e2". 

We will restrict our discussion here to this common Gaussian kernel function. 
As shown by Hartman et al. (1990), the functional form of Equation (8.8) can 
approximate any function with arbitrarily small error, provided a sufficiently large 
number k of such Gaussian kernels and provided the width a2 of each kernel can 
be separately specified. 

The function given by Equation (8.8) can be viewed as describing a two- 
layer network where the first layer of units computes the values of the various 
K,(d(x, ,  x ) )  and where the second layer computes a linear combination of these 
first-layer unit values. An example radial basis function (RBF) network is illus- 
trated in Figure 8.2. 

Given a set of training examples of the target function, RBF networks are 
typically trained in a two-stage process. First, the number k of hidden units is 
determined and each hidden unit u is defined by choosing the values of xu and a: 
that define its kernel function K,(d(x, ,  x ) ) .  Second, the weights w,  are trained to 
maximize the fit of the network to the training data, using the global error criterion 
given by Equation (8.5). Because the kernel functions are held fixed during this 
second stage, the linear weight values w,  can be trained very efficiently. 

Several alternative methods have been proposed for choosing an appropriate 
number of hidden units or, equivalently, kernel functions. One approach is to 
allocate a Gaussian kernel function for each training example (xi ,  f (x i ) ) ,  centering 
this Gaussian at the point x i .  Each of these kernels may be assigned the same width 
a2. Given this approach, the RBF network learns a global approximation to the 
target function in which each training example (x i ,  f ( x i ) )  can influence the value 
of f only in the neighborhood of xi. One advantage of this choice of kernel 
functions is that it allows the RBF network to fit the training data exactly. That 
is, for any set of m training examples the weights wo . . . w, for combining the 
m Gaussian kernel functions can be set so that f ( x i )  = f (xi)  for each training 

FIGURE 8.2 
A radial basis function network. Each hidden unit produces 
an activation determined by a Gaussian function centered at 
some instance xu. Therefore, its activation will be close to zero 
unless the input x is near xu. The output unit produces a linear 
combination of the hidden unit activations. Although the network 
shown here has just one output, multiple output units can also 
be included. 



A second approach is to choose a set of kernel functions that is smaller 
than the number of training examples. This approach can be much more effi- 
cient than the first approach, especially when the number of training examples 
is large. The set of kernel functions may be distributed with centers spaced uni- 
formly throughout the instance space X. Alternatively, we may wish to distribute 
the centers nonuniformly, especially if the instances themselves are found to be 
distributed nonuniformly over X. In this later case, we can pick kernel function 
centers by randomly selecting a subset of the training instances, thereby sampling 
the underlying distribution of instances. Alternatively, we may identify prototyp- 
ical clusters of instances, then add a kernel function centered at each cluster. The 
placement of the kernel functions in this fashion can be accomplished using un- 
supervised clustering algorithms that fit the training instances (but not their target 
values) to a mixture of Gaussians. The EM algorithm discussed in Section 6.12.1 
provides one algorithm for choosing the means of a mixture of k Gaussians to 
best fit the observed instances. In the case of the EM algorithm, the means are 
chosen to maximize the probability of observing the instances xi, given the k 
estimated means. Note the target function value f (xi) of the instance does not 
enter into the calculation of kernel centers by unsupervised clustering methods. 
The only role of the target values f (xi) in this case is to determine the output 
layer weights w,. 

To summarize, radial basis function networks provide a global approxima- 
tion to the target function, represented by a linear combination of many local 
kernel functions. The value for any given kernel function is non-negligible only 
when the input x falls into the region defined by its particular center and width. 
Thus, the network can be viewed as a smooth linear combination of many local 
approximations to the target function. One key advantage to RBF networks is that 
they can be trained much more efficiently than feedforward networks trained with 
BACKPROPAGATION. This follows from the fact that the input layer and the output 
layer of an RBF are trained separately. 

8.5 CASE-BASED REASONING 
Instance-based methods such as k-NEAREST NEIGHBOR and locally weighted re- 
gression share three key properties. First, they are lazy learning methods in that 
they defer the decision of how to generalize beyond the training data until a new 
query instance is observed. Second, they classify new query instances by ana- 
lyzing similar instances while ignoring instances that are very different from the 
query. Third, they represent instances as real-valued points in an n-dimensional 
Euclidean space. Case-based reasoning (CBR) is a learning paradigm based on 
the first two of these principles, but not the third. In CBR, instances are typi- 
ca:'y represented using more rich symbolic descriptions, and the methods used 
to retrieve similar instances are correspondingly more elaborate. CBR has been 
applied to problems such as conceptual design of mechanical devices based on 
a stored library of previous designs (Sycara et al. 1992), reasoning about new 
legal cases based on previous rulings (Ashley 1990), and solving planning and 
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scheduling problems by reusing and combining portions of previous solutions to 
similar problems (Veloso 1992). 

Let us consider a prototypical example of a case-based reasoning system to 
ground our discussion. The CADET system (Sycara et al. 1992) employs case- 
based reasoning to assist in the conceptual design of simple mechanical devices 
such as water faucets. It uses a library containing approximately 75 previous 
designs and design fragments to suggest conceptual designs to meet the specifi- 
cations of new design problems. Each instance stored in memory (e.g., a water 
pipe) is represented by describing both its structure and its qualitative function. 
New design problems are then presented by specifying the desired function and 
requesting the corresponding structure. This problem setting is illustrated in Fig- 
ure 8.3. The top half of the figure shows the description of a typical stored case 
called a T-junction pipe. Its function is represented in terms of the qualitative re- 
lationships among the waterflow levels and temperatures at its inputs and outputs. 
In the functional description at its right, an arrow with a "+" label indicates that 
the variable at the arrowhead increases with the variable at its tail. For example, 
the output waterflow Q3 increases with increasing input waterflow Ql. Similarly, 

A stored case: T-junction pipe 

Structure: 

QIJT T = temperature 

'L Q = watertlow 

r Q3J5 
Qz4 

A problem specification: Water faucet 

Structure: 

Function: 

Function: 

FIGURE 8.3 
A stored case and a new problem. The top half of the figure describes a typical design fragment 
in the case library of CADET. The function is represented by the graph of qualitative dependencies 
among the T-junction variables (described in the text). The bottom half of the figure shows a typical 
design problem. 



a "-" label indicates that the variable at the head decreases with the variable at 
the tail. The bottom half of this figure depicts a new design problem described 
by its desired function. This particular function describes the required behavior of 
one type of water faucet. Here Q, refers to the flow of cold water into the faucet, 
Qh to the input flow of hot water, and Q, to the single mixed flow out of the 
faucet. Similarly, T,, Th, and T, refer to the temperatures of the cold water, hot 
water, and mixed water respectively. The variable C, denotes the control signal 
for temperature that is input to the faucet, and Cf denotes the control signal for 
waterflow. Note the description of the desired function specifies that these con- 
trols C, and Cf are to influence the water flows Q, and Qh, thereby indirectly 
influencing the faucet output flow Q, and temperature T,. 

Given this functional specification for the new design problem, CADET 
searches its library for stored cases whose functional descriptions match the design 
problem. If an exact match is found, indicating that some stored case implements 
exactly the desired function, then this case can be returned as a suggested solution 
to the design problem. If no exact match occurs, CADET may find cases that 
match various subgraphs of the desired functional specification. In Figure 8.3, for 
example, the T-junction function matches a subgraph of the water faucet function 
graph. More generally, CADET searches for subgraph isomorphisms between the 
two function graphs, so that parts of a case can be found to match parts of the 
design specification. Furthermore, the system may elaborate the original function 
specification graph in order to create functionally equivalent graphs that may 
match still more cases. It uses general knowledge about physical influences to 
create these elaborated function graphs. For example, it uses a rewrite rule that 
allows it to rewrite the influence 

This rewrite rule can be interpreted as stating that if B must increase with A, 
then it is sufficient to find some other quantity x such that B increases with x ,  
and x increases with A. Here x is a universally quantified variable whose value 
is bound when matching the function graph against the case library. In fact, the 
function graph for the faucet shown in Figure 8.3 is an elaboration of the original - 
functional specification produced by applying such rewrite rules. 

By retrieving multiple cases that match different subgraphs, the entire de- 
sign can sometimes be pieced together. In general, the process of producing a 
final solution from multiple retrieved cases can be very complex. It may require 
designing portions of the system from first principles, in addition to merging re- 
trieved portions from stored cases. It may also require backtracking on earlier 
choices of design subgoals and, therefore, rejecting cases that were previously 
retrieved. CADET has very limited capabilities for combining and adapting multi- 
ple retrieved cases to form the final design and relies heavily on the user for this 
adaptation stage of the process. As described by Sycara et al. (1992), CADET is 
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a research prototype system intended to explore the potential role of case-based 
reasoning in conceptual design. It does not have the range of analysis algorithms 
needed to refine these abstract conceptual designs into final designs. 

It is instructive to examine the correspondence between the problem setting 
of CADET and the general setting for instance-based methods such as k-NEAREST 
NEIGHBOR. In CADET each stored training example describes a function graph 
along with the structure that implements it. New queries correspond to new func- 
tion graphs. Thus, we can map the CADET problem into our standard notation by 
defining the space of instances X to be the space of all function graphs. The tar- 
get function f maps function graphs to the structures that implement them. Each 
stored training example (x, f (x)) is a pair that describes some function graph x 
and the structure f ( x )  that implements x. The system must learn from the training 
example cases to output the structure f (x,) that successfully implements the input 
function graph query x,. 

The above sketch of the CADET system illustrates several generic properties 
of case-based reasoning systems that distinguish them from approaches such as 
k-NEAREST NEIGHBOR. 

0 Instances or cases may be represented by rich symbolic descriptions, such 
as the function graphs used in CADET. This may require a similarity metric 
different from Euclidean distance, such as the size of the largest shared 
subgraph between two function graphs. 

0 Multiple retrieved cases may be combined to form the solution to the new 
problem. This is similar to the k-NEAREST NEIGHBOR approach, in that mul- 
tiple similar cases are used to construct a response for the new query. 
However, the process for combining these multiple retrieved cases can be 
very different, relying on knowledge-based reasoning rather than statistical 
methods. 

0 There may be a tight coupling between case retrieval, knowledge-based 
reasoning, and problem solving. One simple example of this is found in 
CADET, which uses generic knowledge about influences to rewrite function 
graphs during its attempt to find matching cases. Other systems have been 
developed that more fully integrate case-based reasoning into general search- 
based problem-solving systems. Two examples are ANAPRON (Golding and 
Rosenbloom 199 1) and PRODIGY/ANALOGY (Veloso 1992). 

To summarize, case-based reasoning is an instance-based learning method 
in which instances (cases) may be rich relational descriptions and in which the re- 
trieval and combination of cases to solve the current query may rely on knowledge- 
based reasoning and search-intensive problem-solving methods. One current re- 
search issue in case-based reasoning is to develop improved methods for indexing 
cases. The central issue here is that syntactic similarity measures (e.g., subgraph 
isomorphism between function graphs) provide only an approximate indication of 
the relevance of a particular case to a particular problem. When the CBR system 
attempts to reuse the retrieved cases it may uncover difficulties that were not 
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captured by this syntactic similarity measure. For example, in CADET the multi- 
ple retrieved design fragments may turn out to be incompatible with one another, 
making it impossible to combine them into a consistent final design. When this 
occurs in general, the CBR system may backtrack and search for additional cases, 
adapt the existing cases, or resort to other problem-solving methods. Importantly, 
when such difficulties are detected they also provide training data for improving 
the similarity metric or, equivalently, the indexing structure for the case library. 
In particular, if a case is retrieved based on the similarity metric, but found to be 
irrelevant based on further analysis, then the similarity metric should be refined 
to reject this case for similar subsequent queries. 

8.6 REMARKS ON LAZY AND EAGER LEARNING 
In this chapter we considered three lazy learning methods: the k-NEAREST NEIGH- 
BOR algorithm, locally weighted regression, and case-based reasoning. We call 
these methods lazy because they defer the decision of how to generalize beyond 
the training data until each new query instance is encountered. We also discussed 
one eager learning method: the method for learning radial basis function networks. 
We call this method eager because it generalizes beyond the training data before 
observing the new query, committing at training time to the network structure and 
weights that define its approximation to the target function. In this same sense, 
every other algorithm discussed elsewhere in this book (e.g., BACKPROPAGATION, 
C4.5) is an eager learning algorithm. 

Are there important differences in what can be achieved by lazy versus eager 
learning? Let us distinguish between two kinds of differences: differences in com- 
putation time and differences in the classifications produced for new queries. There 
are obviously differences in computation time between eager and lazy methods. 
For example, lazy methods will generally require less computation during training, 
but more computation when they must predict the target value for a new query. 

The more fundamental question is whether there are essential differences in 
the inductive bias that can be achieved by lazy versus eager methods. The key 
difference between lazy and eager methods in this regard is 

0 Lazy methods may consider the query instance x, when deciding how to 
generalize beyond the training data D. 

0 Eager methods cannot. By the time they observe the query instance x, they 
have already chosen their (global) approximation to the target function. 

Does this distinction affect the generalization accuracy of the learner? It does if we 
require that the lazy and eager learner employ the same hypothesis space H. To 
illustrate, consider the hypothesis space consisting of linear functions. The locally 
weighted linear regression algorithm discussed earlier is a lazy learning method 
based on this hypothesis space. For each new query x, it generalizes from the 
training data by choosing a new hypothesis based on the training examples near x,. 
In contrast, an eager learner that uses the same hypothesis space of linear functions 
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must choose its approximation before the queries are observed. The eager learner 
must therefore commit to a single linear function hypothesis that covers the entire 
instance space and all future queries. The lazy method effectively uses a richer 
hypothesis space because it uses many different local linear functions to form its 
implicit global approximation to the target function. Note this same situation holds 
for other learners and hypothesis spaces as well. A lazy version of BACKPROPAGA- 
TION, for example, could learn a different neural network for each distinct query 
point, compared to the eager version of BACKPROPAGATION discussed in Chapter 4. 

The key point in the above paragraph is that a lazy learner has the option 
of (implicitly) representing the target function by a combination of many local 
approximations, whereas an eager learner must commit at training time to a single 
global approximation. The distinction between eager and lazy learning is thus 
related to the distinction between global and local approximations to the target 
function. 

Can we create eager methods that use multiple local approximations to 
achieve the same effects as lazy local methods? Radial basis function networks can 
be seen as one attempt to achieve this. The RBF learning methods we discussed 
are eager methods that commit to a global approximation to the target function 
at training time. However, an RBF network represents this global function as a 
linear combination of multiple local kernel functions. Nevertheless, because RBF 
learning methods must commit to the hypothesis before the query point is known, 
the local approximations they create are not specifically targeted to the query 
point to the same degree as in a lazy learning method. Instead, RBF networks are 
built eagerly from local approximations centered around the training examples, or 
around clusters of training examples, but not around the unknown future query 
points. 

To summarize, lazy methods have the option of selecting a different hypoth- 
esis or local approximation to the target function for each query instance. Eager 
methods using the same hypothesis space are more restricted because they must 
commit to a single hypothesis that covers the entire instance space. Eager methods 
can, of course, employ hypothesis spaces that combine multiple local approxima- 
tions, as in RBF networks. However, even these combined local approximations do 
not give eager methods the full ability of lazy methods to customize to unknown 
future query instances. 

8.7 SUMMARY AND FURTHER READING 
The main points of this chapter include: 

Instance-based learning methods differ from other approaches to function ap- 
proximation because they delay processing of training examples until they 
must label a new query instance. As a result, they need not form an explicit 
hypothesis of the entire target function over the entire instance space, in- 
dependent of the query instance. Instead, they may form a different local 
approximation to the target function for each query instance. 
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0 Advantages of instance-based methods include the ability to model complex 
target functions by a collection of less complex local approximations and the 
fact that information present in the training examples is never lost (because 
the examples themselves are stored explicitly). The main practical difficul- 
ties include efficiency of labeling new instances (all processing is done at 
query time rather than in advance), difficulties in determining an appropriate 
distance metric for retrieving "related" instances (especially when examples 
are represented by complex symbolic descriptions), and the negative impact 
of irrelevant features on the distance metric. 

0 k-NEAREST NEIGHBOR is an instance-based algorithm for approximating real- 
valued or discrete-valued target functions, assuming instances correspond to 
points in an n-dimensional Euclidean space. The target function value for 
a new query is estimated from the known values of the k nearest training 
examples. 

0 Locally weighted regression methods are a generalization of k-NEAREST 
NEIGHBOR in which an explicit local approximation to the target function 
is constructed for each query instance. The local approximation to the target 
function may be based on a variety of functional forms such as constant, 
linear, or quadratic functions or on spatially localized kernel functions. 

0 Radial basis function (RBF) networks are a type of artificial neural network 
constructed from spatially localized kernel functions. These can be seen as a 
blend of instance-based approaches (spatially localized influence of each ker- 
nel function) and neural network approaches (a global approximation to the 
target function is formed at training time rather than a local approximation 
at query time). Radial basis function networks have been used successfully 
in applications such as interpreting visual scenes, in which the assumption 
of spatially local influences is well-justified. 

0 Case-based reasoning is an instance-based approach in which instances are 
represented by complex logical descriptions rather than points in a Euclidean 
space. Given these complex symbolic descriptions of instances, a rich variety 
of methods have been proposed for mapping from the training examples to 
target function values for new instances. Case-based reasoning methods have 
been used in applications such as modeling legal reasoning and for guiding 
searches in complex manufacturing and transportation planning problems. 

The k-NEAREST NEIGHBOR algorithm is one of the most thoroughly analyzed 
algorithms in machine learning, due in part to its age and in part to its simplicity. 
Cover and Hart (1967) present early theoretical results, and Duda and Hart (1973) 
provide a good overview. Bishop (1995) provides a discussion of k-NEAREST 
NEIGHBOR and its relation to estimating probability densities. An excellent current 
survey of methods for locally weighted regression is given by Atkeson et al. 
(1997). The application of these methods to robot control is surveyed by Atkeson 
et al. (1997b). 



A thorough discussion of radial basis functions is provided by Bishop (1995). 
Other treatments are given by Powell (1987) and Poggio and Girosi (1990). See 
Section 6.12 of this book for a discussion of the EM algorithm and its application 
to selecting the means of a mixture of Gaussians. 

Kolodner (1993) provides a general introduction to case-based reasoning. 
Other general surveys and collections describing recent research are given by 
Aamodt et al. (1994), Aha et al. (1991), Haton et al. (1995), Riesbeck and Schank 
(1989), Schank et al. (1994), Veloso and Aamodt (1995), Watson (1995), and 
Wess et al. (1994). 

EXERCISES 
8.1. Derive the gradient descent rule for a distance-weighted local linear approximation 

to the target function, given by Equation (8.1). 
8.2. Consider the following alternative method for accounting for distance in weighted 

local regression. Create a virtual set of training examples D' as follows: For each 
training example (x, f (x)) in the original data set D, create some (possibly fractional) 
number of copies of (x, f (x)) in D', where the number of copies is K (d(x,, x)). Now 
train a linear approximation to minimize the error criterion 

The idea here is to make more copies of training examples that are near the query 
instance, and fewer of those that are distant. Derive the gradient descent rule for 
this criterion. Express the rule in the form of a sum over members of D rather than 
D', and compare it with the rules given by Equations (8.6) and (8.7). 

8.3. Suggest a lazy version of the eager decision tree learning algorithm ID3 (see Chap- 
ter 3). What are the advantages and disadvantages of your lazy algorithm compared 
to the original eager algorithm? 

REFERENCES 
Aamodt, A., & Plazas, E. (1994). Case-based reasoning: Foundational issues, methodological varia- 

tions, and system approaches. A1 Communications, 7(1), 39-52. 
Aha, D., & Kibler, D. (1989). Noise-tolerant instance-based learning algorithms. Proceedings of the 

IJCAI-89 (794-799). 
Aha, D., Kibler, D., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 

37-66. 
Ashley, K. D. (1990). Modeling legal argument: Reasoning with cases and hypotheticals. Cambridge, 

MA: MIT Press. 
Atkeson, C. G., Schaal, S. A., & Moore, A. W. (1997a). Locally weighted learning. AIReview, (to 

appear). 
Atkeson, C. G., Moore, A. W., & Schaal, S. A. (1997b). Locally weighted learning for control. A1 

Review, (to appear). 
Bareiss, E. R., Porter, B., & Weir, C. C. (1988). PROTOS: An exemplar-based learning apprentice. 

International Journal of Man-Machine Studies, 29, 549-561. 
Bentley, J. L. (1975). Multidimensional binary search trees used for associative searching. Cornmu- 

nications of the ACM, 18(9), 509-517. 



248 MACHINE LEARNING 
1 

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford, England: Oxford University 
Press. 

Bisio, R., & Malabocchia, F. (1995). Cost estimation of software projects through case-based reason- 
ing. In M. Veloso and A. Aamodt (Eds.), Lecture Notes in Artificial Intelligence (pp. 11-22). 
Berlin: Springer-Verlag. 

Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. 
Complex Systems, 2, 321-355. 

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Infonna- 
tion Theory, 13,21-27. 

Duda, R., & Hart, P. (1973). Pattern classification and scene analysis. New York: John Wiley & 
Sons. 

Franke, R. (1982). Scattered data interpolation: Tests of some methods. Mathematics of Computation, 
38, 181-200. 

Friedman, J., Bentley, J., & Finkel, R. (1977). An algorithm for finding best matches in logarithmic 
expected time. ACM Transactions on Mathematical Software, 3(3), 209-226. 

Golding, A., & Rosenbloom, P. (1991). Improving rule-based systems through case-based reasoning. 
Proceedings of the Ninth National Conference on Artificial Intelligence (pp. 22-27). Cam- 
bridge: AAAI Pressme MIT Press. 

Hartman, E. J., Keller, J. D., & Kowalski, J. M. (1990). Layered neural networks with Gaussian 
hidden units as universal approximations. Neural Computation, 2(2), 210-215. 

Haton, J.-P., Keane, M., & Manago, M. (Eds.). (1995). Advances in case-based reasoning: Second 
European workshop. Berlin: Springer-Verlag. 

Kolodner, J. L. (1993). Case-Based Reasoning. San Francisco: Morgan Kaufmann. 
Moody, J. E., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. 

Neural Computation, 1(2), 281-294. 
Moore, A. W., & Lee, M. S. (1994). Efficient algorithms for minimizing cross validation error. Pro- 

ceedings of the 11th International Conference on Machine Learning. San Francisco: Morgan 
Kaufmann. 

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 
78(9), 1481-1497. 

Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: A review. In Mason, 
J., & Cox, M. (Eds.). Algorithms for approximation (pp. 143-167). Oxford: Clarendon Press. 

Riesbeck, C., & Schank, R. (1989). Inside case-based reasoning. Hillsdale, NJ: Lawrence Erlbaum. 
Schank, R. (1982). Dynamic Memory. Cambridge, England: Cambridge University Press. 
Schank, R., Riesbeck, C., & Kass, A. (1994). Inside case-based explanation. Hillsdale, NJ: Lawrence 

Erlbaum. 
Shepard, D. (1968). A two-dimensional interpolation function for irregularly spaced data. Proceedings 

of the 23rd National Conference of the ACM (pp. 517-523). 
Stanfill, C., & Waltz, D. (1986). Toward memory-based reasoning. Communications of the ACM, 

29(12), 1213-1228. 
Sycara, K., Guttal, R., Koning, J., Narasimhan, S., & Navinchandra, D. (1992). CADET: A case- 

based synthesis tool for engineering design. International Journal of Expert Systems, 4(2), 
157-188. 

Veloso, M. M. (1992). Planning and learning by analogical reasoning. Berlin: Springer-Verlag. 
Veloso, M. M., & Aamodt, A. (Eds.). (1995). Case-based reasoning research and development. 

Lectwe Notes in Artificial Intelligence. Berlin: Springer-Verlag. 
Watson, I. (Ed.). (1995). Progress in case-based reasoning: First United Kingdom workshop. Berlin: 

Springer-Verlag. 
Wess, S., Althoff, K., & Richter, M. (Eds.). (1994). Topics in case-based reasoning. Berlin: Springer- 

Verlag. 


