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Abstract This chapter presents a tutorial overview of the main clustering methods used
in Data Mining. The goal is to provide a self-contained review of the concepts
and the mathematics underlying clustering techniques. The chapter begins by
providing measures and criteria that are used for determining whether two ob-
jects are similar or dissimilar. Then the clustering methods are presented, di-
vided into: hierarchical, partitioning, density-based, model-based, grid-based,
and soft-computing methods. Following the methods, the challenges of per-
forming clustering in large data sets are discussed. Finally, the chapter presents
how to determine the number of clusters.
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1. Introduction

Clustering and classification are both fundamental tasks in Data Mining.
Classification is used mostly as a supervised learning method, clustering for
unsupervised learning (some clustering models are for both). The goal of clus-
tering is descriptive, that of classification is predictive (Veyssieres and Plant,
1998). Since the goal of clustering is to discover a new set of categories, the
new groups are of interest in themselves, and their assessment is intrinsic. In
classification tasks, however, an important part of the assessment is extrinsic,
since the groups must reflect some reference set of classes.“Understanding
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our world requires conceptualizing the similarities and differences between the
entities that compose it”(Tyron and Bailey, 1970).

Clustering groups data instances into subsets in such a manner that simi-
lar instances are grouped together, while different instances belong to differ-
ent groups. The instances are thereby organized into an efficient representa-
tion that characterizes the population being sampled. Formally, the clustering
structure is represented as a set of subsetsC = C1, . . . , Ck of S, such that:
S =

⋃k
i=1 Ci andCi ∩ Cj = ∅ for i 6= j. Consequently, any instance inS

belongs to exactly one and only one subset.
Clustering of objects is as ancient as the human need for describing the

salient characteristics of men and objects and identifying them with a type.
Therefore, it embraces various scientific disciplines: from mathematics and
statistics to biology and genetics, each of which uses different terms to describe
the topologies formed using this analysis. From biological “taxonomies”, to
medical “syndromes” and genetic “genotypes” to manufacturing ”group tech-
nology” — the problem is identical: forming categories of entities and assign-
ing individuals to the proper groups within it.

2. Distance Measures

Since clustering is the grouping of similar instances/objects, some sort of
measure that can determine whether two objects are similar or dissimilar is
required. There are two main type of measures used to estimate this relation:
distance measures and similarity measures.

Many clustering methods use distance measures to determine the similarity
or dissimilarity between any pair of objects. It is useful to denote the distance
between two instancesxi andxj as: d(xi,xj). A valid distance measure should
be symmetric and obtains its minimum value (usually zero) in case of identical
vectors. The distance measure is called a metric distance measure if it also
satisfies the following properties:

1. Triangle inequality d(xi,xk) ≤ d(xi,xj) + d(xj ,xk) ∀xi,xj ,xk ∈ S.

2. d(xi,xj)= 0⇒ xi = xj ∀xi ,xj ∈ S.

2.1 Minkowski: Distance Measures for Numeric
Attributes

Given two p-dimensional instances,xi = (xi1, xi2, . . . , xip) and xj =
(xj1, xj2, . . . , xjp), The distance between the two data instances can be cal-
culated using the Minkowski metric (Han and Kamber, 2001):

d(xi, xj) = (|xi1 − xj1|g + |xi2 − xj2|g + . . . + |xip − xjp|g)1/g
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The commonly used Euclidean distance between two objects is achieved
wheng = 2. Giveng = 1, the sum of absolute paraxial distances (Manhat-
tan metric) is obtained, and withg=∞ one gets the greatest of the paraxial
distances (Chebychev metric).

The measurement unit used can affect the clustering analysis. To avoid
the dependence on the choice of measurement units, the data should be stan-
dardized. Standardizing measurements attempts to give all variables an equal
weight. However, if each variable is assigned with a weight according to its
importance, then the weighted distance can be computed as:

d(xi, xj) = (w1 |xi1 − xj1|g + w2 |xi2 − xj2|g + . . . + wp |xip − xjp|g)1/g

wherewi ∈ [0,∞)

2.2 Distance Measures for Binary Attributes

The distance measure described in the last section may be easily computed
for continuous-valued attributes. In the case of instances described by categor-
ical, binary, ordinal or mixed type attributes, the distance measure should be
revised.

In the case of binary attributes, the distance between objects may be calcu-
lated based on a contingency table. A binary attribute is symmetric if both of its
states are equally valuable. In that case, using the simple matching coefficient
can assess dissimilarity between two objects:

d(xi, xj) =
r + s

q + r + s + t

whereq is the number of attributes that equal 1 for both objects;t is the num-
ber of attributes that equal 0 for both objects; ands andr are the number of
attributes that are unequal for both objects.

A binary attribute is asymmetric, if its states are not equally important (usu-
ally the positive outcome is considered more important). In this case, the de-
nominator ignores the unimportant negative matches (t). This is called the
Jaccard coefficient:

d(xi, xj) =
r + s

q + r + s

2.3 Distance Measures for Nominal Attributes

When the attributes arenominal, two main approaches may be used:

1. Simple matching:

d(xi, xj) =
p−m

p

wherep is the total number of attributes andm is the number of matches.



324 DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK

2. Creating a binary attribute for each state of each nominal attribute and
computing their dissimilarity as described above.

2.4 Distance Metrics for Ordinal Attributes

When the attributes areordinal, the sequence of the values is meaningful.
In such cases, the attributes can be treated as numeric ones after mapping their
range onto [0,1]. Such mapping may be carried out as follows:

zi,n =
ri,n − 1
Mn − 1

wherezi,n is the standardized value of attributean of objecti. ri,n is that value
before standardization, andMn is the upper limit of the domain of attributean

(assuming the lower limit is 1).

2.5 Distance Metrics for Mixed-Type Attributes

In the cases where the instances are characterized by attributes ofmixed-
type, one may calculate the distance by combining the methods mentioned
above. For instance, when calculating the distance between instancesi andj
using a metric such as the Euclidean distance, one may calculate the differ-
ence between nominal and binary attributes as 0 or 1 (“match” or “mismatch”,
respectively), and the difference between numeric attributes as the difference
between their normalized values. The square of each such difference will be
added to the total distance. Such calculation is employed in many clustering
algorithms presented below.

The dissimilarityd(xi, xj) between two instances, containingp attributes of
mixed types, is defined as:

d(xi, xj) =

p∑
n=1

δ
(n)
ij d

(n)
ij

p∑
n=1

δ
(n)
ij

where the indicatorδ(n)
ij =0 if one of the values is missing. The contribution

of attributen to the distance between the two objectsd(n)(xi,xj) is computed
according to its type:

If the attribute is binary or categorical,d(n)(xi, xj) = 0 if xin = xjn ,
otherwised(n)(xi, xj)=1.

If the attribute is continuous-valued,d
(n)
ij = |xin−xjn|

maxh xhn−minh xhn
, whereh

runs over all non-missing objects for attributen.
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If the attribute is ordinal, the standardized values of the attribute are
computed first and then,zi,n is treated as continuous-valued.

3. Similarity Functions

An alternative concept to that of the distance is the similarity function
s(xi, xj) that compares the two vectorsxi andxj (Dudaet al., 2001). This
function should be symmetrical (namelys(xi, xj) = s(xj , xi)) and have a
large value whenxi andxj are somehow “similar” and constitute the largest
value for identical vectors.

A similarity function where the target range is [0,1] is called a dichotomous
similarity function. In fact, the methods described in the previous sections for
calculating the “distances” in the case of binary and nominal attributes may be
considered as similarity functions, rather than distances.

3.1 Cosine Measure

When the angle between the two vectors is a meaningful measure of their
similarity, the normalized inner product may be an appropriate similarity mea-
sure:

s(xi, xj) =
xT

i · xj

‖xi‖ · ‖xj‖

3.2 Pearson Correlation Measure

The normalized Pearson correlation is defined as:

s(xi, xj) =
(xi − x̄i)T · (xj − x̄j)
‖xi − x̄i‖ · ‖xj − x̄j‖

wherex̄i denotes the average feature value ofx over all dimensions.

3.3 Extended Jaccard Measure

The extended Jaccard measure was presented by (Strehl and Ghosh, 2000)
and it is defined as:

s(xi, xj) =
xT

i · xj

‖xi‖2 + ‖xj‖2 − xT
i · xj

3.4 Dice Coefficient Measure

The dice coefficient measure is similar to the extended Jaccard measure and
it is defined as:

s(xi, xj) =
2xT

i · xj

‖xi‖2 + ‖xj‖2
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4. Evaluation Criteria Measures

Evaluating if a certain clustering is good or not is a problematic and contro-
versial issue. In fact Bonner (1964) was the first to argue that there is no univer-
sal definition for what is a good clustering. The evaluation remains mostly in
the eye of the beholder. Nevertheless, several evaluation criteria have been de-
veloped in the literature. These criteria are usually divided into two categories:
Internal and External.

4.1 Internal Quality Criteria

Internal quality metrics usually measure the compactness of the clusters us-
ing some similarity measure. It usually measures the intra-cluster homogene-
ity, the inter-cluster separability or a combination of these two. It does not use
any external information beside the data itself.

4.1.1 Sum of Squared Error (SSE). SSE is the simplest and most
widely used criterion measure for clustering. It is calculated as:

SSE =
K∑

k=1

∑

∀xi∈Ck

‖xi − µk‖2

whereCk is the set of instances in clusterk; µk is the vector mean of cluster
k. The components ofµk are calculated as:

µk,j =
1

Nk

∑

∀xi∈Ck

xi,j

whereNk = |Ck| is the number of instances belonging to clusterk.
Clustering methods that minimize the SSE criterion are often called mini-

mum variance partitions, since by simple algebraic manipulation the SSE cri-
terion may be written as:

SSE =
1
2

K∑

k=1

NkS̄k

where:

S̄k =
1

N2
k

∑

xi,xj∈Ck

‖xi − xj‖2

(Ck=cluster k)
The SSE criterion function is suitable for cases in which the clusters form

compact clouds that are well separated from one another (Dudaet al., 2001).
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4.1.2 Other Minimum Variance Criteria. Additional minimum cri-
teria to SSE may be produced by replacing the value ofSk with expressions
such as:

S̄k =
1

N2
k

∑

xi,xj∈Ck

s(xi, xj)

or:
S̄k = min

xi,xj∈Ck

s(xi, xj)

4.1.3 Scatter Criteria. The scalar scatter criteria are derived from
the scatter matrices, reflecting the within-cluster scatter, the between-cluster
scatter and their summation — the total scatter matrix. For thekth cluster, the
scatter matrix may be calculated as:

Sk =
∑

x∈Ck

(x− µk)(x− µk)T

The within-cluster scatter matrix is calculated as the summation of the last
definition over all clusters:

SW =
K∑

k=1

Sk

The between-cluster scatter matrix may be calculated as:

SB =
K∑

k=1

Nk(µk − µ)(µk − µ)T

whereµ is the total mean vector and is defined as:

µ =
1
m

K∑

k=1

Nkµk

The total scatter matrix should be calculated as:

ST =
∑

x∈C1,C2,...,CK

(x− µ)(x− µ)T

Three scalar criteria may be derived fromSW , SB andST :

The trace criterion — the sum of the diagonal elements of a matrix.
Minimizing the trace ofSW is similar to minimizing SSE and is there-
fore acceptable. This criterion, representing the within-cluster scatter, is
calculated as:
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Je = tr[SW ] =
K∑

k=1

∑

x∈Ck

‖x− µk‖
2

Another criterion, which may be maximized, is the between cluster cri-
terion:

tr[SB] =
K∑

k=1

Nk ‖µk − µ‖2

The determinant criterion — the determinant of a scatter matrix
roughly measures the square of the scattering volume. SinceSB will
be singular if the number of clusters is less than or equal to the dimen-
sionality, or if m − c is less than the dimensionality, its determinant is
not an appropriate criterion. If we assume that SW is nonsingular, the
determinant criterion function using this matrix may be employed:

Jd = |SW | =
∣∣∣∣∣

K∑

k=1

Sk

∣∣∣∣∣

• The invariant criterion — the eigenvaluesλ1, λ2, . . . , λd of

S−1
W SB

are the basic linear invariants of the scatter matrices. Good partitions are
ones for which the nonzero eigenvalues are large. As a result, several
criteria may be derived including the eigenvalues. Three such criteria
are:

1. tr[S−1
W SB] =

d∑
i=1

λi

2. Jf = tr[S−1
T SW ] =

d∑
i=1

1
1+λi

3. |SW |
|ST | =

d∏
i=1

1
1+λi

4.1.4 Condorcet’s Criterion. Another appropriate approach is to ap-
ply the Condorcet’s solution (1785) to the ranking problem (Marcotorchino
and Michaud, 1979). In this case the criterion is calculated as following:

∑

Ci∈C

∑

xj , xk ∈ Ci

xj 6= xk

s(xj , xk) +
∑

Ci∈C

∑

xj∈Ci;xk /∈Ci

d(xj , xk)

wheres(xj , xk) andd(xj , xk) measure the similarity and distance of the vec-
torsxj andxk.
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4.1.5 The C-Criterion. The C-criterion (Fortier and Solomon, 1996)
is an extension of Condorcet’s criterion and is defined as:

∑

Ci∈C

∑

xj , xk ∈ Ci

xj 6= xk

(s(xj , xk)−γ)+
∑

Ci∈C

∑

xj∈Ci;xk /∈Ci

(γ−s(xj , xk))

whereγ is a threshold value.

4.1.6 Category Utility Metric. The category utility (Gluck and Corter,
1985) is defined as the increase of the expected number of feature values that
can be correctly predicted given a certain clustering. This metric is useful
for problems that contain a relatively small number of nominal features each
having small cardinality.

4.1.7 Edge Cut Metrics. In some cases it is useful to represent the
clustering problem as an edge cut minimization problem. In such instances
the quality is measured as the ratio of the remaining edge weights to the total
precut edge weights. If there is no restriction on the size of the clusters, finding
the optimal value is easy. Thus the min-cut measure is revised to penalize
imbalanced structures.

4.2 External Quality Criteria

External measures can be useful for examining whether the structure of the
clusters match to some predefined classification of the instances.

4.2.1 Mutual Information Based Measure. The mutual information
criterion can be used as an external measure for clustering (Strehlet al., 2000).
The measure form instances clustered usingC = {C1, . . . , Cg} and referring
to the target attributey whose domain isdom(y) = {c1, . . . , ck} is defined as
follows:

C =
2
m

g∑

l=1

k∑

h=1

ml,h logg·k

(
ml,h ·m
m.,l ·ml,.

)

whereml,h indicate the number of instances that are in clusterCl and also in
classch. m.,h denotes the total number of instances in the classch. Similarly,
ml,. indicates the number of instances in clusterCl.

4.2.2 Precision-Recall Measure . The precision-recall measure from
information retrieval can be used as an external measure for evaluating clusters.
The cluster is viewed as the results of a query for a specific class. Precision
is the fraction of correctly retrieved instances, while recall is the fraction of
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correctly retrieved instances out of all matching instances. A combined F-
measure can be useful for evaluating a clustering structure (Larsen and Aone,
1999).

4.2.3 Rand Index. The Rand index (Rand, 1971) is a simple criterion
used to compare an induced clustering structure(C1) with a given clustering
structure(C2). Let a be the number of pairs of instances that are assigned to
the same cluster inC1 and in the same cluster inC2; b be the number of pairs
of instances that are in the same cluster inC1, but not in the same cluster in
C2; c be the number of pairs of instances that are in the same cluster inC2, but
not in the same cluster inC1; andd be the number of pairs of instances that
are assigned to different clusters inC1 andC2. The quantitiesa andd can be
interpreted as agreements, andb andc as disagreements. The Rand index is
defined as:

RAND =
a + d

a + b + c + d

The Rand index lies between 0 and 1. When the two partitions agree perfectly,
the Rand index is 1.

A problem with the Rand index is that its expected value of two random
clustering does not take a constant value (such as zero). Hubert and Arabie
(1985) suggest an adjusted Rand index that overcomes this disadvantage.

5. Clustering Methods

In this section we describe the most well-known clustering algorithms. The
main reason for having many clustering methods is the fact that the notion of
“cluster” is not precisely defined (Estivill-Castro, 2000). Consequently many
clustering methods have been developed, each of which uses a different in-
duction principle. Farley and Raftery (1998) suggest dividing the clustering
methods into two main groups: hierarchical and partitioning methods. Han
and Kamber (2001) suggest categorizing the methods into additional three
main categories:density-based methods, model-based clusteringand grid-
based methods. An alternative categorization based on the induction principle
of the various clustering methods is presented in (Estivill-Castro, 2000).

5.1 Hierarchical Methods

These methods construct the clusters by recursively partitioning the insta-
nces in either a top-down or bottom-up fashion. These methods can be sub-
divided as following:

Agglomerative hierarchical clustering — Each object initially represents
a cluster of its own. Then clusters are successively merged until the
desired cluster structure is obtained.
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Divisive hierarchical clustering — All objects initially belong to one
cluster. Then the cluster is divided into sub-clusters, which are succes-
sively divided into their own sub-clusters. This process continues until
the desired cluster structure is obtained.

The result of the hierarchical methods is a dendrogram, representing the nested
grouping of objects and similarity levels at which groupings change. A clus-
tering of the data objects is obtained by cutting the dendrogram at the desired
similarity level.

The merging or division of clusters is performed according to some similar-
ity measure, chosen so as to optimize some criterion (such as a sum of squares).
The hierarchical clustering methods could be further divided according to the
manner that the similarity measure is calculated (Jainet al., 1999):

Single-link clustering (also called the connectedness, the minimum
method or the nearest neighbor method) — methods that consider the
distance between two clusters to be equal to the shortest distance from
any member of one cluster to any member of the other cluster. If the
data consist of similarities, the similarity between a pair of clusters is
considered to be equal to the greatest similarity from any member of one
cluster to any member of the other cluster (Sneath and Sokal, 1973).

Complete-link clustering (also called the diameter, the maximum
method or the furthest neighbor method) - methods that consider the
distance between two clusters to be equal to the longest distance from
any member of one cluster to any member of the other cluster (King,
1967).

Average-link clustering (also called minimum variance method) - meth-
ods that consider the distance between two clusters to be equal to the
average distance from any member of one cluster to any member of the
other cluster. Such clustering algorithms may be found in (Ward, 1963)
and (Murtagh, 1984).

The disadvantages of the single-link clustering and the average-link clustering
can be summarized as follows (Guhaet al., 1998):

Single-link clustering has a drawback known as the “chaining effect“: A
few points that form a bridge between two clusters cause the single-link
clustering to unify these two clusters into one.

Average-link clustering may cause elongated clusters to split and for por-
tions of neighboring elongated clusters to merge.

The complete-link clustering methods usually produce more compact clusters
and more useful hierarchies than the single-link clustering methods, yet the
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single-link methods are more versatile. Generally, hierarchical methods are
characterized with the following strengths:

Versatility — The single-link methods, for example, maintain good per-
formance on data sets containing non-isotropic clusters, including well-
separated, chain-like and concentric clusters.

Multiple partitions — hierarchical methods produce not one partition,
but multiple nested partitions, which allow different users to choose dif-
ferent partitions, according to the desired similarity level. The hierarchi-
cal partition is presented using the dendrogram.

The main disadvantages of the hierarchical methods are:

Inability to scale well — The time complexity of hierarchical algorithms
is at leastO(m2) (wherem is the total number of instances), which is
non-linear with the number of objects. Clustering a large number of
objects using a hierarchical algorithm is also characterized by huge I/O
costs.

Hierarchical methods can never undo what was done previously. Namely
there is no back-tracking capability.

5.2 Partitioning Methods

Partitioning methods relocate instances by moving them from one cluster to
another, starting from an initial partitioning. Such methods typically require
that the number of clusters will be pre-set by the user. To achieve global op-
timality in partitioned-based clustering, an exhaustive enumeration process of
all possible partitions is required. Because this is not feasible, certain greedy
heuristics are used in the form of iterative optimization. Namely, a reloca-
tion method iteratively relocates points between thek clusters. The following
subsections present various types of partitioning methods.

5.2.1 Error Minimization Algorithms. These algorithms, which tend
to work well with isolated and compact clusters, are the most intuitive and fre-
quently used methods. The basic idea is to find a clustering structure that
minimizes a certain error criterion which measures the “distance” of each in-
stance to its representative value. The most well-known criterion is the Sum
of Squared Error (SSE), which measures the total squared Euclidian distance
of instances to their representative values. SSE may be globally optimized by
exhaustively enumerating all partitions, which is very time-consuming, or by
giving an approximate solution (not necessarily leading to a global minimum)
using heuristics. The latter option is the most common alternative.
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The simplest and most commonly used algorithm, employing a squared er-
ror criterion is theK-means algorithm. This algorithm partitions the data into
K clusters(C1, C2, . . . , CK), represented by their centers or means. The cen-
ter of each cluster is calculated as the mean of all the instances belonging to
that cluster.

Figure 15.1 presents the pseudo-code of theK-means algorithm. The algo-
rithm starts with an initial set of cluster centers, chosen at random or according
to some heuristic procedure. In each iteration, each instance is assigned to
its nearest cluster center according to the Euclidean distance between the two.
Then the cluster centers are re-calculated.

The center of each cluster is calculated as the mean of all the instances
belonging to that cluster:

µk =
1

Nk

Nk∑

q=1

xq

whereNk is the number of instances belonging to clusterk andµk is the mean
of the clusterk.

A number of convergence conditions are possible. For example, the search
may stop when the partitioning error is not reduced by the relocation of the cen-
ters. This indicates that the present partition is locally optimal. Other stopping
criteria can be used also such as exceeding a pre-defined number of iterations.

Input: S (instance set),K (number of cluster)
Output: clusters

1: Initialize K cluster centers.
2: while termination condition is not satisfieddo
3: Assign instances to the closest cluster center.
4: Update cluster centers based on the assignment.
5: end while

Figure 15.1. K-means Algorithm.

The K-means algorithm may be viewed as a gradient-decent procedure,
which begins with an initial set ofK cluster-centers and iteratively updates
it so as to decrease the error function.

A rigorous proof of the finite convergence of theK-means type algorithms
is given in (Selim and Ismail, 1984). The complexity ofT iterations of the
K-means algorithm performed on a sample size ofm instances, each charac-
terized byN attributes, is:O(T ∗K ∗m ∗N).

This linear complexity is one of the reasons for the popularity of theK-
means algorithms. Even if the number of instances is substantially large (which
often is the case nowadays), this algorithm is computationally attractive. Thus,
the K-means algorithm has an advantage in comparison to other clustering
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methods (e.g. hierarchical clustering methods), which have non-linear com-
plexity.

Other reasons for the algorithm’s popularity are its ease of interpretation,
simplicity of implementation, speed of convergence and adaptability to sparse
data (Dhillon and Modha, 2001).

The Achilles heel of theK-means algorithm involves the selection of the
initial partition. The algorithm is very sensitive to this selection, which may
make the difference between global and local minimum.

Being a typical partitioning algorithm, theK-means algorithm works well
only on data sets having isotropic clusters, and is not as versatile as single link
algorithms, for instance.

In addition, this algorithm is sensitive to noisy data and outliers (a single
outlier can increase the squared error dramatically); it is applicable only when
mean is defined (namely, for numeric attributes);and it requires the number of
clusters in advance, which is not trivial when no prior knowledge is available.

The use of theK-means algorithm is often limited to numeric attributes.
Haung (1998) presented theK-prototypes algorithm, which is based on the
K-means algorithm but removes numeric data limitations while preserving its
efficiency. The algorithm clusters objects with numeric and categorical at-
tributes in a way similar to theK-means algorithm. The similarity measure on
numeric attributes is the square Euclidean distance; the similarity measure on
the categorical attributes is the number of mismatches between objects and the
cluster prototypes.

Another partitioning algorithm, which attempts to minimize the SSE is the
K-medoids or PAM (partition around medoids — (Kaufmann and Rousseeuw,
1987)). This algorithm is very similar to theK-means algorithm. It differs
from the latter mainly in its representation of the different clusters. Each clus-
ter is represented by the most centric object in the cluster, rather than by the
implicit mean that may not belong to the cluster.

TheK-medoids method is more robust than theK-means algorithm in the
presence of noise and outliers because a medoid is less influenced by outliers
or other extreme values than a mean. However, its processing is more costly
than theK-means method. Both methods require the user to specifyK, the
number of clusters.

Other error criteria can be used instead of the SSE. Estivill-Castro (2000)
analyzed the total absolute error criterion. Namely, instead of summing up
the squared error, he suggests to summing up the absolute error. While this
criterion is superior in regard to robustness, it requires more computational
effort.

5.2.2 Graph-Theoretic Clustering. Graph theoretic methods are
methods that produce clusters via graphs. The edges of the graph connect
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the instances represented as nodes. A well-known graph-theoretic algorithm is
based on the Minimal Spanning Tree — MST (Zahn, 1971). Inconsistent edges
are edges whose weight (in the case of clustering-length) is significantly larger
than the average of nearby edge lengths. Another graph-theoretic approach
constructs graphs based on limited neighborhood sets (Urquhart, 1982).

There is also a relation between hierarchical methods and graph theoretic
clustering:

Single-link clusters are subgraphs of the MST of the data instances. Each
subgraph is aconnected component, namely a set of instances in which
each instance is connected to at least one other member of the set, so
that the set is maximal with respect to this property. These subgraphs
are formed according to some similarity threshold.

Complete-link clusters aremaximal complete subgraphs, formed using
a similarity threshold. A maximal complete subgraph is a subgraph such
that each node is connected to every other node in the subgraph and the
set is maximal with respect to this property.

5.3 Density-based Methods

Density-based methods assume that the points that belong to each cluster
are drawn from a specific probability distribution (Banfield and Raftery, 1993).
The overall distribution of the data is assumed to be a mixture of several dis-
tributions.

The aim of these methods is to identify the clusters and their distribution
parameters. These methods are designed for discovering clusters of arbitrary
shape which are not necessarily convex, namely:

xi, xj ∈ Ck

This does not necessarily imply that:

α · xi + (1− α) · xj ∈ Ck

The idea is to continue growing the given cluster as long as the density
(number of objects or data points) in the neighborhood exceeds some thresh-
old. Namely, the neighborhood of a given radius has to contain at least a mini-
mum number of objects. When each cluster is characterized by local mode or
maxima of the density function, these methods are called mode-seeking

Much work in this field has been based on the underlying assumption that
the component densities are multivariate Gaussian (in case of numeric data) or
multinominal (in case of nominal data).

An acceptable solution in this case is to use the maximum likelihood prin-
ciple. According to this principle, one should choose the clustering structure
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and parameters such that the probability of the data being generated by such
clustering structure and parameters is maximized. The expectation maximiza-
tion algorithm — EM — (Dempsteret al., 1977), which is a general-purpose
maximum likelihood algorithm for missing-data problems, has been applied
to the problem of parameter estimation. This algorithm begins with an initial
estimate of the parameter vector and then alternates between two steps (Far-
ley and Raftery, 1998): an “E-step”, in which the conditional expectation of
the complete data likelihood given the observed data and the current parameter
estimates is computed, and an “M-step”, in which parameters that maximize
the expected likelihood from the E-step are determined. This algorithm was
shown to converge to a local maximum of the observed data likelihood.

TheK-means algorithm may be viewed as a degenerate EM algorithm, in
which:

p(k/x) =

{
1 k = argmax

k
{p̂(k/x)}

0 otherwise

Assigning instances to clusters in theK-means may be considered as the
E-step; computing new cluster centers may be regarded as the M-step.

The DBSCAN algorithm (density-based spatial clustering of applications
with noise) discovers clusters of arbitrary shapes and is efficient for large spa-
tial databases. The algorithm searches for clusters by searching the neighbor-
hood of each object in the database and checks if it contains more than the
minimum number of objects (Esteret al., 1996).

AUTOCLASS is a widely-used algorithm that covers a broad variety of dis-
tributions, including Gaussian, Bernoulli, Poisson, and log-normal distribu-
tions (Cheeseman and Stutz, 1996). Other well-known density-based methods
include: SNOB (Wallace and Dowe, 1994) and MCLUST (Farley and Raftery,
1998).

Density-based clustering may also employ nonparametric methods, such as
searching for bins with large counts in a multidimensional histogram of the
input instance space (Jainet al., 1999).

5.4 Model-based Clustering Methods

These methods attempt to optimize the fit between the given data and some
mathematical models. Unlike conventional clustering, which identifies groups
of objects, model-based clustering methods also find characteristic descriptions
for each group, where each group represents a concept or class. The most
frequently used induction methods are decision trees and neural networks.

5.4.1 Decision Trees. In decision trees, the data is represented by a hi-
erarchical tree, where each leaf refers to a concept and contains a probabilistic
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description of that concept. Several algorithms produce classification trees for
representing the unlabelled data. The most well-known algorithms are:

COBWEB — This algorithm assumes that all attributes are independent (an
often too naive assumption). Its aim is to achieve high predictability of nominal
variable values, given a cluster. This algorithm is not suitable for clustering
large database data (Fisher, 1987). CLASSIT, an extension of COBWEB for
continuous-valued data, unfortunately has similar problems as the COBWEB
algorithm.

5.4.2 Neural Networks. This type of algorithm represents each cluster
by a neuron or “prototype”. The input data is also represented by neurons,
which are connected to the prototype neurons. Each such connection has a
weight, which is learned adaptively during learning.

A very popular neural algorithm for clustering is the self-organizing map
(SOM). This algorithm constructs a single-layered network. The learning pro-
cess takes place in a “winner-takes-all” fashion:

The prototype neurons compete for the current instance. The winner
is the neuron whose weight vector is closest to the instance currently
presented.

The winner and its neighbors learn by having their weights adjusted.

The SOM algorithm is successfully used for vector quantization and speech
recognition. It is useful for visualizing high-dimensional data in 2D or 3D
space. However, it is sensitive to the initial selection of weight vector, as well
as to its different parameters, such as the learning rate and neighborhood ra-
dius.

5.5 Grid-based Methods

These methods partition the space into a finite number of cells that form a
grid structure on which all of the operations for clustering are performed. The
main advantage of the approach is its fast processing time (Han and Kamber,
2001).

5.6 Soft-computing Methods

Section 5.4.2 described the usage of neural networks in clustering tasks.
This section further discusses the important usefulness of other soft-computing
methods in clustering tasks.

5.6.1 Fuzzy Clustering. Traditional clustering approaches generate
partitions; in a partition, each instance belongs to one and only one cluster.
Hence, the clusters in a hard clustering are disjointed. Fuzzy clustering (see
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for instance (Hoppner, 2005)) extends this notion and suggests asoft clustering
schema. In this case, each pattern is associated with every cluster using some
sort of membership function, namely, each cluster is a fuzzy set of all the pat-
terns. Larger membership values indicate higher confidence in the assignment
of the pattern to the cluster. A hard clustering can be obtained from a fuzzy
partition by using a threshold of the membership value.

The most popular fuzzy clustering algorithm is the fuzzyc-means (FCM)
algorithm. Even though it is better than the hardK-means algorithm at avoid-
ing local minima, FCM can still converge to local minima of the squared error
criterion. The design of membership functions is the most important problem
in fuzzy clustering; different choices include those based on similarity decom-
position and centroids of clusters. A generalization of the FCM algorithm has
been proposed through a family of objective functions. A fuzzyc-shell algo-
rithm and an adaptive variant for detecting circular and elliptical boundaries
have been presented.

5.6.2 Evolutionary Approaches for Clustering. Evolutionary tech-
niques are stochastic general purpose methods for solving optimization prob-
lems. Since clustering problem can be defined as an optimization problem,
evolutionary approaches may be appropriate here. The idea is to use evolution-
ary operators and a population of clustering structures to converge into a glob-
ally optimal clustering. Candidate clustering are encoded as chromosomes.
The most commonly used evolutionary operators are: selection, recombina-
tion, and mutation. A fitness function evaluated on a chromosome determines
a chromosome’s likelihood of surviving into the next generation. The most
frequently used evolutionary technique in clustering problems is genetic algo-
rithms (GAs). Figure 15.2 presents a high-level pseudo-code of a typical GA
for clustering. A fitness value is associated with each clusters structure. A
higher fitness value indicates a better cluster structure. A suitable fitness func-
tion is the inverse of the squared error value. Cluster structures with a small
squared error will have a larger fitness value.

Input: S (instance set),K (number of clusters),n (population size)
Output: clusters

1: Randomly create apopulation of n structures, each corresponds to a valid
K-clusters of the data.

2: repeat
3: Associate a fitness value∀structure ∈ population.
4: Regenerate a new generation of structures.
5: until some termination condition is satisfied

Figure 15.2. GA for Clustering.
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The most obvious way to represent structures is to use strings of lengthm
(wherem is the number of instances in the given set). Thei-th entry of the
string denotes the cluster to which thei-th instance belongs. Consequently,
each entry can have values from 1 toK. An improved representation scheme
is proposed where an additional separator symbol is used along with the pat-
tern labels to represent a partition. Using this representation permits them to
map the clustering problem into a permutation problem such as the travelling
salesman problem, which can be solved by using the permutation crossover
operators. This solution also suffers from permutation redundancy.

In GAs, a selection operator propagates solutions from the current genera-
tion to the next generation based on their fitness. Selection employs a proba-
bilistic scheme so that solutions with higher fitness have a higher probability
of getting reproduced.

There are a variety of recombination operators in use;crossoveris the most
popular. Crossover takes as input a pair of chromosomes (called parents) and
outputs a new pair of chromosomes (called children or offspring). In this way
the GS explores the search space. Mutation is used to make sure that the algo-
rithm is not trapped in local optimum.

More recently investigated is the use of edge-based crossover to solve the
clustering problem. Here, all patterns in a cluster are assumed to form a com-
plete graph by connecting them with edges. Offspring are generated from the
parents so that they inherit the edges from their parents. In a hybrid approach
that has been proposed, the GAs is used only to find good initial cluster centers
and theK-means algorithm is applied to find the final partition. This hybrid
approach performed better than the GAs.

A major problem with GAs is their sensitivity to the selection of various
parameters such as population size, crossover and mutation probabilities, etc.
Several researchers have studied this problem and suggested guidelines for
selecting these control parameters. However, these guidelines may not yield
good results on specific problems like pattern clustering. It was reported that
hybrid genetic algorithms incorporating problem-specific heuristics are good
for clustering. A similar claim is made about the applicability of GAs to other
practical problems. Another issue with GAs is the selection of an appropriate
representation which is low in order and short in defining length.

There are other evolutionary techniques such as evolution strategies (ESs),
and evolutionary programming (EP). These techniques differ from the GAs in
solution representation and the type of mutation operator used; EP does not
use a recombination operator, but only selection and mutation. Each of these
three approaches has been used to solve the clustering problem by viewing it as
a minimization of the squared error criterion. Some of the theoretical issues,
such as the convergence of these approaches, were studied. GAs perform a
globalized search for solutions whereas most other clustering procedures per-
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form a localized search. In a localized search, the solution obtained at the
‘next iteration’ of the procedure is in the vicinity of the current solution. In this
sense, theK-means algorithm and fuzzy clustering algorithms are all localized
search techniques. In the case of GAs, the crossover and mutation operators
can produce new solutions that are completely different from the current ones.

It is possible to search for the optimal location of the centroids rather than
finding the optimal partition. This idea permits the use of ESs and EP, because
centroids can be coded easily in both these approaches, as they support the
direct representation of a solution as a real-valued vector. ESs were used on
both hard and fuzzy clustering problems and EP has been used to evolve fuzzy
min-max clusters. It has been observed that they perform better than their clas-
sical counterparts, theK-means algorithm and the fuzzyc-means algorithm.
However, all of these approaches are over sensitive to their parameters. Con-
sequently, for each specific problem, the user is required to tune the parameter
values to suit the application.

5.6.3 Simulated Annealing for Clustering. Another general-purpose
stochastic search technique that can be used for clustering is simulated an-
nealing (SA), which is a sequential stochastic search technique designed to
avoid local optima. This is accomplished by accepting with some probabil-
ity a new solution for the next iteration of lower quality (as measured by the
criterion function). The probability of acceptance is governed by a critical pa-
rameter called the temperature (by analogy with annealing in metals), which is
typically specified in terms of a starting (first iteration) and final temperature
value. Selim and Al-Sultan (1991) studied the effects of control parameters
on the performance of the algorithm. SA is statistically guaranteed to find the
global optimal solution. Figure 15.3 presents a high-level pseudo-code of the
SA algorithm for clustering.

The SA algorithm can be slow in reaching the optimal solution, because op-
timal results require the temperature to be decreased very slowly from iteration
to iteration. Tabu search, like SA, is a method designed to cross boundaries of
feasibility or local optimality and to systematically impose and release con-
straints to permit exploration of otherwise forbidden regions. Al-Sultan (1995)
suggests using Tabu search as an alternative to SA.

5.7 Which Technique To Use?

An empirical study ofK-means, SA, TS, and GA was presented by Al-
Sultan and Khan (1996). TS, GA and SA were judged comparable in terms
of solution quality, and all were better thanK-means. However, theK-means
method is the most efficient in terms of execution time; other schemes took
more time (by a factor of 500 to 2500) to partition a data set of size 60 into 5
clusters. Furthermore, GA obtained the best solution faster than TS and SA;
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Input: S (instance set),K (number of clusters),T0 (initial temperature),Tf

(final temperature),c (temperature reducing constant)
Output: clusters

1: Randomly selectp0 which is aK-partition of S. Compute the squared
error valueE(p0).

2: while T0 > Tf do
3: Select a neighborp1 of the last partitionp0.
4: if E(p1) > E(p0) then
5: p0 ← p1 with a probability that depends onT0

6: else
7: p0 ← p1

8: end if
9: T0 ← c ∗ T0

10: end while

Figure 15.3. Clustering Based on Simulated Annealing.

SA took more time than TS to reach the best clustering. However, GA took the
maximum time for convergence, that is, to obtain a population of only the best
solutions, TS and SA followed.

An additional empirical study has compared the performance of the follow-
ing clustering algorithms: SA, GA, TS, randomized branch-and-bound (RBA),
and hybrid search (HS) (Mishra and Raghavan, 1994). The conclusion was that
GA performs well in the case of one-dimensional data, while its performance
on high dimensional data sets is unimpressive. The convergence pace of SA is
too slow; RBA and TS performed best; and HS is good for high dimensional
data. However, none of the methods was found to be superior to others by a
significant margin.

It is important to note that both Mishra and Raghavan (1994) and Al-Sultan
and Khan (1996) have used relatively small data sets in their experimental
studies.

In summary, only theK-means algorithm and its ANN equivalent, the Ko-
honen net, have been applied on large data sets; other approaches have been
tested, typically, on small data sets. This is because obtaining suitable learn-
ing/control parameters for ANNs, GAs, TS, and SA is difficult and their exe-
cution times are very high for large data sets. However, it has been shown that
the K-means method converges to a locally optimal solution. This behavior
is linked with the initial seed election in theK-means algorithm. Therefore,
if a good initial partition can be obtained quickly using any of the other tech-
niques, thenK-means would work well, even on problems with large data
sets. Even though various methods discussed in this section are comparatively
weak, it was revealed, through experimental studies, that combining domain
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knowledge would improve their performance. For example, ANNs work better
in classifying images represented using extracted features rather than with raw
images, and hybrid classifiers work better than ANNs. Similarly, using domain
knowledge to hybridize a GA improves its performance. Therefore it may be
useful in general to use domain knowledge along with approaches like GA,
SA, ANN, and TS. However, these approaches (specifically, the criteria func-
tions used in them) have a tendency to generate a partition of hyperspherical
clusters, and this could be a limitation. For example, in cluster-based document
retrieval, it was observed that the hierarchical algorithms performed better than
the partitioning algorithms.

6. Clustering Large Data Sets

There are several applications where it is necessary to cluster a large collec-
tion of patterns. The definition of ‘large’ is vague. In document retrieval, mil-
lions of instances with a dimensionality of more than 100 have to be clustered
to achieve data abstraction. A majority of the approaches and algorithms pro-
posed in the literature cannot handle such large data sets. Approaches based
on genetic algorithms, tabu search and simulated annealing are optimization
techniques and are restricted to reasonably small data sets. Implementations
of conceptual clustering optimize some criterion functions and are typically
computationally expensive.

The convergentK-means algorithm and its ANN equivalent, the Kohonen
net, have been used to cluster large data sets. The reasons behind the popularity
of theK-means algorithm are:

1. Its time complexity isO(mkl), wherem is the number of instances;k
is the number of clusters; andl is the number of iterations taken by the
algorithm to converge. Typically,k andl are fixed in advance and so the
algorithm has linear time complexity in the size of the data set.

2. Its space complexity isO(k+m). It requires additional space to store the
data matrix. It is possible to store the data matrix in a secondary memory
and access each pattern based on need. However, this scheme requires a
huge access time because of the iterative nature of the algorithm. As a
consequence, processing time increases enormously.

3. It is order-independent. For a given initial seed set of cluster centers, it
generates the same partition of the data irrespective of the order in which
the patterns are presented to the algorithm.

However, theK-means algorithm is sensitive to initial seed selection and
even in the best case, it can produce only hyperspherical clusters. Hierarchical
algorithms are more versatile. But they have the following disadvantages:
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1. The time complexity of hierarchical agglomerative algorithms isO(m2∗
log m).

2. The space complexity of agglomerative algorithms isO(m2). This is
because a similarity matrix of sizem2 has to be stored. It is possible to
compute the entries of this matrix based on need instead of storing them.

A possible solution to the problem of clustering large data sets while only
marginally sacrificing the versatility of clusters is to implement more efficient
variants of clustering algorithms. A hybrid approach was used, where a set
of reference points is chosen as in theK-means algorithm, and each of the
remaining data points is assigned to one or more reference points or clus-
ters. Minimal spanning trees (MST) are separately obtained for each group
of points. These MSTs are merged to form an approximate global MST. This
approach computes only similarities between a fraction of all possible pairs
of points. It was shown that the number of similarities computed for 10,000
instances using this approach is the same as the total number of pairs of points
in a collection of 2,000 points. Bentley and Friedman (1978) presents an algo-
rithm that can compute an approximate MST in O(m log m) time. A scheme
to generate an approximate dendrogram incrementally in O(n log n) time was
presented.

CLARANS (Clustering Large Applications based on RANdom Search) have
been developed by Ng and Han (1994). This method identifies candidate clus-
ter centroids by using repeated random samples of the original data. Because
of the use of random sampling, the time complexity isO(n) for a pattern set
of n elements.

The BIRCH algorithm (Balanced Iterative Reducing and Clustering) stores
summary information about candidate clusters in a dynamic tree data structure.
This tree hierarchically organizes the clusters represented at the leaf nodes.
The tree can be rebuilt when a threshold specifying cluster size is updated
manually, or when memory constraints force a change in this threshold. This
algorithm has a time complexity linear in the number of instances.

All algorithms presented till this point assume that the entire dataset can
be accommodated in the main memory. However, there are cases in which
this assumption is untrue. The following sub-sections describe three current
approaches to solve this problem.

6.1 Decomposition Approach

The dataset can be stored in a secondary memory (i.e. hard disk) and subsets
of this data clustered independently, followed by a merging step to yield a
clustering of the entire dataset.
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Initially, the data is decomposed into number of subsets. Each subset is sent
to the main memory in turn where it is clustered intok clusters using a standard
algorithm.

In order to join the various clustering structures obtained from each subset,
a representative sample from each cluster of each structure is stored in the
main memory. Then these representative instances are further clustered intok
clusters and the cluster labels of these representative instances are used to re-
label the original dataset. It is possible to extend this algorithm to any number
of iterations; more levels are required if the data set is very large and the main
memory size is very small.

6.2 Incremental Clustering

Incremental clustering is based on the assumption that it is possible to con-
sider instances one at a time and assign them to existing clusters. Here, a
new instance is assigned to a cluster without significantly affecting the exist-
ing clusters. Only the cluster representations are stored in the main memory to
alleviate the space limitations.

Figure 15.4 presents a high level pseudo-code of a typical incremental clus-
tering algorithm.

Input: S (instances set),K (number of clusters),Threshold (for assigning
an instance to a cluster)

Output: clusters
1: Clusters ← ∅
2: for all xi ∈ S do
3: As F = false
4: for all Cluster ∈ Clusters do
5: if ‖xi − centroid(Cluster)‖ < threshold then
6: Update centroid(Cluster)
7: ins counter(Cluster) + +
8: As F = true
9: Exit loop

10: end if
11: end for
12: if not(As F ) then
13: centroid(newCluster) = xi

14: ins counter(newCluster) = 1
15: Clusters ← Clusters ∪ newCluster
16: end if
17: end for

Figure 15.4. An Incremental Clustering Algorithm.
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The major advantage with incremental clustering algorithms is that it is not
necessary to store the entire dataset in the memory. Therefore, the space and
time requirements of incremental algorithms are very small. There are several
incremental clustering algorithms:

1. The leading clustering algorithm is the simplest in terms of time com-
plexity which is O(mk). It has gained popularity because of its neural
network implementation, the ART network, and is very easy to imple-
ment as it requires onlyO(k) space.

2. The shortest spanning path (SSP) algorithm, as originally proposed for
data reorganization, was successfully used in automatic auditing of
records. Here, the SSP algorithm was used to cluster 2000 patterns using
18 features. These clusters are used to estimate missing feature values
in data items and to identify erroneous feature values.

3. TheCOBWEBsystem is an incremental conceptual clustering algorithm.
It has been successfully used in engineering applications.

4. An incremental clustering algorithm for dynamic information process-
ing was presented in (Can, 1993). The motivation behind this work is
that in dynamic databases items might get added and deleted over time.
These changes should be reflected in the partition generated without sig-
nificantly affecting the current clusters. This algorithm was used to clus-
ter incrementally an INSPEC database of 12,684 documents relating to
computer science and electrical engineering.

Order-independence is an important property of clustering algorithms. An al-
gorithm isorder-independentif it generates the same partition for any order
in which the data is presented, otherwise, it isorder-dependent. Most of the
incremental algorithms presented above are order-dependent. For instance the
SSP algorithm and cobweb are order-dependent.

6.3 Parallel Implementation

Recent work demonstrates that a combination of algorithmic enhancements
to a clustering algorithm and distribution of the computations over a network
of workstations can allow a large dataset to be clustered in a few minutes.
Depending on the clustering algorithm in use, parallelization of the code and
replication of data for efficiency may yield large benefits. However, a global
shared data structure, namely the cluster membership table, remains and must
be managed centrally or replicated and synchronized periodically. The pres-
ence or absence of robust, efficient parallel clustering techniques will deter-
mine the success or failure of cluster analysis in large-scale data mining appli-
cations in the future.
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7. Determining the Number of Clusters

As mentioned above, many clustering algorithms require that the number of
clusters will be pre-set by the user. It is well-known that this parameter affects
the performance of the algorithm significantly. This poses a serious question
as to whichK should be chosen when prior knowledge regarding the cluster
quantity is unavailable.

Note that most of the criteria that have been used to lead the construction of
the clusters (such as SSE) are monotonically decreasing inK. Therefore using
these criteria for determining the number of clusters results with a trivial clus-
tering, in which each cluster contains one instance. Consequently, different
criteria must be applied here. Many methods have been presented to determine
whichK is preferable. These methods are usually heuristics, involving the cal-
culation of clustering criteria measures for different values ofK, thus making
it possible to evaluate whichK was preferable.

7.1 Methods Based on Intra-Cluster Scatter

Many of the methods for determiningK are based on the intra-cluster
(within-cluster) scatter. This category includes the within-cluster depression-
decay (Tibshirani, 1996; Wang and Yu, 2001), which computes an error mea-
sureWK , for eachK chosen, as follows:

WK =
∑K

k=1

1
2Nk

Dk

whereDk is the sum of pairwise distances for all instances in clusterk:

Dk =
∑

xi,xj∈Ck

‖xi − xj‖

In general, as the number of clusters increases, the within-cluster decay first
declines rapidly. From a certainK, the curve flattens. This value is considered
the appropriateK according to this method.

Other heuristics relate to the intra-cluster distance as the sum of squared
Euclidean distances between the data instances and their cluster centers (the
sum of square errors which the algorithm attempts to minimize). They range
from simple methods, such as the PRE method, to more sophisticated, statistic-
based methods.

An example of a simple method which works well in most databases is, as
mentioned above, the proportional reduction in error (PRE) method. PRE is
the ratio of reduction in the sum of squares to the previous sum of squares
when comparing the results of usingK + 1 clusters to the results of usingK
clusters. Increasing the number of clusters by 1 is justified for PRE rates of
about 0.4 or larger.
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It is also possible to examine the SSE decay, which behaves similarly to
the within cluster depression described above. The manner of determining K
according to both measures is also similar.

An approximateF statistic can be used to test the significance of the re-
duction in the sum of squares as we increase the number of clusters (Hartigan,
1975). The method obtains thisF statistic as follows:

Suppose thatP (m, k) is the partition of m instances intok clusters, and
P (m, k + 1) is obtained fromP (m, k) by splitting one of the clusters. Also
assume that the clusters are selected without regard toxqi ∼ N(µi, σ

2) inde-
pendently over allq andi. Then the overall mean square ratio is calculated and
distributed as follows:

R =
(

e(P (m, k)
e(P (m, k + 1)

− 1
)

(m− k − 1) ≈ FN,N(m−k−1)

wheree(P (m, k)) is the sum of squared Euclidean distances between the data
instances and their cluster centers.

In fact thisF distribution is inaccurate since it is based on inaccurate as-
sumptions:

K-means is not a hierarchical clustering algorithm, but a relocation
method. Therefore, the partitionP (m, k+1) is not necessarily obtained
by splitting one of the clusters inP (m, k).

Eachxqi influences the partition.

The assumptions as to the normal distribution and independence ofxqi

are not valid in all databases.

Since theF statistic described above is imprecise, Hartigan offers a crude
rule of thumb: only large values of the ratio (say, larger than 10) justify in-
creasing the number of partitions fromK to K + 1.

7.2 Methods Based on both the Inter- and Intra-Cluster
Scatter

All the methods described so far for estimating the number of clusters are
quite reasonable. However, they all suffer the same deficiency: None of these
methods examines the inter-cluster distances. Thus, if theK-means algorithm
partitions an existing distinct cluster in the data into sub-clusters (which is
undesired), it is possible that none of the above methods would indicate this
situation.

In light of this observation, it may be preferable to minimize the intra-cluster
scatter and at the same time maximize the inter-cluster scatter. Ray and Turi
(1999), for example, strive for this goal by setting a measure that equals the
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ratio of intra-cluster scatter and inter-cluster scatter. Minimizing this measure
is equivalent to both minimizing the intra-cluster scatter and maximizing the
inter-cluster scatter.

Another method for evaluating the “optimal”K using both inter and intra
cluster scatter is the validity index method (Kimet al., 2001). There are two
appropriate measures:

MICD — mean intra-cluster distance; defined for thekth cluster as:

MDk =
∑

xi∈Ck

‖xi − µk‖
Nk

ICMD — inter-cluster minimum distance; defined as:

dmin = min
i6=j

‖µi − µj‖

In order to create cluster validity index, the behavior of these two measures
around the real number of clusters(K∗) should be used.

When the data are under-partitioned (K < K∗), at least one cluster main-
tains large MICD. As the partition state moves towards over-partitioned (K >
K∗), the large MICD abruptly decreases.

The ICMD is large when the data are under-partitioned or optimally parti-
tioned. It becomes very small when the data enters the over-partitioned state,
since at least one of the compact clusters is subdivided.

Two additional measure functions may be defined in order to find the under-
partitioned and over-partitioned states. These functions depend, among other
variables, on the vector of the clusters centersµ = [µ1, µ2, . . . µK ]T :

1. Under-partition measure function:

vu(K, µ; X) =

K∑
k=1

MDk

K
2 ≤ K ≤ Kmax

This function has very small values forK ≥ K∗ and relatively large
values forK < K∗. Thus, it helps to determine whether the data is
under-partitioned.

2. Over-partition measure function:

vo(K,µ) =
K

dmin
2 ≤ K ≤ Kmax

This function has very large values forK ≥ K∗, and relatively small
values forK < K∗. Thus, it helps to determine whether the data is
over-partitioned.
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The validity index uses the fact that both functions have small values only at
K = K∗. The vectors of both partition functions are defined as following:

Vu = [vu(2, µ;X), . . . , vu(Kmax, µ;X)]

Vo = [vo(2, µ), . . . , vo(Kmax, µ)]

Before finding the validity index, each element in each vector is normal-
ized to the range [0,1], according to its minimum and maximum values. For
instance, for theVu vector:

v∗u(K,µ; X) =
vu(K,µ; X)

max
K=2,...,Kmax

{vu(K, µ; X)} − min
K=2,...,Kmax

{vu(K,µ;X)}

The process of normalization is done the same way for theVo vector. The
validity index vector is calculated as the sum of the two normalized vectors:

vsv(K,µ;X) = v∗u(K, µ; X) + v∗o(K, µ)

Since both partition measure functions have small values only atK = K∗, the
smallest value ofvsv is chosen as the optimal number of clusters.

7.3 Criteria Based on Probabilistic

When clustering is performed using a density-based method, the determina-
tion of the most suitable number of clustersK becomes a more tractable task as
clear probabilistic foundation can be used. The question is whether adding new
parameters results in a better way of fitting the data by the model. In Bayesian
theory, the likelihood of a model is also affected by the number of parame-
ters which are proportional toK. Suitable criteria that can used here include
BIC (Bayesian Information Criterion), MML (Minimum Message Length) and
MDL (Minimum Description Length).
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