
A R T I F I C I A L  I N T E L L I G E N C E

Learning to see and act
An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer 
games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

B E R N H A R D  S C H Ö L K O P F

Improvements in our ability to process 
large amounts of data have led to progress 
in many areas of science, not least artificial 

intelligence (AI). With advances in machine 
learning has come the development of 
machines that can learn intelligent behaviour 
directly from data, rather than being explicitly 
programmed to exhibit such behaviour. For 
instance, the advent of ‘big data’ has resulted 
in systems that can recognize objects or sounds 
with considerable precision. On page 529 of 
this issue, Mnih et al.1 describe an agent that 
uses large data sets to teach itself how to play 
49 classic Atari 2600 computer games by 
looking at the pixels and learning actions that 
increase the game score. It beat a professional 
games player in many instances — a remark-
able example of the progress being made in AI.

In machine learning, systems are trained 
to infer patterns from observational data.  
A particularly simple type of pattern, a map-
ping between input and output, can be learnt 
through a process called supervised learning. 
A supervised-learning system is given train-
ing data consisting of example inputs and the 
corresponding outputs, and comes up with a 

model to explain those data (a process called 
function approximation). It does this by 
choosing from a class of model specified by 
the system’s designer. Designing this class is 
an art: its size and complexity should reflect 
the amount of training data available, and its 
content should reflect ‘prior knowledge’ that 
the designer of the system considers useful for 
the problem at hand. If all this is done well, the 
inferred model will then apply not only for the 
training set, but also for other data that adhere 
to the same underlying pattern.  

The rapid growth of data sets means that 
machine learning can now use complex 
model classes and tackle highly non-trivial 
inference problems. Such problems are usu-
ally characterized by several factors: the data 
are multi dimensional; the underlying pattern 
is complex (for instance, it might be nonlinear 
or changeable); and the designer has only weak 
prior knowledge about the problem — in par-
ticular, a mechanistic understanding is lacking. 

The human brain repeatedly solves non-
trivial inference problems as we go about our 
daily lives, interpreting high-dimensional 
sensory data to determine how best to control 
all the muscles of the body. Simple supervised 
learning is clearly not the whole story, because 

we often learn without a ‘supervisor’ telling 
us the outputs of a hypothetical input–output 
function. Here, ‘reinforcement’ has a cen-
tral role in learning behaviours from weaker 
supervision. Machine learning adopted this 
idea to develop reinforcement-learning algo-
rithms, in which supervision takes the form 
of a numerical reward signal2, and the goal is 
for the system to learn a policy that, given the 
current state, determines which action to pick 
to maximize an accumulated future reward.

Mnih et al. use a form of reinforcement 
learning known as Q-learning3 to teach sys-
tems to play a set of 49 vintage video games, 
learning how to increase the game score as a 
numerical reward. In Q-learning, Q*(s,a) rep-
resents the accumulated future reward, Q*, if 
in state s the system first performs action a, 
and subsequently follows an optimal policy. 
The system tries to approximate Q* by using 
an artificial neural network — a function 
approximator loosely inspired by biological 
neural networks — called a deep Q-network 
(DQN). The DQN’s input (the pixels from four 
consecutive game screens) is processed by con-
nected ‘hidden’ layers of computations, which 
extract more and more specialized visual  
features to help approximate the complex 
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Figure 1 | Computer gamer. Mnih et al.1 have designed an artificial-
intelligence system, using a ‘deep Q-network’ (DQN), that learns how to 
play 49 video games. The DQN analyses a sequence of four game screens 
simultaneously and approximates, for each possible action it can make, the 
consequences on the future game score if that action is taken and followed 
by the best possible course of subsequent actions. The first layers of the DQN 

analyse the pixels of the game screen and extract information from more 
and more specialized visual features (image convolutions). Subsequent, fully 
connected hidden layers predict the value of actions from these features. The 
last layer is the output — the action taken by the DQN. The possible outputs 
depend on the specific game the system is playing; everything else is the same 
in each of the 49 games.
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non linear mapping between inputs and the 
value of possible actions — for instance, the 
value of a move in each possible direction 
when playing Space Invaders (Fig. 1). 

The system picks output actions on the basis 
of its current estimate of Q*, thereby exploit-
ing its knowledge of a game’s reward structure, 
and intersperses the predicted best action with 
random actions to explore uncharted territory. 
The game then responds with the next game 
screen and a reward signal equal to the change 
in the game score. Periodically, the network 
uses inputs and rewards to update the DQN 
parameters, attempting to move closer to Q*. 
Much thought went into how exactly to do this, 
given that the agent collects its own training 
data over time. As such, the data are not inde-
pendent from a statistical point of view, imply-
ing that most of statistical theory does not 
apply. The authors store past experiences in the 
system’s memory and subsequently re-train on 
them — a procedure they liken to hippo campal 
processes during sleep. They also report that 
the system benefits from randomly permuting 
these experiences.

There are several interesting aspects of 
Mnih and colleagues’ paper. First, the system 
performances are comparable to those of a 
human games tester. Second, the approach 
displays impressive adaptability. Although 
each system was trained using data from one 
game, the prior knowledge that went into the 
system design was essentially the same for all 
49 games; the systems essentially differed only 
in the data they had been trained on. Finally, 
the main methods used have been around for 
several decades, making Mnih and colleagues’ 
engineering feat all the more commendable. 

What is responsible for the impressive per-
formance of Mnih and colleagues’ system, also 
reported for another DQN4? It may be largely 
down to improved function approximation 
using deep networks. Even though the size 
of the game screens produced by the emula-
tor is reduced by the system to 84 × 84 pixels, 
the problem’s dimensionality is much higher 
than that of most previous applications of rein-
forcement learning. Also, Q* is highly nonlin-
ear, which calls for a rich nonlinear function 
class to be used as an approximator. This type 
of approximation can be accurately made only 
using huge data sets (which the game emulator 
can produce), state-of-the-art function learn-
ing and considerable computing power.

Some fundamental issues remain open, 
however. Can we mathematically understand 
reinforcement learning from dependent data, 
and develop algorithms that provably work? 
Is it sufficient to learn statistical associa-
tions, or do we need to take into account the 
underlying causal structure, describing, say, 
which pixels causally influence others? This 
may help in finding relevant parts of the state 
space (for example, identifying which sets of 
pixels form a relevant entity, such as an alien 
in Space Invaders); in avoiding ‘super stitious’ 

behaviour, in which statistical associations 
may be misinterpreted as causal; and in  
making systems more robust with respect to 
data-set shifts, such as changes in the behav-
iours or visual appearance of game charac-
ters3,5,6. And how should we handle latent 
learning — the fact that biological systems also 
learn when no rewards are present? Could this 
help us to handle cases in which the dimen-
sionality is even higher and the key quantities 
are hidden in a sea of irrelevant information? 

In the early days of AI, beating a professional 
chess player was held by some to be the gold 
standard. This has now been achieved, and the 
target has shifted as we have grown to under-
stand that other problems are much harder 
for computers, in particular problems involv-
ing high dimensionalities and noisy inputs. 
These are real-world problems, at which bio-
logical perception–action systems excel and 

machine learning outperforms conventional  
engineering methods. Mnih and colleagues 
may have chosen the right tools for this job, 
and a set of video games may be a better model 
of the real world than chess, at least as far as AI 
is concerned. ■
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B I O D I V E R S I T Y

The benefits of 
traditional knowledge
A study of two Balkan ethnic groups living in close proximity finds that 
traditional knowledge about local plant resources helps communities to cope 
with periods of famine, and can promote the conservation of biodiversity.

M A N U E L  P A R D O - D E - S A N T A Y A N A  
&  M A N U E L  J .  M A C Í A

Understanding how human groups 
obtain, manage and perceive their 
local resources — particularly the 

plants they use as food and medicine — is cru-
cial for ensuring that those communities can 
continue to live and benefit from their local 
ecosystems in a sustainable way. The study 
of these complex interactions between plants 
and people is the aim of an integrative disci-
pline known as ethnobotany, which is based 
on methods derived mainly from botany and 
anthropology1. Most ethnobotanical research 
reveals that traditional knowledge about local 
edible and healing resources is suffering an 
alarming decline2, especially in Europe3. 
However, writing in Nature Plants, Quave 
and Pieroni4 suggest that wild plants still have 
an essential role for communities living in 
the mountains of Kukës, one of the poorest  
districts of Albania. Their results also show 
how preserving local knowledge is linked to 
maintaining biodiversity. 

The mountains of Kukës lie in the Balkans, 
a hotspot of cultural and biological diversity 
that has suffered major political and eco-
nomic shifts over the past three decades. 
Quave and Pieroni studied two culturally 

and linguistically distinct rural Islamic ethnic  
groups (the Gorani and Albanians) that, 
despite living in close proximity in this region 
and facing similar environmental and eco-
nomic conditions, have remained relatively 
isolated from one another. The two groups use 
wild plants in different ways, giving the authors 
an opportunity to investigate the role of cul-
tural factors in shaping how the local flora is 
understood and used in daily life, health prac-
tices and, ultimately, survival. Among the vari-
ous quantitative techniques used, the authors 
designed a simple but innovative tool to com-
pare the cultural similarities and differences 
between the two groups’ use of plant species.

The researchers report significant variation 
in the plant species used for medicinal pur-
poses by the two ethnic groups. A plausible 
explanation for this is that the spread of health-
related lore requires a high degree of affinity, 
because trying a new remedy requires a great 
deal of trust5. Health is a sensitive topic, so 
people accept advice mainly from knowledge-
able relatives or friends belonging to the same  
ethnic group6. Moreover, many traditional  
remedies have a highly symbolic component, 
and the mechanisms by which they are believed 
to bring about healing can lie — totally or  
partially — in the remedy’s cultural meaning7.

Quave and Pieroni find only two species, 
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