
Institute of Psychology
C.N.R. - Rome

Using emergent modularity to develop control systems for
mobile robots

Stefano Nolfi
Institute of Psychology, National Research Council, Rome, Italy.

e-mail: stefano@kant.irmkant.rm.cnr.it

June 1996 (revised December 1996)

Technical Report 96-14

Department of Neural Systems and Artificial Life
15, Viale Marx

00137 - Rome - Italy
voice: 0039-6-86090231

fax: 0039-6-824737

To appear on: Adaptive Behavior, Special issue on "Complete agent learning in complex
environment"

1

Using emergent modularity to develop control systems for mobile robots

Stefano Nolfi
Institute of Psychology, National Research Council

15, Viale Marx - 00187 - Rome - Italy
voice: 0039-6-86090231

fax: 0039-6-824737
stefano@kant.irmkant.rm.cnr.it

Abstract

A new way of building control systems, known as behavior based robotics, has recently been proposed
to overcome the difficulties of the traditional AI approach to robotics. This new approach is based
upon the idea of providing the robot with a range of simple behaviors and letting the environment
determine which behavior should have control at any given time. We will present a set of experiments
in which neural networks with different architectures have been trained to control a mobile robot
designed to keep an arena clear by picking-up trash objects and releasing them outside the arena.
Controller weights are selected using a form of genetic algorithm and do not change during the
lifetime (i.e. no learning occurs). We will compare, in simulation and on a real robot, five different
network architectures and will show that a network which allows for fine-grained modularity achieves
significantly better performance. By comparing the functionality of each network module and its
interaction with a description of the simple behavior components, we will show that it is not possible
to find simple correlations; rather, module switching and interaction is correlated with low-level
sensory-motor mappings. This implies that the engineering-oriented approach to behavior-based
robotics might have serious limitations because it is difficult to know in advance the appropriate
mappings between behavior components and sensory-motor activity for complex tasks.

1. Introduction

A new way of building control systems,
known as behavior based robotics, has
recently been proposed to overcome the
difficulties of the traditional AI approach to
robotics (Brooks, 1986). This new approach is
based upon the idea of providing the robot
with a range of simple behaviors and letting
the environment determine which behavior
should have control at any given time. Despite
the central role of the environment however,
behavior based systems differ from purely
reactive systems because “they can use
different forms of internal representations and
perform computations on them in order to
decide what effector action to take” (Mataric,
1992).

The design of a control system centered on
the behavior based approach usually involves
breaking down the required behavior into a set
of basic behaviors (also called reflexes), such

us “approach” or “avoid”, which are specified
from the observer’s point of view, and
designing an action selection or coordination
mechanism able to ensure that only the correct
basic behavior has the control over the
actuators at the right time. Most of the time
both the modules of the controller
corresponding to the defined basic behaviors
and the action selection mechanism are
designed by the experimenter even if the
design process is accomplished often
incrementally and involves intensive testing
and debugging. However, it has also been
shown that basic behaviors and action
selection can be learned (Maes 1992,
Mahadevan and Connell, 1992; Dorigo and
Schnepf, 1993).

We claim that, in order to really obtain
simple and robust solutions, the process of
breaking down the required behavior into sub-
components and of integrating them should be
accomplished taking into account the

2

“proximal” description of behavior (i.e. the
sensory-motor loops responsible for the
resulting behavior of an individual) and not the
“distal” description of behavior (i.e. a high
level in which terms such as “approach” or
“avoid” are used to describe, from the
observer’s point of view, the result of a
sequence of sensory-motor loops). This can be
accomplished, as we will show in this paper,
by using learning or adaptation not only to
develop the module of the controller
responsible for the basic behaviors and action
selection, but also to break the required
behavior down into basic behaviors to be
coordinated/selected.

To investigate this issue we will present a
set of experiments in which neural networks
with different architectures were trained to
control a mobile robot designed to keep an
arena clear by picking-up trash objects and
releasing them outside the arena. The obtained
results, validated on the real robot, show how
the best performances are obtained with an
emergent modular architecture (i.e. an
architecture in which the different modules
responsible for the different sub-behaviors, the
action selection mechanism, and the process of
breaking down the required behavior into basic
behaviors are the result of an adaptation
process). Moreover, the analysis of the
successfully trained individuals shows that
there are no correspondence between neural
modules and distal description of behaviors
and that in order to understand the role of
modularity one should look at the proximal
description of behavior.

1.1 Describing behaviors of agents that interact
with an external environment

The main goal of research in robotics is
the attempt to provide a methodology for
synthesizing control systems for physical
robots able to produce complex behavior.
However, the fact that simple mechanisms, in
the appropriate environment, may exhibit
complex behaviors (Braitenberg, 1984) raises
the problem of defining more clearly the terms
behavior and complexity (referred to
behavior).

One way to overcome this problem is, as
proposed by Sharkey and Heemskerk (in
press), to distinguish two ways of describing
behavior: a description from the point of view

of the observer in which high level terms such
as “approach” or “attack” are used to describe
the result of a sequence of sensory-motor loops
(distal description of behavior) and a
description from the point of view of the agent’s
sensory-motor system that accounts for how the
agent itself reacts in different sensory situations
(proximal description of behavior). The distal
description of a behavior is a function not only
of the controller determining how the agent
reacts to each possible sensory stimulus but
also of the environment and of the agent’s
sensory and motor apparatus. As a
consequence, simple controllers may be able to
produce behaviors that, even if simple in a
proximal description, may appear complex in a
distal description.

Another important characteristic of the
behavior of mobile agents is that by actively
interacting with the external environment, for
example by moving, they are able to partially
determine the kind of stimuli they are exposed
to (see Parisi, Cecconi, Nolfi, 1990). A
response to a sensory state results in a new
sensory state and in a new motor response that
in its turn results in a new sensory state,
forming a sensory-motor loop. This fact has
several implications: (a) agents can produce
behavioral sequences without using any form of
memory; (b) agents can self-select favorable
sensory states and avoid unfavorable ones
(Nolfi and Parisi, 1993). This also implies that
not all the sensory-motor states that constitute
the proximal description of an agent’s behavior
have the same importance. Some sensory-motor
states may be extremely important (for example
because they allow the agent to avoid falling
into an undesirable behavioral loop), while
others may be completely irrelevant because
they are never encountered (given the fact that
the agents themselves determine the successive
sensory states) or because, whatever motor
response the agent produces, it in any case falls
within a behavioral loop.

2. The experimental framework

Having at our disposal a Khepera robot
with the gripper module (see below) we
decided to try to develop a control system for a
robot with the task of keeping clear an arena
surrounded by walls. The robot should look for
"garbage", somehow grasp it, and take it out of

3

the arena. The task of cleaning the arena can
be broken down into several sub-tasks: (a)
explore the environment, avoiding the walls;
(b) recognize a target object and to place the
body in a relative position so that it can be
grasped; (c) pick up the target object; (d)
move toward the walls while avoiding other
target objects; (e) recognize a wall and place
the body in a relative position that allows the
object to be dropped out of the arena; (g)
release the object. Moreover, these sub-tasks
can be broken down into smaller components.
For example (a) may be broken down into (a1)
go forward when sensors are not activated;
(a2) turn left at a given speed when right
sensors are activated etc. However, as we want
the complete solution to the task to emerge
through an evolutionary process we do not
need to specify the requested behavior in detail
or to analyze the interference between basic
behaviors.

Scheier and Pfeifer (1995) developed the
control systems for a Khepera robot that
performs a task very similar to the one
described in this paper (see also Scheier and
Lambrinos, 1995). The environment is an
arena surrounded by walls which contains
large and small pegs and a home base with a
light source attached to it. The robot has to
bring the small pegs to the home base. It was
decided to design by hand a set of modules
each corresponding to an elementary behavior
(move forward, turn toward objects, avoid
obstacles, grasp, and bring to the nest). All that
is acquired during the training phase is the
tuning of the grasp behavior. The robot is pre-
programmed to turn around pegs and the size
of the pegs determines the way in which the
angular velocity of the robot changes in time.
Reinforcement learning is used to associate the
vectors of angular velocities corresponding to
small pegs with grasping behavior; in other
words to classify the two types of pegs. On the
other hand, in this paper we want the entire
control system, including its organization into
modules corresponding to basic behaviors, to
emerge during the training phase.

Colombetti, Dorigo, and Borghi (1996)
also studied a task similar to that described in
this paper. They trained a mobile robot based
on a commercial platform produced by
RoboSoft to collect food pieces and to store
them in a nest. Each piece of food is a
cylinder, wrapped in violet paper, which slides

on to the floor when pushed by the robot. Nest
position is marked by another cylinder
wrapped in pink paper. The robot uses a
frontal color camera to identify the position of
food cylinders and of the nest, using colors to
discriminate. Moreover, the nest sensor uses
an odometer to get the approximate position of
the nest when it is not visible.

To build the controller the authors
decomposed the target behavior into a
collection of simple behaviors (leave-nest, get-
food, reach-nest, avoid-obstacles, coordinate-
behaviors) and allocated a behavioral module
to each of them (behavioral modules have been
implemented using classifier systems). The
behavioral modules (with the exception of the
obstacle-avoidance module, which was pre-
programmed) were trained separately and then
frozen. The coordinator module was then
trained to achieve the target behavior.
However, they decided how to decompose the
target behavior into basic behaviors while we
want also this subdivision to be the result of a
training phase. As Colombetti, Dorigo, and
Borghi note at the end of their paper: “In
order to relieve designers from part of their
burden, learning techniques might be extended
to other aspects of robot development, like the
architecture of the controller. This means that
the structure of behavioral modules should
emerge from the learning process, instead of
being pre-designed.” (Colombetti, Dorigo, and
Borghi, 1996).

We decided to train controllers using an
evolutionary method (Cliff, Harvey, and
Husband, 1993; Nolfi, Floreano, Miglino, and
Mondada, 1994; Mataric, and Cliff, in press)
and to conduct the training process in
simulation (for a description of the simulator
see Miglino, Lund, and Nolfi, 1995). The
control systems were then downloaded into the
robot and tested in the real environment. In
this section we will describe the robot and the
environment, the architecture of the controller,
and the genetic algorithm used. In section 3 we
will describe the results obtained and the
characteristics and advantages of the emergent
modular architecture described.

2.1. The robot and the environment

Khepera is a miniature mobile robot
developed at E.P.F.L. in Lausanne,
Switzerland (Mondada, Franzi, and Ienne,

4

1993). It has a circular shape with a diameter
of 55 mm, a height of 30 mm, and a weight of
70g. It is supported by two wheels and two
small Teflon balls. The wheels are controlled
by two DC motors with an incremental
encoder (10 pulses per mm of advancement by
the robot), and they can move in both
directions. In addition, the robot is provided
with a gripper module with two degrees of
freedom. The arm of the gripper can move
through any angle from vertical to horizontal
while the gripper can assume only the open or
closed position. The robot is provided with
eight infra-red proximity sensors (six sensors
are positioned on the front of the robot, and the
remaining two on the back), and an optical
barrier sensor on the gripper capable of
detecting the presence of an object within the
gripper (the infra-red sensors on the back side
of the robot and other available sensors were
not used in the experiments described in this
paper).

A Motorola 68331 controller with 256
Kbytes of RAM and 512 Kbytes ROM handles
all the input-output routines and can
communicate via a serial port with a host
computer. Khepera was attached to the host
computer by means of a lightweight aerial
cable and specially designed rotating contacts.
This configuration makes it possible to trace
and record all important variables by
exploiting the storage capabilities of the host
computer, and at the same time provides
electrical power without using time-consuming
homing algorithms or large heavy-duty
batteries.

The environment was a rectangular arena
60x35 cm surrounded by walls containing 5
target objects. The walls were 3 cm in height,
made of wood, and covered with white paper.
Target objects consisted of cylinders with a
diameter of 2.3 cm and a height of 3 cm. They
were made of cardboard and covered with
white paper. Targets were positioned randomly
inside the arena.

2.2 The architecture of the controller

Like the majority of people who use
evolutionary methods to obtain control
systems for autonomous robots (Mataric and
Cliff, in press), we decided to implement the
controller using a neural network. This
decision was based on several reasons: (a)

neural networks are resistant to noise, which is
massively present in robot/environment
interactions and are potentially able of
generalizing their behavior to new situations;
(b) it is important that the primitives
manipulated by the evolutionary process
should be at the lowest possible level in order
to avoid undesirable choices being made by
the human designer (Cliff, Harvey, and
Husband, 1993), and synaptic weights and
neurons are sufficiently low level primitives;
(c) neural networks can easily exploit various
form of learning during life-time, and this
learning process may help and speed up the
evolutionary process (Ackley and Littman,
1991; Nolfi, Elman and Parisi, 1994; Floreano
and Mondada, 1996).

In order to assess the role of modularity,
and of emergent modularity in particular, we
tried several different network architectures.
All architectures had 7 sensory neurons and 4
motor neurons although they differed in their
internal organization. The first 6 sensory
neurons were used to encode the activation
level of the corresponding 6 frontal sensors of
Khepera and the seventh sensory neuron was
used to encode the barrier light sensor on the
gripper. On the motor side the four neurons
respectively coded for the speed of the left and
right motors and for the triggering of the
"object pick-up" and "object release"
procedures.

The activation values of the infrared
sensors (which can have 1024 different values
ranging from 0 to 1023) and of the activation
of the light-barrier sensor (which can have two
values: 0 or 1023) were encoded in sensory
neurons as floating point values between 0.0
and 1.0. The logistic function was used to
determine the activation of the motor neurons.
The activation of the first two motor neurons
controlling the left and right wheels was
transformed into 21 different integer values
ranging from -10 to +10 (max. speed backward
and forward, respectively). The activation of
the third and fourth motor neurons controlling
the picking-up and releasing procedures,
respectively, were thresholded into two values
(1 = trigger the corresponding procedure, 0 =
do not trigger the corresponding procedure).

5

A

B

C

D

E

Figure 1. The 5 different architectures used to evolve the controller: (a) a standard feedforward architecture;
(b) an architecture with an internal layer of hidden units; (c) a recurrent architecture; (d) a modular
architecture with two pre-designed modules; (e) an emergent modular architecture.

The simplest architecture used was a 2-
layer feedforward neural network (see Figure
1a). The second architecture was also a
feedforward neural network but had an internal
layer of four units (Figure 1b). We then tried a
recurrent architecture in which the activation
level of two additional output units was copied
back into two additional input units (Figure
1c). We chose this architecture because it
allows the network: (a) to determine which
type of information to keep in memory, and
(b) to compress into a single pattern of
activation information coming from an

unspecified number of previous sensory
stimuli (for a similar architecture see Elman,
1990). Finally we tried two modular neural
architectures (i.e. networks in which different
parts or modules had control in different
sensory-environmental situations). The first
modular architecture (Figure 1d) had two
modules, of which the corresponding expected
behavior was pre-determined by the designer.
The first module (i.e. the sub-network on the
left) had control when the robot gripper was
empty, and was therefore dedicated to the
ability to find a target, while avoiding walls,

6

recognize it, and pick it up correctly. The
second module (i.e. the sub-network on the
right) was in control when the gripper was
carrying a target and was therefore dedicated
to the ability to find a wall while avoiding
other targets, stop in front of it and release the
target. The partition of the required behavior
into these two basic behaviors and into the
corresponding neural modules was of course
arbitrary, although it seemed to be the most
reasonable one given that the robot was
expected to perform two very different
behaviors depending on the state of the
gripper.
The second modular architecture (see Figure
1e) was denoted as an “emergent modular
architecture” because it allows the required
behavior to be broken down into sub-
components corresponding to different neural
modules, although it does not require the
designer to do such a partition in advance. The
number of available neural modules (in this
case two for each motor output), the
architecture of each module, and the
mechanisms that determine their interaction is
pre-designed and fixed. However the number
of modules actually used by an individual, the
combination of modules used each time step,
and the weights of the modules themselves are
learned during the training phase and are
emergent. In particular, the sub-division of the
behavior into basic behavior corresponding to
different neural modules is emergent. This can
be accomplished because the neural structures
responsible for the basic behaviors and for the
selection mechanisms are represented
homogeneously.

This architecture had 16 output units,
which, at every time step, gives 4 output
values controlling the 4 previously described
effectors. Four pairs of output neurons
(represented by empty circles) coded for the
speed of the left and right motors and for the
triggering of the "object pick-up" and "object
release" procedures, respectively, and four
pairs of selector neurons (represented by full
circles) determined which of the two
competing output neurons had control over the
corresponding robot's effector each time step
(the competitor with the corresponding highly
activated selector neuron gained control). Each
module was composed of two output neurons,
two corresponding biases, and 14 connections
from sensory neurons. The first output neuron

determined the motor output when the module
has control, the second output neuron
(selector) competes with the selector neuron of
the other corresponding module to determine
which of the two modules has to take control.

The activation of the sensors and the state
of the motors were encoded every 100
milliseconds. However, when the activation
level of the "object pick-up" or of the "object
release" neurons reached a given threshold, a
sequence of action occurred that possibly
required one or two seconds to complete (e.g.
move a little further back, close the gripper,
move the arm up, for the object pick-up
procedure; move the arm down, open the
gripper, and move the arm up again, for the
object release procedure).

It is important to note that the task chosen
is particularly well suited to study the role of
modularity because, as described above, the
required behavior can be broken down into
several basic behaviors that may be
implemented in different neural modules.
Moreover, the task requires a controller able to
produce very different motor responses for
similar sensory states. Let us take the case of
the robot in front of a target, it should avoid or
approach it according to the presence or
absence of a target on the gripper (in the two
cases the only difference is the state of 1
sensor out of 7). Or else, let us take the case of
a robot in front of an object with an empty
gripper, it should avoid or approach the object
according the type of the object; wall or target
(in the two cases the infrared sensors have only
slightly different activation values). Our
hypothesis is that a modular neural network,
that can use different neural modules in
different environmental situations, might have
an advantage in learning to produce very
different motor responses for very similar
sensory patterns with respect to a single,
uniformly connected, neural network.

2.3. The Genetic Algorithm

To evolve neural controllers able to
perform the task described above we used a
form of genetic algorithm (Holland, 1975). For
each network architecture, we began with 100
randomly generated genotypes each
representing a network with the corresponding
architecture and a different set of randomly
assigned connection weights. This is

7

Generation 0 (G0). G0 networks are allowed to
"live" for 15 epochs, with each epoch
consisting of 200 actions (about 8 seconds in
the simulated environment using an IBM
RISC/6000 and about 300 seconds in the real
environment). At the beginning of each epoch
the robot and the target objects were randomly
positioned in the arena. Epochs terminated
after 200 actions or after the first object had
been correctly released. At the end of their life,
individual robots were allowed to reproduce.
However, only the 20 individuals which had
accumulated the most fitness in the course of
their life reproduced (agamically) by
generating 5 copies of their neural networks.
These 20x5=100 new robots constituted the
next generation (G1). Mutations were
introduced in the copying process, resulting in
possible changes of the connection weights.
Mutations were obtained by substituting 2% of
randomly selected bits with a new randomly
selected value (as a consequence, about 1% of
the bits were actually changed). We tried lower
and higher mutation rates in our experiment.
This was selected because it gave the best
results overall. The process was repeated for
1000 generations.

We also ran a set of simulations in which
we used both mutation and crossover. In this
case a random single point crossover was
performed with a given probability (0.1, 0.5,
1.0). Reproducing individuals were obtained
by crossing over one of the 20 individuals with
the highest fitness score and one randomly
selected individual. However, we did not
obtain better performance with respect to
simulations without crossover (for this reason
we shall present the result obtained using only
mutations). This may be due to the fact that
the crossover points were randomly chosen.
Restricting the crossover points so as to
preserve the organization of the network may
produce better results (Montana, and Davis,
1989). This may be particularly true for
architectures D and E which can be divided
into neural modules.

Gene duplication and elimination could
also be considered. These operators can be
particularly effective in the case of architecture
E in order to allow evolution to select the best
number of competing neural modules for each
motor output. Modularity can be realized at
different levels: (a) the genetic level; (b) the
nervous system level; (c) the behavioral level.

In this paper we will concentrate on (b) and
(c). We plan to investigate (a) in the near
future.

The genetic encoding scheme was a direct
one-to-one mapping. The encoding scheme is
the way in which the phenotype (in this case
the connection weights of the neural network)
is encoded in the genotype (the representation
according to which the genetic algorithm
operates). One-to-one mapping is the simplest
encoding scheme where one and only one
'gene' corresponds to each phenotypical
character. In our case, to each connection
weight and bias corresponded to a sequence of
8 bits for the genotype which had a total length
of: (A) 256, (B) 416, (C) 480, (D) 480, and (E)
1024 bits in the 5 different architectures
described. (For more complex encoding
schemes also allowing evolution of the neural
architecture, see Cliff, Harvey and Husband,
1993; Nolfi, Miglino, and Parisi, 1994; Grau,
1995).

Individual networks were scored by
counting the number of objects correctly
released outside the arena. However, in order
to facilitate the emergence of the ability to
achieve the task, individuals were also scored
(even if with a much lower reward) for their
ability to pick up targets. In addition, it was
found important to expose the robots to useful
training experiences (i.e. to artificially increase
the number of times when the robot, while
carrying a target object, encountered another
target) in order to force the evolutionary
process to select individuals able to avoid
targets when the gripper was full. This was
accomplished by artificially positioning a new
target object in the frontal area of the robot
each time it picked up a target during
evolutionary training (see also Nolfi, in press).

Without this manipulation of the learning
experiences, evolved individuals were unable
to avoid targets while carrying an object. We
first tried to introduce a penalty term in the
fitness function for individuals unable to avoid
targets when their gripper was full. However
alteration of the learning experiences proved
much more effective. The real problem, in fact,
is that such cases rarely occurred during
training and as a consequence, without altering
the learning experiences, there was too little
evolutionary pressure to select individuals able
to perform the right behavior.

8

3. Results

We ran 10 simulations for each of the 5
different architectures described above. Each
simulation started with populations of 100
networks with randomly assigned connection
weights and lasted 1000 generations (about 10
hours using a standard IBM RISC/6000). In
the following section we will compare the
results obtained for individuals with different
architectures, and later we will analyze how
modularity is used in emergent modular
architectures.

3.1. Results obtained with different
architectures

If we measure the average number of
epochs (out of 15) in which individuals
correctly pick up and then release a target
outside the arena for simulations with different
architectures we can see how in all conditions
an ability to accomplish the correct sequence
of behaviors evolves (see Figure 2). Note that
epochs terminated after 200 actions or after the
first object had been correctly released. As a
consequence the max. number of targets that
can be released outside the arena is equal to
the number of epochs. However, evolved
individuals with different architectures vary in
the performance achieved at the end of the
evolutionary training and in the time needed to
reach plateau level performance. If we look at
performance of generation 999 we can see how
all types of architectures have reached high
performances with the exception of the simple
feed-forward architecture (A). If we look at
performance throughout generations we can
see how the emergent modular architectures,
after few generations, start to outperform all
the other architectures maintaining a difference
until generation 500 (this result is even more
meaningful if one consider that architecture
(E), by requiring a longer genotype with
respect to the other architectures, also implies
that the genetic algorithm has to search a larger
space). A oneway analysis of variance of
performance in the five different conditions
was performed each 100 generations. The
results show that performance in condition (E)
is significantly higher than in the other four
conditions at generation 199 and performance
in condition (A) is significantly lower than the

other four conditions at generation 999 (p <
0.05).

A

B
C D

E

0

3

6

9

12

0 100 200 300 400 500 600 700 800 900 1000

generations

su
cc

es
sf

ul
 e

po
ch

s

Figure 2. Number of epochs (out of 15) in which
individuals with different architectures correctly
picked up and then released a target object outside
the arena through out generations. Each curve
represents the average of the best individuals in 10
different simulations. Data smoothed by
calculating rolling averages over preceding and
succeeding 3 generations.

By downloading the best controllers of
generation 999 (for 10 replications of the
simulation) into the robot and testing them in
the real environment for 5000 cycles for their
ability to clean up the arena by removing 5
randomly placed target objects, we can see that
architecture (E) clearly outperforms all other
architectures (see Figure 3). The best
individuals of 7 (out of 10) with the emergent
modular architecture were capable of cleaning
the arena without displaying any incorrect
behavior while only 1 or 2 individuals (out of
10) with other architectures were capable of
accomplishing the task.

su
cc

es
sf

ul
 in

di
vi

du
al

s

0

1

2

3

4

5

6

7

A B C D E

Figure 3. Number of evolved individuals for each
control architectures capable of correctly picking
up and then releasing outside the arena the 5
targets objects within 5000 cycles without
displaying any incorrect behavior (e.g. crashing
into walls, trying to grasp a wall, or trying to
release a target over another target). A,B,C,D,E

9

indicate the five different architectures described
in Figure 1.

These results show that the emergent
modular architecture (E) enables the
evolutionary process to find a correct solution
to the task earlier than other architectures and
in particular earlier than the hand-crafted
modular architecture (D). Moreover results
show how the emergent modular architecture
allows the evolutionary process to select more
robust solutions to the task, i.e. controllers
which showed only a limited loss of
performance when transferred into the real
robot.

3.2. How emergent modular neural networks
work

The first thing we want to know about our
evolved individuals with the emergent
modular architecture is: can we find a
correspondence between distal description of
behaviors and modules? In other words do we
find that the evolved individuals use different
modules in different environmental situations
(e.g. when they have to pick up a target, when
they have to release a target, when they have
to disambiguate a sensory pattern, when they
have to avoid a target etc.)?

The answer to this question is no.
Figure 4 represents the behavior of a

typical evolved individual. As we said in the
previous section, individuals with emergent
modular architecture have two different
modules for each of the four motor outputs and
therefore can use up to 16 different
combination of neural modules. However, the
evolved individual described in Figure 4, i.e.
one of the most successful, uses only a single
module to control the left motor, the pick-up
procedures, and the release procedure (LM,
PU, and RL) and it uses both neural modules
only for the right motor (RM). For an analysis
of other individuals see below. What is
interesting to note is that those two modules

competing for the control of the right motor
are both used in all the phases that can be
described as distal sub-behaviors: when the
gripper is empty and the robot has to look for a
target (i.e. when sensor LB is off); when the
gripper is carrying a target and the robot has to
look for a wall (i.e. when sensor LB is on);
when the robot perceives something and has to
disambiguate between walls and targets (i.e.
when the W/T graph shows the upper or
bottom line); when the robot does not perceive
anything (i.e. when the ‘W/T’ graph does not
show any line); when the robot is approaching
a target (i.e. when sensor LB is off and the
perceived object is a target); when the robot is
approaching a wall (i.e. when sensor LB is on
and the perceived object is a wall); when the
robot is avoiding a target (i.e. when sensor LB
is on and the perceived object is a target);
when the robot is avoiding a wall (i.e. when
the sensor LB is off and the perceived object is
a wall).

Similar results can be obtained by
analyzing the other evolved individuals. When
many alternative neural modules are involved
it becomes difficult to understand what is
going on. However, the general picture
remains the same: neural modules or a
combination of neural modules does not
appear to be responsible for single distal sub-
behaviors. On the contrary each sub-behavior
is the result of the contribution of different
neural modules.

In order to understand the function of
modules in these evolved individuals we
should abandon the analysis of distal behaviors
and concentrate on proximal behaviors (i.e. the
way in which individuals respond to different
sensory stimuli). In the case of our
robot/environment framework, the number of
stimuli (intended as the combination of all
possible sensor states) to which individuals
may be exposed is infinite. However, they can
be reduced to a finite number by classifying
similar stimuli together.

10

Figure 4. The top part of the figure represents the behavior of a typical evolved individual in its environment.
Lines represent walls, empty and full circles represent the original and the final position of the target objects
respectively, the trace on the terrain represents the trajectory of the robot. The bottom part of the figure
represents the type of object currently perceived, the state of the motor, and the state of the sensors throughout
time for 500 cycles respectively. The ‘W/T’ graph shows whether the robot is currently perceiving a wall (top
line), a target (bottom line), or nothing (no line). The ‘LM’, ‘RM,’ ‘PU’, and ‘RL’ graphs show the state of the
motors (left and right motors, pick-up and release procedures, respectively). For each motor, in the top part of
the graph the activation state is indicated (after the arbitration between component modules has been
performed by the selector neurons) and in the bottom part which of the two competing neural modules has
control is indicated (the thickness of the line at the bottom indicates whether the first or the second module has
control: thin line segment = module 1; thick line segment = module 2). The graphs ‘I0’ to ‘I5’ show the state
of the 6 infrared sensors. Finally, the ‘LB’ graph shows the state of the light-barrier sensor. The activation
state of sensor and motor neurons is represented by the height with respect to the baseline (in the case of motor
neurons the activation state of the output neurons of the module that currently have the control is shown).

If we assume that stimuli perceived by the
robot do not change significantly when the
robot modifies its position with respect to a
perceived object by turning left or right less
than 2 degrees or by moving forth or back less
the 2 millimeters (i.e. the same grain used to
build the simulator through world samples (see
Miglino, Lund, and Nolfi, 1995)) we can
reduce the infinite number of different input
stimuli to a manageable number. By using a

threshold of 2 degrees and 2 millimeters and
considering that infra-red sensors are unable to
detect objects at a distance of over 40
millimeters, we obtain 180x20=3600 different
stimuli for different relative positions of the
robot with respect to an object (i.e. 180
different orientations from 0 to 359 degrees
multiplied by 20 different distances from 0 to
40 millimeters). In addition, because stimuli
also vary according to the type of object

11

perceived (wall or target) and the state of the
light-barrier sensor (on or off), we have a total
of 3600x4=14400 possible different sensory
stimuli. Figure 5 shows the proximal
description of the behavior of the same
evolved individual represented in Figure 4. For

each of the 3600x4 different environmental
stimulation, in addition to the state of the four
effectors, the corresponding combination of
neural modules that obtain the control is
indicated.

Figure 5. Proximal representation of the behavior of an evolved individual. The rectangular maps labeled ‘left
motor’, ‘right motor’, ‘pick up’, and ‘release’ represent the activation state of the four actuators (after the
arbitration between component modules has been performed by the selector neurons) for 180 different
orientations over 360o and 20 different distances (from 0 to 40 mm) with respect to a perceived object. For
graphic reasons the activation states of the motor neurons are divided into two classes, positive and negative
speeds (represented with black and white color respectively), although the left and right motors can take 20
different speeds. The ‘right motor winner’ maps represent which of the two modules controlling the right
motor is in charge for each combination of orientations and distance with respect to a perceived object (the
two modules are represented in white and black, respectively). The group of 5 maps is replicated for 4
different conditions: perceived object is a wall and no object is in the gripper (top left maps); perceived object
is a target and no object is in the gripper (bottom left maps); perceived object is a wall and an object is in the
gripper (top right maps); perceived object is a target and an object is in the gripper (bottom right maps).

If we analyze in which environmental
situations the two different combinations of
neural modules obtain control we can see how,
in the case of the individual represented in
Figure 5, the neural module shown in black
obtains the control when the perceived object
is within a given angle (from about -100o to
100o) and a given distance (about 30mm) with
respect to the robot. However, the extension of

the “area” in which the module represented in
black obtains control varies significantly
according to whether the perceived object is a
wall or a target (it is much larger in the case of
a wall) and, although much less significantly,
whether the robot has an object in the gripper
or not (it is larger in the second case).

As can be seen, there is almost a one to
one correspondence between the combination

12

of neural modules that have control (right
motor winner) and the speed of the right
motor, which is the only motor affected by the
alternation of the two competing neural
modules in this individual. The speed of the
right motor is negative when the black neural
module is activated and positive otherwise.
Therefore the weights that determine which of
the two neural modules has control have the
main responsibility in determining the speed of
the right motor. However, the weights of the
two neural modules are responsible for
differentiating the speed of the right motor in a
very important environmental situation (when
both angle and distance are close to 0)
depending on the presence or not of an object
in the gripper (see the left and right ‘right
motor’ maps in the bottom of Figure 5).

By observing the close descriptions of
behavior of other evolved individuals
(obtained by replicating the simulation) it
appears that different combinations of modules
are used to produce different motor responses
for similar sensory stimuli when necessary.
This happens most of the time, as in the case
of the individual described in Figure 5, when
the robot has an object on its frontal side and
must decide whether to approach or avoid it or
whether to try to pick it up or not. Individuals
with the other architecture described appear
less able to produce sharp discontinuities in
behavior.

The need to produce very different motor
responses for very similar sensory stimuli is
related to the complexity of the task. This type
of architecture may consequently be expected
to scale up more easily than other non-modular
architectures. We have not jet applied this
architecture to more complex tasks than the
one described in this paper. However we have
observed that while homogeneous
architectures are perfectly able to solve simpler
tasks like the ability to explore an arena
surrounded by walls (Nolfi, Floreano, Miglino,
and Mondada, 1994) or the ability to
recognize, approach and to remain close to
target objects while avoiding walls in an
environment identical to that described in this
paper (Nolfi, 1996), the emergent modular
neural network outperformed other
architectures in garbage collecting task.
Therefore, one can hypothesize that the
advantage of the emergent modular

architecture will increase with increasing task
complexity.

3.3 Why there is no correspondence between
evolved modules and distal description of
behaviors.

There are at least two reasons that can
explain why there is no correspondence
between distal description of behaviors and
neural modules in evolved individuals. First,
one should consider that different distal
behaviors usually require behavioral responses
that differ only partially. Think of the
following situations: object in the gripper or
not. If the robot has an object in the gripper it
should avoid targets and approach walls and
viceversa when it has the gripper empty it
should approach targets and avoid walls.
However the perceived object can be correctly
classified only from a small number of relative
positions (see Nolfi, 1996). Therefore, in all
the other cases, there is no reason to have
different behaviors involving different neural
modules. Conversely having two different
neural modules for the cases “object in the
gripper or not”, as in architecture D described
above, requires the additional cost of learning
the same behavior in all cases in which there is
no reason to have different motor responses.
Alternation of different neural modules is
required only when the agent is expected to
produce different motor responses for similar
input patterns, and this happens only in some
cases in different distal behaviors.

One second reason is that the division of a
requested behavior into a set of basic behavior
that correspond to distal description often
requires a very complex behavioral selection
system. Let us take the basic behaviors:
avoiding a target, avoiding a wall, approaching
a target, and approaching a wall. All these
behaviors are probably easy to implement (or
to learn); however they require a selection
mechanism that, in order to be able to select
the right module at the right time, should
always be able to correctly classify walls and
target and this is a complex task that can be
accomplished only in some environmental
circumstances. In our emergent modular
architecture, because the neural modules and
the selection mechanism are represented
homogeneously and evolve at the same time,

13

solutions in which both the components are
kept as simple as possible are selected.

An interesting property of the emergent
modular network is that it does not require
specification of the number of modules
corresponding to basic behaviors into which
the desired behavior should be broken down. It
is only necessary to specify the max. number
of available neural modules for each motor
which then determines the max. number of
different combinations of neural modules that
can be exploited. In the present paper we used
an architecture with 8 neural modules (two
neural modules for each of the four motor
functions) which can produce up to 16
different combinations of neural modules.
However, only about 6 neural modules and
about 5 combinations of neural modules were
used, on average, by evolved individuals. The
number of neural modules actually selected by
evolution can be expected to be, on average,
proportional to the complexity of the task.

This is an important property of the
architecture. In fact if we assume that the best
way to break down a behavior into basic
behaviors corresponding to different neural
modules is to take into account the close
description of behaviors, and we also assume
that there is a complex mapping between close
and distal description of behavior we will
conclude that: as the designer will be unable to
specify the best way to break down the
required behavior into basic behaviors, he will
also be unable to specify how to select the
number of basic behaviors. Nor will the
designer able to decide how to combine
different neural modules for each time step.

4. Conclusions

We have presented an architecture, known
as emergent modular architecture, in which for
each output function two or more alternative
neural modules compete for control and two or
more other corresponding neural modules
determine which competitor gains control.
This architecture, by using a uniform
representation for modules responsible for
basic behavior and mechanisms responsible for
behavior selection, allows not only the control
structures responsible for basic behaviors and
behavior selection but also the break down of
the target behavior into basic behaviors to be
obtained through an adaptation process.

By evolving controllers for mobile robots
for the purpose of performing a non trivial task
and by comparing the results obtained using
this architecture with other neural architectures
we showed that the emergent modular
architecture outperforms all other architectures
and in particular the modular architecture in
which the break-down of the required behavior
into basic behaviors is hand-crafted.

The analysis of the evolved individuals
with the emergent modular architecture showed
that modularity and action selection can be
useful in tasks, like that presented in this paper,
in which very different motor responses should
be produced for similar sensory patterns. In
other words modularity appears useful in tasks
which require complex behavior from the point
of view of proximal description. Moreover, the
analysis of our results showed that there is no
correspondence between evolved modules and
distal description of behaviors. In fact, the
sequence of sensory-motor loops that can be
described as basic behaviors from the
observer’s point of view are the result of the
contribution of different neural modules in
evolved individuals with the emergent modular
architecture.

The fact that the process of breaking down
the required behavior into basic behaviors
should take into account the proximal
description of behavior itself can impose
serious limitations on the engineering-oriented
approach to behavior-based robotics. This is
because there is a complex mapping between
distal and proximal description of behavior and
therefore we cannot expect the experimenter,
who has direct access only to the distal
description of behavior, to have a correct
picture of the corresponding proximal
descriptions, excepted for trivial cases. Even
the use of learning in the development of the
modules responsible for the basic behavior
and/or of the mechanisms responsible for action
selection might suffice. Hand-crafting the
process of breaking down the required behavior
into basic components leads to constraints that
may limit the adaptation process to the borders
set by the experimenter.

Our claim that behavioral modules should
be allocated by considering the proximal
description and not the distal description of
behavior, as is usually done, may only be true
(or particularly true) for neurocontrollers

14

where a homogeneous set of weighted sums
are often requested to account for sharp
discontinuities in behavior. However, similar
impressions have been reported by other
researchers following different approaches.
Mahadevan and Connel, for example, who
developed a box-pushing controller for an
autonomous robot using a subsumption
architecture wrote “Obviously, there may be
several ways of decomposing a given task, and
coming up with a good decomposition is a
nontrivial problem” (Mahadevan, and Connel;
1992, p.363).

Acknowledgment

This research has been granted by the
Coordinated Project on real Time Computing in
Real World of C.N.R, Italy. The author thanks
the anonymous referees for valuable
suggestions on the manuscript.

References

Ackley, D. H., & Littman, M. L. (1991).
Interactions between learning and evolution, in:
C. G. Langton, J. D. Farmer, S. Rasmussen, C.
E. Taylor (eds.), Artificial Life II, Reading,
Mass., Addison-Wesley.

Braitenberg, V. (1984). Vehicles: experiments in
synthetic psychology, Cambridge, MA: MIT
Press.

Brooks, R. A. (1986). A roboust layered control
system for a mobile robot, IEEE Journal of
Robotics and Autonomation, 2, 14-23.

Cliff, D. T., Harvey, I., & Husbands, P. (1993).
Explorations in Evolutionary Robotics.
Adaptive Behavior, 2, 73-110.

Colombetti, M., Dorigo, M., & Borghi G. (1996).
Behavior analysis and training. A methodology
for behavior engineering. IEEE Transactions
on Systems, Man, and Cybernetics - Part B,
(26) 1, 29-41

Dorigo, M., & Schnepf, U. (1993). Genetic-based
machine learning and behaviour based robotics:
a new synthesis. IEEE Transaction on Systems,
Man, and Cybernetics, (23) 1, 141-154.

Elman, J. L. (1990) Finding structure in time,
Cognitive Science, 14, 179-211

Floreano, D., & Mondada, F. (1996). Evolution of
plastic neurocontrollers for situated agents, in:
P. Maes, M. Mataric, J-A. Meyer, J. Pollack,
& S. Wilson. (eds.), From Animals to Animats
IV, Cambridge, MA: MIT Press.

Gruau, F. (1995). Automatic definition of modular
neural networks. Adaptive Behavior, 2, 151-
183.

Holland, J. H. (1975). Adaptation in Natural and
Artificial Systems, Ann Arbor, Mich.,
University of Michigan Press.

Maes, P. (1992). Learning behavior networks from
experience, in: F. J. Varela, P. Bourgine (eds.),
Toward a Practice of Autonomous Systems:
Proceedings of the First European Conference
on Artificial Life, Cambridge, Mass, MIT
Press/Bradford Books.

Mahadevan, S., & Connell, J. (1992). Automatic
programming of behavior-based robots using
reinforcement learning. Artificial Intelligence,
55, 311-365.

Mataric, M. J. (1992). Behavior-based control:
Main properties and implications. Proceedings
of the IEEE International Conference on
Robotics and Autonomation, Workshop on
Architectures for Intelligent Control Systems,
Nice, France.

Mataric, M. J., & Cliff, D. (in press). Challenges
in evolving controllers for physical robots, in
“Evolutionary Robotics”, special issue of
Robotics and Autonomous Systems.

Miglino, O., Lund, H. H., & Nolfi, S. (1995).
Evolving mobile robots in simulated and real
environments. Artificial Life, (2) 4, 417-434.

Mondada, F., Franzi, E., & Ienne, P. (1993).
Mobile Robot miniaturisation: A tool for
investigation in control algorithms, in:
Proceedings of the Third International
Symposium on Experimental Robotics, Kyoto,
Japan.

Montana, D. J., & Davis, L. (1989). Training
feedforward neural networks using genetic
algorithms, in: Proceedings of Eleventh Joint
Conference on Artificial Intelligence, Vol 1,
Palo Alto, CA: Kaufmann.

Nolfi, S. (1996). Adaptation as a more powerful
tool than decomposition and integration, in T.
Fogarty and G. Venturini (eds), Proceedings of
the workshop on Evolutionary computing and
Machine Learning, 13th International
Conference on Machine Learning, Bari.

Nolfi, S. (in press). Evolving non-trivial behaviors
on real robots: a garbage collecting robot.
Robotics and Autonomous Systems.

Nolfi, S., Elman, J.L., & Parisi, D. (1994).
Learning and Evolution in Neural Networks.
Adaptive Behavior, 1, 5-28.

Nolfi, S., Floreano, D., Miglino, O., & Mondada,
F. (1994). How to evolve autonomous robots:
different approaches in evolutionary robotics,
in: R.A. Brooks and P. Maes (eds.),
Proceedings of fourth International

15

Conference on Artificial Life, Cambridge,
Mass, MIT Press.

Nolfi, S., Miglino, O., & Parisi, D. (1994).
Phenotypic Plasticity in Evolving Neural
Networks, in: D. P. Gaussier and J-D. Nicoud
(eds.) Proceedings of the Intl. Conf. From
Perception to Action, Los Alamitos, CA: IEEE
Press.

Nolfi, S., & Parisi, D. (1993). Self-selection of
input stimuli for improving performance. In: G.
A. Bekey (ed.) Neural Networks and Robotics,
Kluwer Academic Publisher.

Parisi, D., Cecconi, F., & Nolfi, S. (1990). Econets:
Neural networks that learn in an environment.
Network,1,149-168.

Sharkey, N. E., & Heemskerk, N. H. (in press).
The neural mind and the robot, in A. J. Browne
(Ed.) Current Perspective in Neural
Computing, IOP press.

Scheier C., & Pfeifer, R. (1995). Classification as
sensory-motor coordination: A case study on
autonomous agents, in: F. Moran, A. Moreno,
J.J. Merelo, P. Chacon (Eds.) Advances in
Artificial Life: Proceedings of the Third
European Conference on Artificial Life,
Springer Verlag.

Scheier, C., & Lambrinos, D. (1995). Adaptive
classification in autonomous agents. Technical
Report, AILab, Computer Science Department,
University of Zurich.

