
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333145451

Deep Q-Learning on Lunar Lander Game

Technical Report · May 2019

CITATION

1
READS

6,588

1 author:

Some of the authors of this publication are also working on these related projects:

Study Notes on Mathematical Statistics View project

Research Group Talk Materials View project

Xinli Yu

Temple University

7 PUBLICATIONS 31 CITATIONS

SEE PROFILE

All content following this page was uploaded by Xinli Yu on 16 May 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/333145451_Deep_Q-Learning_on_Lunar_Lander_Game?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/333145451_Deep_Q-Learning_on_Lunar_Lander_Game?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Study-Notes-on-Mathematical-Statistics?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Research-Group-Talk-Materials?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinli-Yu?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinli-Yu?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Temple-University?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinli-Yu?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xinli-Yu?enrichId=rgreq-332d9f6da9210dbd351ce7a8f0e22023-XXX&enrichSource=Y292ZXJQYWdlOzMzMzE0NTQ1MTtBUzo3NTkyMDY2NzYyNzExMTRAMTU1ODAyMDM4NTg5MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

1

Deep Q-Learning on Lunar Lander Game
 Xinli Yu

xyu350@gatech.edu

ABSTRACT
The main objective of reinforcement learning (RL) is to
enable an agent to act optimally to maximize the cumulative
long-term reward. Q-learning is a model free RL algorithm,
which iteratively learns a long-term reward function “Q”
given the current state and action. The Deep Q-Learning
Network (DQN) facilitates the Q-learning by modeling the
Q-function as a neural network.

This project implements and experiments such DQN
models on the OpenAI Gym’s LunarLander-v2 environment,
using a two-layer feed-forward network with a technique
named “experience replay”. Extensive experiments are done
to determine the neural network size and tune various hyper-
parameters including learning rate 𝛼, reward discount factor
𝛾 and exploration-exploitation trade-off 𝜖 . Major findings
include 1) the Lunar Lander favors a large hidden layer but
not a deeper network; 2) a near-one reward discount is
necessary for the model to consider final successful landing.
Finally, our best model can stably achieve 280+ mean reward
for a trial of 100 landing episodes. The code can be found at
https://github.com/XinliYu/RL-Projects.

1. PROBLEM DESCRIPTION
Our problem is based on the OpenAI Gym’s LunarLander-
v2 environment. Gym is a toolkit for developing and
comparing reinforcement learning algorithms. It supports
teaching agents on a variety of tasks from walking to playing
games like Pong, Pinball or Car Racing. In particular, this
project focuses on the LunarLander-v2 environment, and the
goal is to teach the agent “lunar lander” to successfully land
on randomly generated surfaces on the “moon”. The
following formally defines the state space, action space and
the reward for this RL problem, according to [1].
State space. The state space for LunarLaner-v2 is an eight-
dimensional vector

(𝑥, 𝑦, 𝑣), 𝑣*, 𝜃, 𝑣,, left_leg, right_leg) (1)
providing information of the agent’s position (𝑥, 𝑦) in space,
horizontal and vertical velocity 7𝑣), 𝑣*8, orientation in space
𝜃, angular velocity 𝑣,, and two 0-1 flags left_leg, right_leg
indicating whether the left foot/right foot is in contact with
the ground.
Action space. The action space has four actions available:
doing nothing, firing the left orientation engine, firing the
main engine, and firing the right orientation engine.
Reward. The environment always has a landing pad for the
lander at coordinates (0,0). Fuel is infinite. The total reward
for moving from the top of the screen to the landing pad
ranges from 100 to 140 points varying on the lander
placement on the pad. If the lander moves away from the

landing pad, then it is penalized the amount of reward that
would be gained by moving towards the pad. An episode
finishes if the lander crashes or comes to rest (the
environment will return a 0-1 flag indicating if the episode
finishes), receiving an extra -100 or +100 points respectively.
Each leg ground contact is worth +10 points. Firing the main
engine incurs a -0.3 point penalty for each occurrence.

Remarks. Based on the description, the maximum
reward for one episode should be around 260. However,
in our experiments, 310+ reward is observed.

Goal: The problem is considered solved when achieving a
score of 200 points or higher on average over 100
consecutive landing attempts.

Difficulty: The LunarLander-v2 changes the shape of
the landing surface every time. The lander must learn to
land in all situations.

2. Q-LEARNING ALGORITHM
Q-Learning is a model-free RL algorithm that does not
require an explicit definition of a Markov decision process.
It trains an agent to learn an optimal policy from a dynamic
environment, and the learned optimal policy tells the agent
what action to take at each state.

Given an environment, let 𝑆 denote the state space and
𝐴 denote the action space. In Q-learning, the expected total
long-term reward given a state 𝑠 and an action 𝑎 is predicted
by the Q-function 𝑄(𝑠, 𝑎): 𝑆 × 𝐴 → ℝ , where the use of
letter “Q” may be interpreted as the “quality” of the action 𝑎
in the state 𝑠. The agent should take the optimal action 𝜋(𝑠)
for a state 𝑠 such that the expected long-term reward is
maximized, i.e.,

𝜋(𝑠) = argmaxG	𝑄(𝑠, 𝑎),
where 𝜋 denotes the optimal policy, an 𝑆 → 𝐴 map from
states to actions.

Q-learning applies a modified form of Bellman equation
to learn the optimal policy. If we only consider 1-step
transition 〈𝑠J, 𝑎J, 𝑟J, 𝑠JLM⟩	 where 𝑟 is the immediate reward
of the current step, and sJLM is the next state, then we have:

𝑄(𝑠J, 𝑎𝑡) = 𝑟𝑡 + 𝛾max𝑎 𝑄(𝑠JLM, 𝑎) (2)

where 𝛾 ∈ [0,1] is the discount factor specifying how far
ahead in time the algorithm should look. This means the
optimal long-term reward 𝑄(𝑠J, 𝑎J) for the current state 𝑠J
and action 𝑎J , is the immediate reward plus a discounted
optimal long-term reward for the next state.

Remarks. For the lunar-lander problem, there is 120
points for a good landing, a large portion of the reward
we can earn. To prioritize this final success, we expect a
good 𝛾 to be near 1.

2

In addition, we can use a learning rate 𝛼, which enables
a moving averaging between old and new values of 𝑄. This
allows the learning of 𝑄 to converge smoothly, even if our
environment is noisy. The update formula with 𝛼 is then

𝑄(𝑠J, 𝑎J) = (1 − 𝛼)𝑄(𝑠J, 𝑎J)
+ 𝛼(𝑟J + 𝛾maxGX

𝑄(𝑠𝑡+1, 𝑎𝑡+1)) (3)

The equation (3) defines an iterative process. When both
states and actions are discrete and finite, a straightforward
method to solve (3) is to model 𝑄 as a matrix and then
iteratively runs (3) until convergence. This is called the
tabular Q-Learning method.

Difficulty. Such method is difficult to deal with large
and continuous state space. Our lunar lander problem
has infinite continuous state space like velocity or angle.
We can of course apply discretization techniques, but
the performance will be hurt.
Solution. Fortunately, Q-function in the Q-learning is a
conceptually general function and can be implemented
as any proper model. Therefore, we can implement it as
a neural network, a popular machine learning approach
successful in a wide spectrum of tasks.

3. THE DEEP-Q LEARNING
The Deep Q-learning is an extension of the Q-Learning
algorithm by modeling the Q-function 𝑄(𝑠, 𝑎) as a (deep)
neural network [1-2]. The discussions in the section hold for
the general framework of deep Q-learning. Our concrete
implementation of the neural network is in the next section.

In this approach, the Q-function is a complicated
composition of a variety of parameterized functions, taking
the input 𝑠, 𝑎 and making predictions of long-term utility. A
loss function 𝐿 is designed to measure how well 𝑄 makes the
prediction. Finally, the parameters of 𝑄 are trained by
calculating gradients of 𝐿 and applying optimization. The
objective of Q-learning is to make the iterative process such
like (2) converge, and then one choice of loss function is the
“squared difference”,

𝐿 = Z𝑄(𝑠J, 𝑎J) − [𝑟J + 𝛾maxG 𝑄(𝑠JLM, 𝑎)\]
^
 (4)

where “max
G
𝑄(𝑠JLM, 𝑎) ” is evaluated using the current

predictions, and “ 𝑟J + 𝛾maxG 𝑄(𝑠JLM, 𝑎) ” is like a target
value for 𝑄(𝑠J, 𝑎J) in a classic regression problem .

Single forward pass design. Again, let 𝑆 denote the state
space, 𝐴 denote the action space, and |𝐴| be the number of
actions in the action space. If our neural network strictly
follows the definition of Q-function as an 𝑆 × 𝐴 → ℝ
function, then we need |𝐴| forward passes in order to find the
optimal 𝑎 for maximization max

G
𝑄(𝑠JLM, 𝑎).

Following [1-2], we instead design a neural network
𝒩(𝑠): 𝑆 → ℝ|a|. 𝒩 works like a score function, producing a
|𝐴|-dimensional real-valued vector given a state 𝑠, and each
score in this vector is the score for the corresponding action.
If we denote 𝒩(𝑠)[𝑎] as the score in 𝒩(𝑠) corresponding to
action 𝑎, then 𝑄(𝑠, 𝑎) is implicitly modelled as

𝑄(𝑠, 𝑎) = 𝒩(𝑠)[𝑎] (5)

The benefit of such 𝒩 is that it generates all scores in one
forward pass, and then max

G
𝑄(𝑠JLM, 𝑎) = max𝒩(𝑠). We

will implement 𝒩 as a feed-forward network in the next
section.

Experience replay. The above design is observed to have
serious stability issues, as shown later in Fig 2, if we always
train (4) using the latest state transition. A technique called
experience replay described in [3] is adopted by [1-2] to
improve learning stability. It simply uses a list called replay
memory to preserve a fixed number of recent historical state
transitions (e.g. 10000 historical transitions, may come from
multiple episodes). Every time we randomly sample a
number of state transitions from the replay memory, pass
them as a batch into the neural network for training.

Remarks. This also improves training efficiency in
practice. Training a model using batch data is much
faster than one-by-one training when using a modern
deep learning tool like Pytorch or Tensorflow.

Exploration-exploitation trade-off. Q-learning needs to
consider the exploration–exploitation tradeoff like other
reinforcement learning algorithms. One way for this trade-
off is to look at the term “max

G
𝑄(𝑠JLM, 𝑎)” in (2) and (4). On

one hand we need to explore the environment to get a more
complete picture of transition and outcomes, which means
we could choose some random action rather than the optimal
action; on the other hand, we should always execute the
current optimal action in order to effectively train the agent.

We use a mixed strategy. Define a trade-off parameter
𝜖 ∈ [0,1]. The agent has probability 𝜖 to randomly choose an
action for the loss (4), rather than going for the optimal
action. In addition, we also dynamically change 𝜖 overtime.

• When training beings, the Q-function is not trained
enough to make good prediction. In this case, going
for the optimal action is not useful. Therefore, we
should have larger 𝜖 at the early stage.

• As the training goes on, the Q-function gains more
predictive power, and we should gradually have
more trust in its predicted utilities. Therefore, 𝜖
should decrease overtime.

To achieve above heuristics, we use three parameters 𝜖bcdec,
𝜖fgh and 𝜖ijkdl, and in the range of [0,1]. Let 𝜖J be the value
of 𝜖 for the 𝑡th state transition, then 𝜖M = 𝜖bcdec , and 𝜖J =
max7𝜖fgh, 𝜖ijkdlJmM 𝜖M8; that is, 𝜖J is decreased by a factor of
𝜖ijkdl after every state transition.
Learning rate. In deep Q-Learning, scheme similar to (3) is
implemented by the optimizer, and our learning rate 𝛼 is the
learning rate of the optimizer.
Complete algortihm. Based on all previous discussion, our
Q-learning algorithm have the following parameters: 1) the
discount factor 𝛾; 2) the learning rate 𝛼; 3) the exploration-
exploitation trade-off parameters 𝜖bcdec, 𝜖fgh, 𝜖ijkdl ; 4) the

3

replay memory size, and the replay memory sample size for
every state transition.

4. THE FEED FORWARD NETWORK

The previous section established the deep Q-learning
framework. In this project, we try a feed-forward network
(FFW) as the 𝒩 in (5).

Remarks. FFW is one simplest type of neural networks.
We make this choice because this lunar-lander problem
is relatively simpler in comparison to other problems the
deep learning approach usually target in practice (e.g.
computer vision, NLP, etc.). By Occam’s razor, its
simplicity matches the simplicity of FFW.
An FFW is a composition of multiple “layers” of linear

or non-linear functions [4], and an FFW with 𝐻 hidden
layers can be written as the following, where the symbol “∘”
denotes a function composition,

FFW = 𝑓ghstc ∘ (𝑓M ∘ 𝑎M) ∘ … ∘ (𝑓v ∘ 𝑎v) ∘ 𝑓wtcstc (6)

Here the input layer 𝑓ghstc takes the input state vector (in our
problem the 8-dimensional vector as in (1)) and generates a
hidden state vector of dimension 𝑛M . A hidden layer 𝑓y ∘
𝑎y, 𝑖 = 1,… ,𝐻 consists of a transformation 𝑓y and an
activation function 𝑎y; every hidden layer takes a vector of
dimension 𝑛y as its input, and we say 𝑓y has 𝑛y hidden units.
If 𝑓y is a linear function or an affine function (linear plus bias)
then we say 𝑓y is a linear layer. For 𝑖 ≤ 𝐻 − 1, the hidden
layer 𝑓y produces a vector of dimension 𝑛yLM for the next
hidden layer; for 𝑖 = 𝐻 the hidden layer produces a vector
for the output layer 𝑓wtcstc , and 𝑓wtcstc generates a final
state vector (in our case a 4-dimensional score vector for
each candidate action). Usually 𝑓ghstc, 𝑓M, … , 𝑓v, 𝑓wtcstc have
learnable parameters. Also note if 𝑓y takes an 𝑛g dimensional
vector as its input, then we can say this hidden layer has 𝑛y
hidden units. After defining the network as in (6), we also

need to define a loss function (in our case (4)) and then use
optimization to learn those learnable parameters.

For our problem, we use an FFW with two linear hidden
layers of units 256 and 128 by extensive experiments (see
later Experiment 4). Let the activation functions be rectifiers
𝑎y(𝐱) = relu(𝐱) = max(0, 𝐱) (element-wisely set negative
values as zero), and let 𝑓wtcstc be the identity function, then
𝒩(𝑠) ≔ FFW�thdem�dhije(𝑠)
= 𝐀^relu7𝐀Mrelu7𝐀ghstc𝑠 + 𝐛ghstc8 + 𝐛M8 + 𝐛^ (7)

where 𝐀ghstc is a 256 × 8 matrix, 𝐀M is a 256 × 128 matrix,
𝐀^ is a 128 × 4 matrix, and 𝐛ghstc, 𝐛M, 𝐛^ are 256/128/4
dimensional bias vectors.

5. EXPERIMENTS
Overview: We implemented the Algorithm 1 in Sec. 3 in
Python 3 with a PyTorch based FFW. We first need to select
a proper FFW to implement the Q-function, e.g. how many
hidden layers, and how many units for each layer. The we
will tune the hyperparameters to stretch the model
performance as much as possible. Every training is using
2000 episodes. After a model is trained, it will be tested by
ten trials of 100 episodes, i.e. 1000 test episodes in total.

Difficulty. An exhaustive grid search for parameter
tuning is infeasible because we have multiple
hyperparameters in Algorithm 1, and training a neural
network is time consuming.
Solution. Use the heuristics in Sec 2 and 3, e.g. 𝛾 should
be near 1, more exploration when training begins, etc.
Also use a medium-sized network to preliminarily test
some guesses of parameters without obvious heuristics,
like learning rate 𝛼 . After all, we choose our initial
parameters as 𝛾 = 0.99, α = 10m� , and 𝜖bcdec = 1.0 ,
𝜖ijkdl = 0.998, 𝜖fgh = 0. We choose replay memory of
size 65536, and a sample size of 32.
During parameter tuning, each time we only vary one
parameter with other parameters fixed to see the effect.
The tuning results turn out very near our initial
parameters. We discovered potential competitive or
better options 𝜖bcdec = 0.5 and 𝜖ijkdl = 0.99.

Experiment 1: network size selection & effectiveness of
experience replay. We tested seven 2-layer networks with
32/16, 64/32, 96/48, 128/64, 192/96, 256/128, 512/256
hidden units, and three 3-layer networks with 128/64/32,
256/128/64 and 512/256/128 hidden units. All layers have
RELU as the activation excluding the last layer. We did 6
times of trainings of 2000 episodes (exception: 512/256 and
512/256/128 trained with extra 500 episodes), and ten 100-
episodes tests for each trained model (i.e. 1000 episodes for
each trained model). The parameters are those recommended
in above overview. Our best models include a 256/128
model achieving mean test reward of 283, whose per-episode
rewards in both training and test, and mean rewards in
training are shown in Fig 1. A 512-256 network also achieves
a mean test reward of 284. However, we decide to choose the
256/128 model for this project because it uses less

4

computation time. In addition, we disable the experience
replay of the best-performing 256/128 model and did another
6 times of train/test for comparison. Results are shown in Fig
2, which confirms the instability issue discussed in Ssec 3.

Fig 1. Best result. Illustrates the reward overtime for our best
performing FFW-Based Q-Learning of 256/128 hidden unites.
Grey line: per-episode rewards; red line: 100-episode mean
training rewards; blue line (top axis): per-episode reward during
one trial. The oscillation of per-episode training reward (grey line)
is normal and caused by the random sample and the stochastic
optimization. Overall, the 100-episode mean training reward
steadily grows, and the test reward consistently stays above 200.

Fig 2. No experience replay. The same model configuration as
Fig 1 with experience replay disabled: model is always trained by
the last 32 state transitions rather than sample 32 state transitions
from the replay memory. Instability is obvious in both training
and test. Performance is also much worse than Fig 1.

To have a more comprehensive comparison, we
recorded the mean rewards of the last 100 episodes in
training, and the mean rewards of all 1000 test episodes for
each trained model. The mean rewards for both training and
test for all networks are illustrated by box plots in Fig 3. The
advantage of larger hidden layers is clear, but it is a
surprise that a deeper 3-layer network performs worse and
more unstable (higher mean-reward variance) than their
corresponding 2-layer networks. A 512/256 generally
network performs at the same level as a 256/128 network but
need more computing time. This figure provides strong
empirical support for our choice of the 256/128 network for
this project.

Experiment 2: The discount factor 𝛾 tuning is shown in
Fig 4. We trained and tested twice for each 𝛾 = 0.87, 0.93,
0.96, 0.99, 0.995 and , 0.999 and choose the better result
for comparison. As explained before, since we have an
ultimate goal of successful landing, intuitively 𝛾 should be
large enough for the Q-learning to consider cumulative
reward for a long future. We see 𝛾 = 0.99, 0.995 have good
performance, but 𝛾 ≤ 0.96 is not working. However, an
extreme value like 𝛾 = 0.999 also does not work, meaning

it is still necessary for the model to consider immediate
reward.

Fig 3. Network size selection. Each training has 2000 episodes
and each test is ten times of 100 episodes. Repeat training/test six
times for each size configuration. Record the mean rewards for the
last 100 episodes in training and the mean reward of all test
episodes. Plot these mean rewards as box plots showing the
median, the quartiles, the max/min and outliers (circles in the plot)
of these mean rewards. One extra experiment of 256/128 model
without experience replay is included, and its inferior performance
is again obvious, consistent with Fig 2.

Fig 4. Parameter tuning for 𝜸. (a) 100-episode mean reward
trend over time; (b) train/test mean reward for different 𝜸s; (c) box
plot for test rewards for each 𝜸. Based on the results, 𝜸 = 𝟎. 𝟗𝟗 is
best, and 𝜸 ∈ (𝟎. 𝟗𝟗, 𝟎. 𝟗𝟗𝟓) should be good.

Experiment 3: Tuning the exploration-exploitation trade-
off parameters 𝜖bcdec, 𝜖fgh, 𝜖ijkdl , introduced by the
dynamic strategy of adjusting the trade-off in Sec 3. We
discover the model, for this particular lunar-lander
environment, is less sensitive to the trade-off than expected
if trained by sufficiently many episodes. This is probably due
to that LunarLander-v2 is not a complicated environment.

5

Nonetheless, the experiments also indicate certain level of
exploration can make a faster learning.

𝜖bcdec is the initial trade-off as well as the maximum
probability the model may explore a non-optimal action. We
find from Fig 5 that even 𝜖bcdec = 0.01 leads to a good
performance after 2000 episodes; however, the learning is
slower and less stable. 𝜖bcdec = 0.5 seems to be a good
option, fattest learning with less outliers, as shown in Fig 5
(a)(c), even though 𝜖bcdec = 1.0 has best mean reward.

Fig 5. Parameter tuning for 𝜖bcdec.

The situation for 𝜖ijkdl is similar. 𝜖ijkdl = 0.9 will
effectively disable the exploration after 100 episodes, and the
learning is slower and less stable. A higher 𝜖ijkdl means
less decrease of 𝜖 overtime and thus encourages exploration,
resulting in a faster learning. Based on the results, 𝜖ijkdl =
0.99 could be a better choice than the initial guess of 0.998,
faster training with less test outliers.

Fig 6. Parameter tuning for 𝜖ijkdl.

𝜖fgh determines how much chance to explore at a later
stage of the training, when the model is growing stronger in
evaluation. Intuitively, 𝜖fgh should not be large because, as
randomness at a later stage of training makes less sense.
Results in Fig 7 confirms this heuristic, with 𝜖fgh = 0
clearly has the best performance.

Fig 7. Parameter tuning for 𝜖jhi.

Experiment 4: Tuning the learning rate 𝛼. Our models is
sensitive to the learning rate, with a small working range
[5 × 10m�, 5 × 10m�].

Fig 8. Parameter tuning for learning rate 𝛼.

Future work on replay memory & sample size tuning. We
experimented other options of replay memory size and replay
sample size, and found the memory size should not be too
short (no much difference from not using replay memory), or
too high (like sampling the whole history, introducing much
noise). Sample size does not have strong effect as long as it
is not too small, because more samples is just like more
training. Due to time and space limit, we are unable to
present the full results, and this can be a future work.
REFERENCES

1. Mnih, Volodymyr, et al. "Human-level control through
deep reinforcement learning." Nature 518 (2015): 529.

2. Mnih, Volodymyr, et al. "Playing atari with deep
reinforcement learning." rXiv:1312.5602 (2013).

3. Lin, Long-Ji. Reinforcement learning for robots using
neural networks. No. CMU-CS-93-103.d, 1993.

4. Goodfellow, Ian, Yoshua Bengio, and Aaron
Courville. Deep learning. MIT press, 2016.

View publication stats

https://www.researchgate.net/publication/333145451

