
Cheat sheet
for

aitk.robots
https://artificialintelligencetoolkit.

github.io/aitk.robots/

Features
● A lightweight Python mobile robotics simulator
● Explore wheeled robots with range, camera, light, and smell sensors
● Design worlds with walls, bulbs, and food
● Suitable for the classroom and research
● Creates reproducible experiments
● Easy to integrate with existing machine learning and AI systems

Creating Worlds and Robots

from aitk.robots import World, Scribbler
world = World(width=200,height=150)
add_wall(color, x1, y1, x2, y2)
world.add_wall("blue",0,35,25,30,box=False) # angled wall
world.add_wall("cyan",80,50,90,150) # box is default
world.add_wall("orange",90,50,110,60)
add_bulb(color, x, y, z, brightness)
world.add_bulb("yellow",100,70,0,75.0)
add_food(x, y, pixel_std_dev), by default is white
world.add_food(10, 10, 50)
bot1 = Scribbler(x=150,y=100,a=35)# red is default color
bot2 = Scribbler(x=40,y=130,a=75,color="pink")
bot3 = Scribbler(x=60,y=30,a=0,color="yellow")
world.add_robot(bot1)
world.add_robot(bot2)
world.add_robot(bot3)

A world is a rectangular area with a given width and height
that may contain walls, bulbs, food, and robots (see above)

● Items in the world are given coordinates, where the
origin is defined to be the upper-left hand corner

● Angles are given in degrees, where 0 is east, and
angles increase in the counterclockwise direction

A robot is defined by a bounding box, with the origin at the
center. Sensors are placed relative to this bounding box.
RangeSensors return distances in cm and may have a width
LightSensors return brightness [0,1]; light is blocked by walls
SmellSensors return reading [0,1]; odor spreads around walls
Cameras return images that include walls, bulbs, food, and robots

from aitk.robots import RangeSensor, LightSensor, SmellSensor, Camera
red robot has two range aensors with width like InfraRed sensors
bot1.add_device(RangeSensor(position=(6,-6),width=57.3,max=20,name="left-ir"))
bot1.add_device(RangeSensor(position=(6,6),width=57.3,max=20,name="right-ir"))

pink robot has semll sensors and a camera
bot2.add_device(SmellSensor(position=(6,-6),name="left-smell"))
bot2.add_device(SmellSensor(position=(6,6),name="right-smell"))
bot2.add_device(Camera())
robots can also maintain state information, for example a timer
could be used to ensure that a particular action is repeated N times
bot2.state["timer"] = 0

yellow robot has two light sensors
bot3.add_device(LightSensor(position=(6,-6),name="left-light"))
bot3.add_device(LightSensor(position=(6,6),name="right-light"))

Equipping Robots with Sensors

Robot Movement
Set targets for translation and rotation:
- Use range [-1,1]
- Positive translation is forward, negative is back
- Positive rotation is left, negative is right
 robot.move(translation, rotation)
Set velocity targets individually:
 robot.translate(translation)
 robot.rotate(rotation)
Reverse the current targets:
 robot.reverse()
Halt the robot:
 robot.stop()
Or set motor speeds for wheels in range [-1,1]:
 robot.motors(left_spd, right_spd)

Accessing Sensors & State
Access sensors by name (string) or by index
(integer) in the order that they were added:
 robot[sensor_name]
 robot[sensor_index]
Get RangeSensor data:
 robot[item].get_distance()
Get LightSensor data:
 robot[item].get_brightness()
Get SmellSensor data:
 robot[item].get_reading()
Get Camera data:
 robot[item].get_image()
Access robot state information by key (string):
 robot.state[key]

A robot controller is a function that:
- Takes a single parameter: either world or robot
- Returns True to end simulation immediately
- Checks state and sensors to choose move
- Does not use loops
The simulation repeatedly executes the
controller multiple times per second.

def controller(robot):
 """Wander and avoid obstacles"""
 if robot.stalled:
 return True
 v = robot["left-ir"].get_max()
 if robot["left-ir"].get_distance()<v:
 robot.move(0.1, -0.3)
 elif robot["right-ir"].get_distance()<v:
 robot.move(0.1, 0.3)
 else:
 robot.move(1, random()-0.5)

Robot Controllers Running the Simulator
There are three ways to run the simulator.
1. Indefinitely:
 world.run(function, …)
2. For a time limit:
 world.seconds(seconds, function, …)
3. For a step limit:
 world.steps(steps, function, …)
You must specify either a single function that
takes a world, or a list of functions that each
take a robot.

Running Experiments
After a run concludes you may reset the robots
and world to their saved configuration:
 world.reset()
Set a new random seed for the simulator:
 world.set_seed(seed)
Set a new random position for a robot:
 robot.set_random_pose()
Record a run:
 recorder = world.record()
Execute the simulator as fast as possible:
 world.run(function, real_time=False)
Watch the recorded experiment:
 recorder.watch()
Save the recorded experiment as an animated
GIF or mp4:
 recorder.save_as(filename)

Other Robot Data & Methods
Determine velocity or whether stalled:
 robot.get_velocity()
 robot.stalled #True when stuck
When food is close, the robot may eat it:
 robot.eat() #returns True when eaten
Create a speech bubble:
 robot.speak(string)
Position the robot in world or find its position:
 robot.set_pose(x, y, a)
 robot.get_pose() #returns (x,y,a)

