BEYOND CLASSICAL
SEARCH

In which we relax the simplifying assumptions of the previous chapter, thereby
getting closer to the real world.

Chapter 3 addressed a single category of problems: observable, deterministic, known envi-
ronments where the solution is a sequence of actions. In this chapter, we ook at what happens
when these assumptions are relaxed. We begin with a fairly simple case: Sections 4.1 and 4.2
cover algorithms that perform purely local search in the state space, evaluating and modify-
ing one or more current states rather than systematically exploring paths from an initial state.
These algorithms are suitable for problems in which all that matters is the solution state, not
the path cost to reach it. The family of local search algorithms includes methods inspired by
statistical physics (simulated annealing) and evolutionary biology (genetic algorithms).

Then, in Sections 4.3-4.4, we examine what happens when we relax the assumptions
of determinism and observability. The key idea is that if an agent cannot predict exactly what
percept it will receive, then it will need to consider what to do under each contingency that
its percepts may reveal. With partial observability, the agent will also need to keep track of
the states it might be in.

Finally, Section 4.5 investigates online search, in which the agent is faced with a state
space that is initially unknown and must be explored.

4.1 LoCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS

The search algorithms that we have seen so far are designed to explore search spaces sys-
tematically. This systematicity is achieved by keeping one or more paths in memory and by
recording which alternatives have been explored at each point along the path. When a goal is
found, the path to that goal also constitutes a solution to the problem. In many problems, how-
ever, the path to the goal is irrelevant. For example, in the 8-queens problem (see page 71),
what matters is the final configuration of queens, not the order in which they are added. The
same general property holds for many important applications such as integrated-circuit de-
sign, factory-floor layout, job-shop scheduling, automatic programming, telecommunications
network optimization, vehicle routing, and portfolio management.

120

Section 4.1.

Local Search Algorithms and Optimization Problems 121

LOCAL SEARCH

CURRENT NODE

OPTIMIZATION
PROBLEM
OBJECTIVE
FUNCTION

STATE-SPACE
LANDSCAPE

GLOBAL MINIMUM
GLOBAL MAXIMUM

If the path to the goal does not matter, we might consider a different class of algo-
rithms, ones that do not worry about paths at all. Local search algorithms operate using
a single current node (rather than multiple paths) and generally move only to neighbors
of that node. Typically, the paths followed by the search are not retained. Although local
search algorithms are not systematic, they have two key advantages: (1) they use very little
memory—usually a constant amount; and (2) they can often find reasonable solutions in large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search algorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objective
function. Many optimization problems do not fit the “‘standard” search model introduced in
Chapter 3. For example, nature provides an objective function—reproductive fitness—that
Darwinian evolution could be seen as attempting to optimize, but there is no “goal test” and
no “path cost” for this problem.

To understand local search, we find it useful to consider the state-space landscape (as
in Figure 4.1). A landscape has both “location” (defined by the state) and “elevation” (defined
by the value of the heuristic cost function or objective function). If elevation corresponds to
cost, then the aim is to find the lowest valley—a global minimum,; if elevation corresponds
to an objective function, then the aim is to find the highest peak—a global maximum. (You
can convert from one to the other just by inserting a minus sign.) Local search algorithms
explore this landscape. A complete local search algorithm always finds a goal if one exists;
an optimal algorithm always finds a global minimum/maximum.

objective function

1

o global maximum

shoulder

local maximum

“flat” local maximum

— state space

current
state

Figure4.l A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum. Hill-climbing search modifies
the current state to try to improve it, as shown by the arrow. The various topographic features
are defined in the text.

122

Chapter 4. Beyond Classical Search

HILL CLIMBING

STEEPEST ASCENT

GREEDY LOCAL
SEARCH

LOCAL MAXIMUM

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «— MAKE-NODE(problem INITIAL-STATE)

loop do
neighbor «— a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE

current «— neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor; in this version, that
means the neighbor with the highest VALUE, but if a heuristic cost estimate h is used, we

would find the neighbor with the lowest A. J

4.1.1 Hill-climbing search

The hill-climbing search algorithm (steepest-ascent version) is shown in Figure 4.2. 1t is
simply a loop that continually moves in the direction of increasing value—that is, uphill. It
terminates when it reaches a “peak” where no neighbor has a higher value. The algorithm
does not maintain a search tree, so the data structure for the current node need only record
the state and the value of the objective function. Hill climbing does not Iook ahead beyond
the immediate neighbors of the current state. This resembles trying to find the top of Mount
Everest in a thick fog while suffering from amnesia.

To illustrate hill climbing, we will use the 8-queens problem introduced on page 71.
Local search algorithms typically use a complete-state formulation, where each state has
8 queens on the board, one per column. The successors of a state are all possible states
generated by moving a single queen to another square in the same column (so each state has
8 x 7 =56 successors). The heuristic cost function A is the number of pairs of queens that
are attacking each other, either directly or indirectly. The global minimum of this function
is zero, which occurs only at perfect solutions. Figure 4.3(a) shows a state with A =17. The
figure also shows the values of all its successors, with the best successors having h=12.
Hill-climbing algorithms typically choose randomly among the set of best successors if there
is more than one.

Hill climbing is sometimes called greedy local search because it grabs a good neighbor
state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
often makes rapid progress toward a solution because it 1s usually quite easy to improve a bad
state. For example, from the state in Figure 4.3(a), it takes just five steps to reach the state
in Figure 4.3(b), which has h =1 and is very nearly a solution. Unfortunately, hill climbing
often gets stuck for the following reasons:

o Local maxima: a local maximum is a peak that is higher than each of its neighboring
states but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of a local maximum will be drawn upward toward the peak but will then be
stuck with nowhere else to go. Figure 4.1 illustrates the problem schematically. More

Section 4.1.

Local Search Algorithms and Optimization Problems 123

RIDGE

PLATEAU
SHOULDER

SIDEWAYS MOVE

-

p—
=

18 ([i8]] 14 13
16 15 | 8| 14 (B 16

o
&
ja—y
(=]
ju—y
wn

—

> =
[u—y
SN

(a) (b)

Figure 4.3 (a) An 8-queens state with heuristic cost estimate h = 17, showing the value of
h for each possible successor obtained by moving a queen within its column. The best moves
are marked. (b) A local minimum in the 8-queens state space; the state has h =1 but every

successor has a higher cost. J

concretely, the state in Figure 4.3(b) is a local maximum (i.e., a local minimum for the
cost h); every move of a single queen makes the situation worse.

o Ridges: a ridge is shown in Figure 4.4, Ridges result in a sequence of local maxima
that is very difficult for greedy algorithms to navigate.

e Plateaux: a plateau is a flat area of the state-space landscape. It can be a flat local
maximum, from which no uphill exit exists, or a shoulder, from which progress is
possible. (See Figure 4.1.) A hill-climbing search might get lost on the plateau.

In each case, the algorithm reaches a point at which no progress is being made. Starting from
arandomly generated 8-queens state, steepest-ascent hill climbing gets stuck 86% of the time,
solving only 14% of problem instances. It works quickly, taking just 4 steps on average when
it succeeds and 3 when it gets stuck—not bad for a state space with 8 ~ 17 million states.

The algorithm in Figure 4.2 halts if it reaches a plateau where the best successor has
the same value as the current state. Might it not be a good idea to keep going—to allow a
sideways move in the hope that the plateau is really a shoulder, as shown in Figure 4.1? The
answer is usually yes, but we must take care. If we always allow sideways moves when there
are no uphill moves, an infinite loop will occur whenever the algorithm reaches a flat local
maximum that is not a shoulder. One common solution is to put a limit on the number of con-
secutive sideways moves allowed. For example, we could allow up to, say, 100 consecutive
sideways moves in the 8-queens problem. This raises the percentage of problem instances
solved by hill climbing from 14% to 94%. Success comes at a cost: the algorithm averages
roughly 21 steps for each successful instance and 64 for each failure.

124

Chapter 4. Beyond Classical Search

STOCHASTIC HILL
CLIMBING

FIRST-CHOICE HILL

CLIMBING

RANDOM-RESTART
HILL CLIMBING

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local
maxima that are not directly connected to each other. From each local maximum, all the

available actions point downhill.

Many vadants of hill climbing have been invented. Stochastic hill climbing chooses at
random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes, it finds better solutions. First-choice hill climbing implements stochastic
hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.

The hill-climbing algorithms described so far are incomplete—they often fail to find
a goal when one exists because they can get stuck on local maxima. Random-restart hill
climbing adopts the well-known adage, “If at first you don’t succeed, try, try again.” It con-
ducts a series of hill-climbing searches from randomly generated initial states,' until a goal
is found. It is trivially complete with probability approaching 1, because it will eventually
generate a goal state as the initial state. If each hill-climbing search has a probability p of
success, then the expected number of restarts required is 1/p. For 8-queens instances with
no sideways moves allowed, p ~ (.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus
(1—p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves,
1/0.94 == 1.06 iterations are needed on average and (1 x 21) + (0.06/0.94) x 64 ~ 25 steps.
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute.?

1 Generating a random state from an implicitly specified state space can be a hard problem in itself.

2 Luby eral (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways moves is an example of this idea.

F

Section 4.1.

Local Search Algorithms and Optimization Problems 125

SIMULATED
ANNEALING

GRADIENT DESCENT

LOCAL BEAM
SEARCH

The success of hill climbing depends very much on the shape of the state-space land-
scape: if there are few local maxima and plateaux, random-restart hill climbing will find a
good solution very quickly. On the other hand, many real problems have a landscape that
looks more like a widely scattered family of balding porcupines on a flat floor, with miniature
porcupines living on the tip of each porcupine needle, ad infinitum. NP-hard problems typi-
cally have an exponential number of local maxima to get stuck on. Despite this, a reasonably
good local maximum can often be found after a smail number of restarts.

4.1.2 Simulated annealing

A hill-climbing algorithm that never makes “downhill” moves toward states with lower value
(or higher cost) is guaranteed to be incomplete, because it can get stuck on a local maxi-
mum. In contrast, a purely random walk—that is, moving to a successor chosen uniformly
at random from the set of successors—is complete but extremely inefficient. Therefore, it
seems reasonable to try to combine hill climbing with a random walk in some way that yields
both efficiency and completeness. Simulated annealing is such an algorithm. In metallurgy,
annealing is the process used to temper or harden metals and glass by heating them to a
high temperature and then gradually cooling them, thus allowing the material to reach a low-
energy crystalline state. To explain simulated annealing, we switch our point of view from
hill climbing to gradient descent (i.e., minimizing cost) and imagine the task of getting a
ping-pong ball into the deepest crevice in a bumpy surface. If we just let the ball roll, it will
come to rest at a local minimum. If we shake the surface, we can bounce the ball out of the
local minimum. The trick is to shake just hard enough to bounce the ball out of local min-
ima but not hard enough to dislodge it from the global minimum. The simulated-annealing
solution is to start by shaking hard (i.e., at a high temperature) and then gradually reduce the
intensity of the shaking (i.e., lower the temperature).

The innermost loop of the simulated-annealing algorithm (Figure 4.5) is quite similar to
hill climbing. Instead of picking the best move, however, it picks a random move, If the move
improves the situation, it is always accepted. Otherwise, the algorithm accepts the move with
some probability less than 1. The probability decreases exponentially with the “badness” of
the move—the amount AE by which the evaluation is worsened. The probability also de-
creases as the “temperature” 7' goes down: “bad” moves are more likely to be allowed at the
start when 7' is high, and they become more unlikely as 7" decreases. If the schedule lowers
T slowly enough, the algorithm will find a global optimum with probability approaching 1.

Simulated annealing was first used extensively to solve VLSI layout problems in the
early 1980s. It has been applied widely to factory scheduling and other large-scale optimiza-
tion tasks. In Exercise 4.4, you are asked to compare its performance to that of random-restart
hill climbing on the 8-queens puzzle.

4.1.3 Local beam search

Keeping just one node in memory might seem to be an extreme reaction to the problem of
memory limitations. The local beam search algorithm® keeps track of k states rather than

3 Local beam search is an adaptation of beam search, which is a path-based algorithm.

126

Chapter 4. Beyond Classical Search

s

STOCHASTIC BEAM
SEARCH

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current — MAKE-NODE(problem . INITIAL-STATE)
fort =1toocodo

T — schedule(t)

if T = 0 then return current

next — a randomly selected successor of current

AF « next.VALUE — current. VALUE

if AE > 0then current «— next

else current — next only with probability e

AE/T

Figure4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. Downhill moves are accepted readily early in the anneal-
ing schedule and then less often as time goes on. The schedule input determines the value of

the temperature 1" as a function of time.

L

just one. It begins with k randomly generated states. At each step, all the successors of all &
states are generated. If any one is a goal, the algorithm halts. Otherwise, it selects the & best
successors from the complete list and repeats.

At first sight, a local beam search with k& states might seem to be nothing more than
running k random restarts in parallel instead of in sequence. In fact, the two algorithms
are quite different. In a random-restart search, each search process runs independently of
the others. In a local beam search, useful information is passed among the parallel search
threads. In effect, the states that generate the best successors say to the others, “Come over
here, the grass is greener!” The algorithm quickly abandons unfruitful searches and moves
its resources to where the most progress is being made.

In its simplest form, local beam search can suffer from a lack of diversity among the
k states—they can quickly become concentrated in a small region of the state space, making
the search little more than an expensive version of hill climbing. A variant called stochastic
beam search, analogous to stochastic hill climbing, helps alleviate this problem. Instead
of cheoosing the best k from the the pool of candidate successors, stochastic beam search
chooses k successors at random, with the probability of choosing a given successor being
an increasing function of its value. Stochastic beam search bears some resemblance to the
process of natural selection, whereby the “successors” (offspring) of a “state” (organism)
populate the next generation according to its “value” (fitness).

