SOLVING PROBLEMS BY |
SEARCHING |

In which we see how an agent can find a sequence of actions that achieves its
goals when no single action will do.

The simplest agents discussed in Chapter 2 were the reflex agents, which base their actions on
a direct mapping from states to actions. Such agents cannot operate well in environments for
which this mapping would be too large to store and would take too long to learn. Goal-based
agents, on the other hand, consider future actions and the desirability of their outcomes.
AAOBLEM-SOLVING This chapter describes one kind of goal-based agent called a problem-solving agent.
Problem-solving agents use atomic representations, as described in Section 2.4.7—that is,
states of the world are considered as wholes, with no internal structure visible to the problem-
solving algorithms. Goal-based agents that use more advanced factored or structured rep-
resentations are usually called planning agents and are discussed in Chapters 7 and 10.

Our discussion of problem solving begins with precise definitions of problems and their
solutions and give several examples to illustrate these definitions. We then describe several
general-purpose search algorithms that can be used to solve these problems. We will see
several uninformed search algorithms—algorithms that are given no information about the
problem other than its definition. Although some of these algorithms can solve any solvable
problem, none of them can do so efficiently. Informed search algorithms, on the other hand,
can do quite well given some guidance on where to look for solutions.

In this chapter, we limit ourselves to the simplest kind of task environment, for which
the solution to a problem is always a fixed sequence of actions. The more general case—where
the agent’s future actions may vary depending on future percepts—is handled in Chapter 4.

This chapter uses the concepts of asymptotic complexity (that is, O() notation) and
NP-completeness. Readers unfamiliar with these concepts should consult Appendix A.

3.1 PROBLEM-SOLVING AGENTS

Intelligent agents are supposed to maximize their performance measure. As we mentioned
in Chapter 2, achieving this is sometimes simplified if the agent can adopt a goal and aim at
satisfying it. Let us first look at why and how an agent might do this.

64

SeC[iOIl 3.1.

GOAL FORMULATION

PROBLEM
FORMULATION

Problem-Solving Agents 65

Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. The agent’s
performance measure contains many factors: it wants to improve its suntan, improve its Ro-
manian, take in the sights, enjoy the nightlife (such as it is), avoid hangovers, and so on. The
decision problem is a complex one involving many tradeoffs and careful reading of guide-
books. Now, suppose the agent has a nonrefundable ticket to fly out of Bucharest the follow-
ing day. In that case, it makes sense for the agent to adopt the goal of getting to Bucharest.
Courses of action that don’t reach Bucharest on time can be rejected without further consid-
eration and the agent’s decision problem is greatly simplified. Goals help organize behavior
by limiting the objectives that the agent is trying to achieve and hence the actions it needs
to consider. Goal formulation, based on the current situation and the agent’s performance
measure, is the first step in problem solving.

We will consider a goal to be a set of world states—exactly those states in which the
goal is satisfied. The agent’s task is to find out how to act, now and in the future, so that it
reaches a goal state. Before it can do this, it needs to decide (or we need to decide on its
behalf) what sorts of actions and states it should consider. If it were to consider actions at
the level of “move the left foot forward an inch” or “turn the steering wheel one degree left,”
the agent would probably never find its way out of the parking lot, let alone to Bucharest,
because at that level of detail there is too much uncertainty in the world and there would be
too many steps in a solution. Problem formulation is the process of deciding what actions
and states to consider, given a goal. We discuss this process in more detail later. For now, let
us assume that the agent will consider actions at the level of driving from one major town to
another. Each state therefore corresponds to being in a particular town.

Our agent has now adopted the goal of driving to Bucharest and is considering where
to go from Arad. Three roads lead out of Arad, one toward Sibiu, one to Timisoara, and one
to Zerind. None of these achieves the goal, so unless the agent is familiar with the geography
of Romania, it will not know which road to follow.! In other words, the agent will not know
which of its possible actions is best, because it does not yet know enough about the state
that results from taking each action. If the agent has no additional information—i.e., if the
environment is unknown in the sense defined in Section 2.3—then it is has no choice but to
try one of the actions at random. This sad situation is discussed in Chapter 4.

But suppose the agent has a map of Romania. The point of a map is to provide the
agent with information about the states it might get itself into and the actions it can take. The
agent can use this information to consider subsequent stages of a hypothetical journey via
each of the three towns, trying to find a journey that eventually gets to Bucharest. Once it has
found a path on the map from Arad to Bucharest, it can achieve its goal by carrying out the
driving actions that correspond to the legs of the journey. In general, an agent with several
immediate options of unknown value can decide what to do by first examining future actions
that eventually lead to states of known value.

To be more specific about what we mean by “examining future actions,” we have to
be more specific about properties of the environment, as defined in Section 2.3. For now,

1 We are assuming that most readers are in the same position and can easily imagine themselves to be as clueless
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device.

T T ey e e ey e

e —
i ————es e

e ———

Y R

R e e s

e

ity S

T e S b S S N T

66

Chapter 3. Solving Problems by Searching

SEARCH
SOLUTION

EXECUTION

OPEN-LOOP

PROBLEM

INITIAL STATE

we assume that the environment is observable, so the agent always knows the current state.
For the agent driving in Romania, it’s reasonable to suppose that each city on the map has a
sign indicating its presence to arriving drivers. We also assume the environment is discrete,
so at any given state there are only finitely many actions to choose from. This is true for
navigating in Romania because each city is connected to a small number of other cities. We
will assume the environment is known, so the agent knows which states are reached by each
action. (Having an accurate map suffices to meet this condition for navigation problems.)
Finally, we assume that the environment is deterministic, so each action has exactly one
outcome. Under ideal conditions, this is true for the agent in Romania—it means that if it
chooses to drive from Arad to Sibiu, it does end up in Sibiu. Of course, conditions are not
always ideal, as we show in Chapter 4.

Under these assumptions, the solution to any problem is a fixed sequence of actions.
“Of course!” one might say, “What else could it be?” Well, in general it could be a branching
strategy that recommends different actions in the future depending on what percepts arrive.
For example, under less than ideal conditions, the agent might plan to drive from Arad to
Sibiu and then to Rimnicu Vilcea but may also need to have a contingency plan in case it
arrives by accident in Zerind instead of Sibiu. Fortunately, if the agent knows the initial state
and the environment is known and deterministic, it knows exactly where it will be after the
first action and what it will perceive. Since only one percept is possible after the first action,
the solution can specify only one possible second action, and so on.

The process of looking for a sequence of actions that reaches the goal is called search.
A search algorithm takes a problem as input and returns a solution in the form of an action
sequence. Once a solution is found, the actions it recommends can be carried out. This
is called the execution phase. Thus, we have a simple “formulate, search, execute” design
for the agent, as shown in Figure 3.1. After formulating a goal and a problem to solve,
the agent calls a search procedure to solve it. It then uses the solution to guide its actions,
doing whatever the solution recommends as the next thing to do—typically, the first action of
the sequence—and then removing that step from the sequence. Once the solution has been
executed, the agent will formulate a new goal.

Notice that while the agent is executing the solution sequence it ignores its percepts
when choosing an action because it knows in advance what they will be. An agent that
carries out its plans with its eyes closed, so to speak, must be quite certain of what is going
on. Control theorists call this an open-loop system, because ignoring the percepts breaks the
loop between agent and environment.

We first describe the process of problem formulation, and then devote the bulk of the
chapter to various algorithms for the SEARCH function. We do not discuss the workings of
the UPDATE-STATE and FORMULATE-GOAL functions further in this chapter.

3.1.1 Well-defined problems and solutions

A problem can be defined formally by five components:

¢ The initial state that the agent starts in. For example, the initial state for our agent in
Romania might be described as In(Arad).

Section 3.1. Problem-Solving Agents 67
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation
state «— UPDATE-STATE(state, percept)
if seq is empty then
goal — FORMULATE-GOAL(state)
problem — FORMULATE-PROBLEM(state, goal)
seq «— SEARCH(problem)
if seq = failure then return a null action
action «— FIRST(seq)
seq — REST(seq)
return action
Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem,
searches for a sequence of actions that would solve the problem, and then executes the actions
one at a time. When this is complete, it formulates another goal and starts over.
ACTIONS o A description of the possible actions available to the agent. Given a particular state s,
ACTIONS(s) returns the set of actions that can be executed in s. We say that each of
APPLICABLE these actions is applicable in s. For example, from the state In(Arad), the applicable
actions are { Go(Sibiu), Go(Timisoara), Go(Zerind)}.
e A description of what each action does; the formal name for this is the transition
TRANSITION MODEL model, specified by a function RESULT(s, @) that returns the state that results from
SUCCESSOR doing action a in state s. We also use the term successor to refer to any state reachable
from a given state by a single action.” For example, we have
RESULT(In(Arad), Go(Zerind)) = In{Zerind) .
STATE SPACE Together, the initial state, actions, and transition model implicitly define the state space
of the problem—the set of all states reachable from the initial state by any sequence
GRAPH of actions. The state space forms a directed network or graph in which the nodes
are states and the links between nodes are actions. (The map of Romania shown in
Figure 3.2 can be interpreted as a state-space graph if we view each road as standing
PATH for two driving actions, one in each direction.) A path in the state space 1s a sequence
of states connected by a sequence of actions.
GOAL TEST ¢ The goal test, which determines whether a given state is a goal state. Sometimes there

Is an explicit set of possible goal states, and the test simply checks whether the given
state is one of them. The agent’s goal in Romania is the singleton set { In{ Bucharest)}.

2 Many treatments of problem solving, including previous editions of this book, use a successor function, which
returns the set of all successors, instead of separate ACTIONS and RESULT functions. The successor function
makes it difficult to describe an agent that knows what actions it can try but not what they achieve. Also, note
some author use RESULT(a, $) instead of RESULT(s, @), and some use DO instead of RESULT.

68

Chapter 3. Solving Problems by Searching

PATH COST

STEP COST

OPTIAL SOLUTION

[] Oradea

Arad L]

118

(- Timisoara

Pitesti

L] Hirsova
Urziceni

75 86

Bucharest

Eforie

Craiova] Giurgiu

Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

e A path cost function that assigns a numeric cost to each path. The problem-solving
agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers, In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.> The step cost of taking action
a in state s to reach state s’ is denoted by ¢(s, a, s’). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.*

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal selution has the lowest path cost among all solutions.

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model!, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

|

Section 3.2.

Example Problems 69

ABSTRACTION

real thing. Compare the simple state description we have chosen, In{Arad), to an actual cross-
country trip, where the state of the world includes so many things: the traveling companions,
the current radio program, the scenery out of the window, the proximity of law enforcement
officers, the distance to the next rest stop, the condition of the road, the weather, and so on.
All these considerations are left out of our state descriptions because they are irrelevant to the
problem of finding a route to Bucharest. The process of removing detail from a representation
is called abstraction.

In addition to abstracting the state description, we must abstract the actions themselves.
A driving action has many effects. Besides changing the location of the vehicle and its oc-
cupants, it takes up time, consumes fuel, generates pollution, and changes the agent (as they
say, travel is broadening). Our formulation takes into account only the change in location.
Also, there are many actions that we omit altogether: turning on the radio, looking out of
the window, slowing down for law enforcement officers, and so on. And of course, we don’t
specify actions at the level of “turn steering wheel to the left by one degree.”

Can we be more precise about defining the appropriate level of abstraction? Think of the
abstract states and actions we have chosen as corresponding to large sets of detailed world
states and detailed action sequences. Now consider a solution to the abstract problem: for
example, the path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This abstract
solution corresponds to a large number of more detailed paths. For example, we could drive
with the radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of
the trip. The abstraction is valid if we can expand any abstract solution into a solution in the
more detailed world; a sufficient condition is that for every detailed state that is “in Arad,”
there is a detailed path to some state that is “in Sibiu,” and so on.> The abstraction is useful
if carrying out each of the actions in the solution is easier than the original problem; in this
case they are easy enough that they can be carried out without further search or planning by
an average driving agent. The choice of a good abstraction thus involves removing as much
detail as possible while retaining validity and ensuring that the abstract actions are easy to
carry out. Were it not for the ability to construct useful abstractions, intelligent agents would
be completely swamped by the real world.

3.2 EXAMPLE PROBLEMS

TOY PROBLEM

REAL-WORLD
PROBLEM

The problem-solving approach has been applied to a vast array of task environments. We
list some of the best known here, distinguishing between toy and real-world problems. A
toy problem is intended to illustrate or exercise various problem-solving methods. It can be
given a concise, exact description and hence is usable by different researchers to compare the
performance of algorithms. A real-world problem is one whose solutions people actually
care about. Such problems tend not to have a single agreed-upon description, but we can give
the general flavor of their formulations.

5 See Section 11.2 for a more complete set of definitions and algorithms.

=S mrrea

e ——

e

70 Chapter 3. Solving Problems by Searching

| LC?§Q R ?'%QQR
Q) %QDR Cf«f@ il E@DR

030
%%
3
3%
%%

3
3%

Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

o States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 x 2 = 8 possible world states. A larger environment with n locations has
n - 2™ states.

¢ Initial state: Any state can be designated as the initial state.

e Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

¢ Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

e Goal test: This checks whether all the squares are clean.
e Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

8-PUZZLE The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3 x 3 board with
eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

Section 3.2.

Example Problems 71

SLIDING-BLOCK
PUZZLES

8-QUEENS PROBLEM

7 2 4 1 2
T 6 3 ol 5
8 £ 1 6 7 8 ‘
Start State Goal State

Figure 3.4 A typical instance of the 8-puzzle.

o States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

¢ Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

¢ Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank i1s.

e Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

e Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.) »

o Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.)

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as
test problems for new search algorithms in Al This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2 =181, 440 reachable
states and is easily solved. The [5-puzzle (on a 4 x 4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 x 5 board) has around 10%5 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that
no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

S Sy e G LR el e

72 Chapter 3. Solving Problems by Searching

Figure 3.5 Almost a solution to the 8-queens problem. (Solution is left as an exercise.)

Although efficient special-purpose algorithms exist for this problem and for the whole
n-queens family, it remains a useful test problem for search algorithms. There are two main
B kinds of formulation. An incremental formulation involves operators that augment the state
description, starting with an empty state; for the 8-queens problem, this means that each
COMPLETESTE action adds a queen to the state. A complete-state formulation starts with all 8 queens on
the board and moves them around. In either case, the path cost is of no interest because only

the final state counts. The first incremental formulation one might try is the following:

e States: Any arrangement of 0 to 8 queens on the board is a state.
o Initial state: No queens on the board.
o Actions: Add a queen fo any empty square.
¢ Transition model: Returns the board with a queen added to the specified square.
e Goal test: § queens are on the board, none attacked.
In this formulation, we have 64 - 63--- 57 ~ 1.8 x 10** possible sequences to investigate. A
better formulation would prohibit placing a queen in any square that is already attacked:
e States: All possible arrangements of n queens (0 < n < 8), one per column in the
leftmost n columns, with no queen attacking another.
e Actions: Add a queen to any square in the leftmost empty column such that it is not
attacked by any other queen.
This formulation reduces the 8-queens state space from 1.8 x 10 to just 2,057, and solutions
are easy to find. On the other hand, for 100 queens the reduction is from roughly 104%° states
to about 10%2 states (Exercise 3.5)—a big improvement, but not enough to make the problem
tractable. Section 4.1 describes the complete-state formulation, and Chapter 6 gives a simple
algorithm that solves even the million-queens problem with ease.

Section 3.2.

Example Problems 73

ROUTE-FINDING
PROBLEM

Our final toy problem was devised by Donald Knuth (1964) and illustrates how infinite
state spaces can arise. Knuth conjectured that, starting with the number 4, a sequence of fac-
torial, square root, and floor operations will reach any desired positive integer. For example,
we can reach 5 from 4 as follows:

[(4!)!J ~5.
The problem definition is very simple:

e States: Positive numbers.

o Initial state: 4.

o Actions: Apply factorial, square root, or floor operation (factorial for integers only).
o Transition model: As given by the mathematical definitions of the operations.

Goal test: State is the desired positive integer.

To our knowledge there is no bound on how large a number might be constructed in the pro-
cess of reaching a given target—for example, the number 620,448,401,733,239,439,360,000
is generated in the expression for 5—so the state space for this problem is infinite. Such
state spaces arise frequently in tasks involving the generation of mathematical expressions,
circuits, proofs, programs, and other recursively defined objects.

3.2.2 Real-world problems

We have already seen how the route-finding problem is defined in terms of specified loca-
tions and transitions along links between them. Route-finding algorithms are used in a variety
of applications. Some, such as Web sites and in-car systems that provide driving directions,
are relatively straightforward extensions of the Romania example. Others, such as routing
video streams in computer networks, military operations planning, and airline travel-planning
systems, involve much more complex specifications. Consider the airline travel problems that
must be solved by a travel-planning Web site:

e States: Each state obviously includes a location (e.g., an airport) and the current time.
Furthermore, because the cost of an action (a flight segment) may depend on previous
segments, their fare bases, and their status as domestic or international, the state must
record extra information about these “historical” aspects.

o Initial state: This is specified by the user’s query.

Actions: Take any flight from the current location, in any seat class, leaving after the
current time, leaving enough time for within-airport transfer if needed.

Transition model: The state resulting from taking a flight will have the flight’s desti-
nation as the current location and the flight’s arrival time as the current time.

Goal test: Are we at the final destination specified by the user?

Path cost: This depends on monetary cost, waiting time, flight time, customs and im-
migration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage
awards, and so on.

|
|
|
|
1

e

74

Chapter 3. Solving Problems by Searching

TOURING PROBLEM

TRAVELING
SALESPERSON
PROBLEM

VLSILAYOUT

ROBOT NAVIGATION

AUTOMATIC
ASSEMBLY
SEQUENCING

Commercial travel advice systems use a problem formulation of this kind, with many addi-
tional complications to handle the byzantine fare structures that airlines impose. Any sea-
soned traveler knows, however, that not all air travel goes according to plan. A really good
system should include contingency plans—such as backup reservations on alternate flights—
to the extent that these are justified by the cost and likelihood of failure of the original plan.

Touring problems are closely related to route-finding problems, but with an impor-
tant difference. Consider, for example, the problem “Visit every city in Figure 3.2 at least
once, starting and ending in Bucharest”” As with route finding, the actions correspond
to trips between adjacent cities. The state space, however, is quite different. Each state
must include not just the current location but also the set of cities the agent has visited.
So the initial state would be In(Bucharest), Visited({ Bucharest}), a typical intermedi-
ate state would be In(Vaslui), Visited({ Bucharest, Urziceni, Vaslui}), and the goal test
would check whether the agent is in Bucharest and all 20 cities have been visited.

The traveling salesperson problem (TSP} is a touring problem in which each city
must be visited exactly once. The aim is to find the shortest tour. The problem is known to
be NP-hard, but an enormous amount of effort has been expended to improve the capabilities
of TSP algorithms. In addition to planning trips for traveling salespersons, these algorithms
have been used for tasks such as planning movements of automatic circuit-board drills and of
stocking machines on shop floors.

A VLSI layout problem requires positioning millions of components and connections
on a chip to minimize area, minimize circuit delays, minimize stray capacitances, and max-
imize manufacturing yield. The layout problem comes after the logical design phase and is
usually split into two parts: cell layout and channel routing. In cell layout, the primitive
components of the circuit are grouped into cells, each of which performs some recognized
function. Each cell has a fixed footprint (size and shape) and requires a certain number of
connections to each of the other cells. The aim is to place the cells on the chip so that they do
not overlap and so that there is room for the connecting wires to be placed between the cells.
Channel routing finds a specific route for each wire through the gaps between the cells. These
search problems are extremely complex, but definitely worth solving. Later in this chapter,
we present some algorithms capable of solving them.

Robot navigation is a generalization of the route-finding problem described earlier.
Rather than following a discrete set of routes, a robot can move in a continuous space with
(in principle) an infinite set of possible actions and states. For a circular robot moving on a
flat surface, the space is essentially two-dimensional. When the robot has arms and legs or
wheels that must also be controlled, the search space becomes many-dimensional. Advanced
techniques are required just to make the search space finite. We examine some of these
methods in Chapter 25. In addition to the complexity of the problem, real robots must also
deal with errors in their sensor readings and motor controls.

Automatic assembly sequencing of complex objects by a robot was first demonstrated
by FREDDY (Michie, 1972). Progress since then has been slow but sure, to the point where
the assembly of intricate objects such as electric motors is economically feasible. In assembly
problems, the aim is to find an order in which to assemble the parts of some object. If the
wrong order is chosen, there will be no way to add some part later in the sequence without

Section 3.3,

Searching for Solutions 75

PROTEIN DESIGN

undoing some of the work already done. Checking a step in the sequence for feasibility is a
difficult geometrical search problem closely related to robot navigation. Thus, the generation
of legal actions is the expensive part of assembly sequencing. Any practical algorithm must
avoid exploring all but a tiny fraction of the state space. Another important assembly problem
is protein design, in which the goal is to find a sequence of amino acids that will fold into a
three-dimensional protein with the right properties to cure some disease.

3.3 SEARCHING FOR SOLUTIONS

SEARCH TREE

NODE

EXPANDING
GENERATING
PARENT NODE

CHILD NODE

LEAF NODE

FRONTIER

OPENLIST

SEARCH STRATEGY

REPEATED STATE

LOOPY PATH

Having formulated some problems, we now need to solve them. A solution is an action
sequence, so search algorithms work by considering various possible action sequences. The
possible action sequences starting at the initial state form a search tree with the initial state
at the root; the branches are actions and the nodes correspond to states in the state space of
the problem. Figure 3.6 shows the first few steps in growing the search tree for finding a route
from Arad to Bucharest. The root node of the tree corresponds to the initial state, In(Arad).
The first step is to test whether this is a goal state. (Clearly it is not, but it is important to
check so that we can solve trick problems like “starting in Arad, get to Arad.”) Then we
need to consider taking various actions. We do this by expanding the current state; that is,
applying each legal action to the current state, thereby generating a new set of states. In
this case, we add three branches from the parent node /n(Arad) leading to three new child
nodes: /n(Sibiu), In(Timisoara), and In(Zerind). Now we must choose which of these three
possibilities to consider further.

This is the essence of search—following up one option now and putting the others aside
for later, in case the first choice does not lead to a solution. Suppose we choose Sibiu first.
We check to see whether it is a goal state (it is not) and then expand it to get /n(Arad),
In(Fagaras), In{Oradea), and In(RimnicuVilcea). We can then choose any of these four or go
back and choose Timisoara or Zerind. Each of these six nodes is a leaf node, that is, a node
with no children in the tree. The set of all leaf nodes available for expansion at any given
point 1s called the frontier. (Many authors call it the open list, which is both geographically
less evocative and less accurate, because other data structures are better suited than a list.) In
Figure 3.6, the frontier of each tree consists of those nodes with bold outlines.

The process of expanding nodes on the frontier continues until either a solution is found
or there are no more states to expand. The general TREE-SEARCH algorithm is shown infor-
mally in Figure 3.7. Search algorithms all share this basic structure; they vary primarily
according to how they choose which state to expand next—the so-called search strategy.

The eagle-eyed reader will notice one peculiar thing about the search tree shown in Fig-
ure 3.6: it includes the path from Arad to Sibiu and back to Arad again! We say that In(Arad)
1s a repeated state in the search tree, generated in this case by a loopy path. Considering
such loopy paths means that the complete search tree for Romania is infinite because there
1s no limit to how often one can traverse a loop. On the other hand, the state space—the
map shown in Figure 3.2—has only 20 states. As we discuss in Section 3.4, loops can cause

=

e

76

Chapter 3. Solving Problems by Searching

REDUNDANT PATH

certain algorithms to fail, making otherwise solvable problems unsolvable. Fortunately, there
is no need to consider loopy paths. We can rely on more than intuition for this: because path
costs are additive and step costs are nonnegative, a loopy path to any given state is never
better than the same path with the loop removed.

Loopy paths are a special case of the more general concept of redundant paths, which
exist whenever there is more than one way to get from one state to another. Consider the paths
Arad-Sibiu (140 km long) and Arad-Zerind—Oradea-Sibiu (297 km long). Obviously, the
second path is redundant—it’s just a worse way to get to the same state. If you are concerned
about reaching the goal, there’s never any reason to keep more than one path to any given
state, because any goal state that is reachable by extending one path is also reachable by
extending the other.

In some cases, it is possible to define the problem itself so as to eliminate redundant
paths. For example, if we formulate the 8-queens problem (page 71) so that a queen can be
placed in any column, then each state with n queens can be reached by rn! different paths; but
if we reformulate the problem so that each new queen is placed in the leftmost empty column;
then each state can be reached only through one path.

(a) The initial state

(b) After expanding Arad

(¢) After expanding Sibiu

Figure 3.6 Partial search trees for finding a route from Arad to Bucharest. Nodes that
have been expanded are shaded; nodes that have been generated but not yet expanded are
outlined in bold; nodes that have not yet been generated are shown in faint dashed lines. {

Section 3.3.

Searching for Solutions 77

RECTANGULAR GRID

&

EXPLORED SET

CLOSED LIST

SEPARATOR

function TREE-SEARCH(problem) returns a solution, or failure
Initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return faijure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Figure 3.7 An informal description of the general tree-search and graph-search algo-
rithms. The parts of GRAPH-SEARCH marked in bold italic are the additions needed to

handle repeated states.

In other cases, redundant paths are unavoidable. This includes all problems where
the actions are reversible, such as route-finding problems and sliding-block puzzles. Route-
finding on a rectangular grid (like the one used later for Figure 3.9) is a particularly impor-
tant example in computer games. In such a grid, each state has four successors, so a search
tree of depth d that includes repeated states has 4% leaves; but there are only about 2d? distinct
states within d steps of any given state. For d = 20, this means about a trillion nodes but only
about 800 distinct states. Thus, following redundant paths can cause a tractable problem to
become intractable. This is true even for algorithms that know how to avoid infinite loops.

As the saying goes, algorithms that forget their history are doomed to repeat it. The
way to avoid exploring redundant paths is to remember where one has been. To do this, we
augment the TREE-SEARCH algorithm with a data structure called the explored set (also
known as the closed list), which remembers every expanded node. Newly generated nodes
that match previously generated nodes—ones in the explored set or the frontier—can be dis-
carded instead of being added to the frontier. The new algorithm, called GRAPH-SEARCH, is
shown informally in Figure 3.7. The specific algorithms in this chapter draw on this general
design.

Clearly, the search tree constructed by the GRAPH-SEARCH algorithm contains at most
one copy of each state, so we can think of it as growing a tree directly on the state-space graph,
as shown in Figure 3.8. The algorithm has another nice property: the frontier separates the
state-space graph into the explored region and the unexplored region, so that every path from

e e

S ey e s,

S 3

. e e iy e e et gl et

78 Chapter 3. Solving Problems by Searching

= &

Figure 3.8 A sequence of search trees generated by a graph search on the Romania prob-
lem of Figure 3.2. At each stage, we have extended each path by one step. Notice that at the
third stage, the northernmost city (Oradea) has become a dead end: both of its successors are

already explored via other paths.

iR

(a) (b) (©)
Figure 3.9 The separation property of GRAPH-SEARCH, illustrated on a rectangular-grid
problem. The frontier (white nodes) always separates the explored region of the state space |
(black nodes) from the unexplored region (gray nodes). In (a), just the root has been ex-
panded. In (b), one leaf node has been expanded. In (c), the remaining successors of the root
have been expanded in clockwise order.

the initial state to an unexplored state has to pass through a state in the frontier. (If this
seems completely obvious, try Exercise 3.13 now.) This property is illustrated in Figure 3.9.
As every step moves a state from the frontier into the explored region while moving some
states from the unexplored region into the frontier, we see that the algorithm is systematically
examining the states in the state space, one by one, until it finds a solution.

3.3.1 Infrastructure for search algorithms

Search algorithms require a data structure to keep track of the search tree that is being con-
structed. For each node 7 of the tree, we have a structure that contains four components:

e n.STATE: the state in the state space to which the node corresponds;
e n.PARENT: the node in the search tree that generated this node;
e n.ACTION: the action that was applied to the parent to generate the node;

e 1n.PATH-COST: the cost, traditionally denoted by g(n), of the path from the initial state
to the node, as indicated by the parent pointers.

;
g

Section 3.3.

Searching for Solutions 79

QUEUE

Node ACTION = Right

PATH-COST = 6

-]
-]

Figure 3.10 Nodes are the data structures from which the search tree is constructed. Each

has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

Given the components for a parent node, it is easy to see how to compute the necessary
components for a child node. The function CHILD-NODE takes a parent node and an action

and returns the resulting child node:

function CHILD-NODE(problem, parent, action) returns a node ’
return a node with
STATE = problem . RESULT(parent.STATE, action),
PARENT = parent, ACTION = action, ’
PATH-COST = parent. PATH-COST + problem. STEP-COST(parent. STATE, action)

The node data structure is depicted in Figure 3.10. Notice how the PARENT pointers
string the nodes together into a tree structure. These pointers also allow the solution path to be
extracted when a goal node is found; we use the SOLUTION function to return the sequence
of actions obtained by following parent pointers back to the root.

Up to now, we have not been very careful to distinguish between nodes and states, but in
writing detailed algorithms it’s important to make that distinction. A node is a bookkeeping
data structure used to represent the search tree. A state corresponds to a configuration of the
world. Thus, nodes are on particular paths, as defined by PARENT pointers, whereas states
are not. Furthermore, two different nodes can contain the same world state if that state is
generated via two different search paths.

Now that we have nodes, we need somewhere to put them. The frontier needs to be
stored in such a way that the search algorithm can easily choose the next node to expand
according to its preferred strategy. The appropriate data structure for this is a queue. The
operations on a queue are as follows:

e EMPTY?(queue) returns true only if there are no more elements in the queue.
e POP(queue) removes the first element of the queue and returns it.
e INSERT(element, queue) inserts an element and returns the resulting queue.

|
§

80

Chapter 3. Solving Problems by Searching

FIFO QUEUE
LIFO QUEUE

PRIORITY QUEUE

CANONICAL FORM

COMPLETENESS
OPTIMALITY
TIME COMPLEXITY

SPACE COMPLEXITY

BRANCHING FACTOR

DEPTH

SEARCH COST

TOTAL COST

Queues are characterized by the order in which they store the inserted nodes. Three common
variants are the first-in, first-out or FIFO queue, which pops the oldest element of the queue;
the last-in, first-out or LIFO queue (also known as a stack), which pops the newest element
of the queue; and the priority queue, which pops the element of the queue with the highest

priority according to some ordering function.
The explored set can be implemented with a hash table to allow efficient checking for

repeated states. With a good implementation, insertion and lookup can be done in roughly
constant time no matter how many states are stored. One must take care to implement the
hash table with the right notion of equality between states. For example, in the traveling
salesperson problem (page 74), the hash table needs to know that the set of visited cities
{Bucharest,Urziceni, Vaslui } is the same as {Urziceni, Vaslui,Bucharest}. Sometimes this can
be achieved most easily by insisting that the data structures for states be in some canonical
form; that is, logically equivalent states should map to the same data structure. In the case
of states described by sets, for example, a bit-vector representation or a sorted list without
repetition would be canonical, whereas an unsorted list would not.

3.3.2 Measuring problem-solving performance

Before we get into the design of specific search algorithms, we need to consider the criteria
that might be used to choose among them. We can evaluate an algorithm’s performance in
four ways:

Completeness: Is the algorithm guaranteed to find a solution when there is one?
Optimality: Does the strategy find the optimal solution, as defined on page 687

o Time complexity: How long does it take to find a solution?

o Space complexity: How much memory is needed to perform the search?

Time and space complexity are always considered with respect to some measure of the prob-
lem difficulty. In theoretical computer science, the typical measure is the size of the state
space graph, |V| + | E|, where V is the set of vertices (nodes) of the graph and F is the set
of edges (links). This is appropriate when the graph is an explicit data structure that is input
to the search program. (The map of Romania is an example of this.) In Al the graph is often
represented implicitly by the initial state, actions, and transition model and is frequently infi-
nite. For these reasons, complexity is expressed in terms of three quantities: b, the branching
factor or maximum number of successors of any node; d, the depth of the shallowest goal
node (i.e., the number of steps along the path from the root); and m, the maximum length of
any path in the state space. Time is often measured in terms of the number of nodes generated
during the search, and space in terms of the maximum number of nodes stored in memory.
For the most part, we describe time and space complexity for search on a tree; for a graph,
the answer depends on how “redundant” the paths in the state space are.

To assess the effectiveness of a search algorithm, we can consider just the search cost—
which typically depends on the time complexity but can also include a term for memory
usage—or we can use the total cost, which combines the search cost and the path cost of the
solution found. For the problem of finding a route from Arad to Bucharest, the search cost
is the amount of time taken by the search and the solution cost is the total length of the path

Section 3.4.

Uninformed Search Strategies 81

in kilometers. Thus, to compute the total cost, we have to add milliseconds and kilometers.
There is no “official exchange rate” between the two, but it might be reasonable in this case to
convert kilometers into milliseconds by using an estimate of the car’s average speed (because
time is what the agent cares about). This enables the agent to find an optimal tradeoff point
at which further computation to find a shorter path becomes counterproductive. The more
general problem of tradeoffs between different goods is taken up in Chapter 16.

3.4 UNINFORMED SEARCH STRATEGIES

UNINFORMED
SEARCH

BLIND SEARCH

INFORMED SEARCH

HEURISTIC SEARCH

BREADTH-F'AST
SEARCH

This section covers several search strategies that come under the heading of uninformed
search (also called blind search). The term means that the strategies have no additional
information about states beyond that provided in the problem definition. All they can do is
generate successors and distinguish a goal state from a non-goal state. All search strategies
are distinguished by the order in which nodes are expanded. Strategies that know whether
one non-goal state is “more promising” than another are called informed search or heuristic

search strategies; they are covered in Section 3.5.

3.4.1 Breadth-first search

Breadth-first search is a simple strategy in which the root node is expanded first, then all the
successors of the root node are expanded next, then their successors, and so on. In general,
all the nodes are expanded at a given depth in the search tree before any nodes at the next
level are expanded.

Breadth-first search is an instance of the general graph-search algorithm (Figure 3.7) in
which the shallowest unexpanded node is chosen for expansion. This is achieved very simply
by using a FIFO queue for the frontier. Thus, new nodes (which are always deeper than their
parents) go to the back of the queue, and old nodes, which are shallower than the new nodes,
get expanded first. There is one slight tweak on the general graph-search algorithm, which is
that the goal test is applied to each node when it is generated rather than when it is selected for
expansion. This decision 1s explained below, where we discuss time complexity. Note also
that the algorithm, following the general template for graph search, discards any new path to
a state already in the frontier or explored set; it is easy to see that any such path must be at
least as deep as the one already found. Thus, breadth-first search always has the shallowest
path to every node on the frontier.

Pseudocode is given in Figure 3.11. Figure 3.12 shows the progress of the search on a
simple binary tree.

How does breadth-first search rate according to the four criteria from the previous sec-
tion? We can easily see that it is complete—if the shallowest goal node is at some finite depth
d, breadth-first search will eventually find it after generating all shallower nodes (provided
the branching factor b is finite). Note that as soon as a goal node is generated, we know it
is the shallowest goal node because all shallower nodes must have been generated already
and failed the goal test. Now, the shallowest goal node is not necessarily the optimal one;

82

Chapter 3. Solving Problems by Searching

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element
ezplored «— an empty set
loop do
if EMPTY?(frontier) then return failure
node — POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to ezplored
for each action in problem.ACTIONS(node. STATE) do
child «— CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
if problem . GOAL-TEST(child. STATE) then return SOLUTION(child)
frontier — INSERT(child, frontier)

Figure 3.11 Breadth-first search on a graph.

technically, breadth-first search is optimal if the path cost is a nondecreasing function of the
depth of the node. The most common such scenario is that all actions have the same cost.

So far, the news about breadth-first search has been good. The news about time and
space 1s not so good. Imagine searching a uniform tree where every state has b successors.
The root of the search tree generates b nodes at the first level, each of which generates b more
nodes, for a total of b2 at the second level. Each of these generates b more nodes, yielding b3
nodes at the third level, and so on. Now suppose that the solution is at depth d. In the worst
case, it is the last node generated at that level. Then the total number of nodes generated is

b+b> 4+ 0%+ b= 0% .
(If the algorithm were to apply the goal test to nodes when selected for expansion, rather than

when generated, the whole layer of nodes at depth d would be expanded before the goal was

detected and the time complexity would be O(b%71).)

As for space complexity: for any kind of graph search, which stores every expanded
node in the explored set, the space complexity is always within a factor of b of the time
complexity. For breadth-first graph search in particular, every node generated remains in
memory. There will be O(b%1) nodes in the ezplored set and O(b%) nodes in the frontier,

. b® B

Figure 3.12 Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.

Section 3.4.

Uninformed Search Strategies 83

—

e

UNIFORM-COST
SEARCH

so the space complexity is O(b%), i.e., it is dominated by the size of the frontier. Switching
to a tree search would not save much space, and in a state space with many redundant paths,
switching could cost a great deal of time.

An exponential complexity bound such as O(b%) is scary. Figure 3.13 shows why. Tt
lists, for various values of the solution depth d, the time and memory required for a breadth-
first search with branching factor & = 10. The table assumes that | million nodes can be
generated per second and that a node requires 1000 bytes of storage. Many search problems
fit roughly within these assumptions (give or take a factor of 100) when run on a modem
personal computer.

Depth Nodes Time Memory “
2 110 .11 milliseconds 107 kilobytes T
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 10 3.5 years 99 petabytes
16 1016 350 years 10 exabytes
Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown

S —J

| assume branching factor b = 10; | million nodes/second; 1000 bytes/node.

Two lessons can be learned from Figure 3.13. First, the memory requirements are a
bigger problem for breadth-first search than is the execution time. One might wait 13 days
for the solution to an important problem with search depth 12, but no personal computer has
the petabyte of memory it would take. Fortunately, other strategies require less memory.

The second lesson is that time is still a major factor. If your problem has a solution at
depth 16, then (given our assumptions) it will take about 350 years for breadth-first search (or
indeed any uninformed search) to find it. In general, exponential-complexity search problems
cannot be solved by uninformed methods for any but the smallest instances.

3.4.2 Uniform-cost search

When all step costs are equal, breadth-first search is optimal because it always expands the
shallowest unexpanded node. By a simple extension, we can find an algorithm that is optimal
with any step-cost function. Instead of expanding the shallowest node, uniform-cost search
expands the node n with the lowest path cost g(n). This is done by storing the frontier as a
priority queue ordered by g. The algorithm is shown in Figure 3.14.

In addition to the ordering of the queue by path cost, there are two other significant
differences from breadth-first search. The first is that the goal test is applied to a node when
it is selected for expansion (as in the generic graph-search algorithm shown in Figure 3.7)
rather than when it is first generated. The reason is that the first goal node that is generated

84

Chapter 3. Solving Problems by Searching

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem INITIAL-STATE, PATH-C0OST =0
frontier «— a priority queue ordered by PATH-COST, with node as the only element
ezplored «+ an empty set
loop do
if EMPTY ?(frontier) then return failure
node « POP(frontier) /* chooses the lowest-cost node in frontier */
if problem . GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child — CHILD-NODE(problem, node, action)
if child . STATE is not in explored or frontier then
frontier — INSERT(child, frontier)
else if child STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities
of a priority queue and a hash table.

Sibiu 09 Fagaras

Pitesti

Bucharest

Figure 3.15 Part of the Romania state space, selected to illustrate uniform-cost search.

may be on a suboptimal path. The second difference is that a test is added in case a better
path is found to a node currently on the frontier.

Both of these modifications come into play in the example shown in Figure 3.15, where
the problem is to get from Sibiu to Bucharest. The successors of Sibiu are Rimnicu Vilcea and
Fagaras, with costs 80 and 99, respectively. The least-cost node, Rimnicu Vilcea, is expanded
next, adding Pitesti with cost 80 + 97 =177. The least-cost node is now Fagaras, so it is
expanded, adding Bucharest with cost 99 - 211 = 310. Now a goal node has been generated,
but uniform-cost search keeps going, choosing Pitesti for expansion and adding a second path

Section 3.4.

Uninformed Search Strategies &5

DEPTH-FIRST
SEARCH

to Bucharest with cost 80 4+ 974 101 = 278. Now the algorithm checks to see if this new path
is better than the old one; it is, so the old one is discarded. Bucharest, now with g-cost 278,
1s selected for expansion and the solution is returned.

It is easy to see that uniform-cost search is optimal in general. First, we observe that
whenever uniform-cost search selects a node n for expansion, the optimal path to that node
has been found. (Were this not the case, there would have 1o be another frontier node n’ on
the optimal path from the start node to n, by the graph separation property of Figure 3.9;
by definition, n’ would have lower g-cost than n and would have been selected first.) Then,
because step costs are nonnegative, paths never get shorter as nodes are added. These two
facts together imply that uniform-cost search expands nodes in order of their optimal path
cost. Hence, the first goal node selected for expansion must be the optimal solution.

Uniform-cost search does not care about the number of steps a path has, but only about
their total cost. Therefore, it will get stuck in an infinite loop if there is a path with an infinite
sequence of zero-cost actions—for example, a sequence of NoOp actions.® Completeness is
guaranteed provided the cost of every step exceeds some small positive constant €.

Uniform-cost search is guided by path costs rather than depths, so its complexity is not
easily characterized in terms of b and d. Instead, let C* be the cost of the optimal solution,’
and assume that every action costs at least . Then the algorithm’s worst-case time and space
complexity is O(b+1¢"/¢l) which can be much greater than b?. This is because uniform-
cost search can explore large trees of small steps before exploring paths involving large and
perhaps useful steps. When all step costs are equal, b1 C7/¢l is just b4t1. When all step
costs are the same, uniform-cost search is similar to breadth-first search, except that the latter
stops as soon as it generates a goal, whereas uniform-cost search examines all the nodes at
the goal’s depth to see if one has a lower cost; thus uniform-cost search does strictly more
work by expanding nodes at depth d unnecessarily.

3.4.3 Depth-first search

Depth-first search always expands the deepest node in the current frontier of the search tree.
The progress of the search is illustrated in Figure 3.16. The search proceeds immediately
to the deepest level of the search tree, where the nodes have no successors. As those nodes
are expanded, they are dropped from the frontier, so then the search “backs up” to the next
deepest node that still has unexplored successors.

The depth-first search algorithm is an instance of the graph-search algorithm in Fig-
ure 3.7; whereas breadth-first-search uses a FIFO queue, depth-first search uses a LIFO queue.
A LIFO queue means that the most recently generated node is chosen for expansion. This
must be the deepest unexpanded node because it is one deeper than its parent—which, in turn,
was the deepest unexpanded node when it was selected.

As an alternative to the GRAPH-SEARCH-style implementation, it is common to im-

' plement depth-first search with a recursive function that calls itself on each of its children in

turn. (A recursive depth-first algorithm incorporating a depth limit is shown in Figure 3.17.)

8 NoOp, or “no operation,” is the name of an assembly language instruction that does nothing.
7 Here, and throughout the book, the “star” in C* means an optimal value for C.

.._,—.,\..._.

86

Chapter 3. Solving Problems by Searching

@ ®

@

4

‘ Figure 3.16 Depth-first search on a binary tree. The unexplored region is shown in light
‘ gray. Explored nodes with no descendants in the frontier are removed from memory. Nodes
at depth 3 have no successors and A7 is the only goal node.

The properties of depth-first search depend strongly on whether the graph-search or
tree-search version is used. The graph-search version, which avoids repeated states and re-
dundant paths, is complete in finite state spaces because it will eventually expand every node.
The tree-search version, on the other hand, is not complete—for example, in Figure 3.6 the
algorithm will follow the Arad-Sibiu—Arad-Sibiu loop forever. Depth-first tree search can be
modified at no extra memory cost so that it checks new states against those on the path from
the root to the current node; this avoids infinite loops in finite state spaces but does not avoid
the proliferation of redundant paths. In infinite state spaces, both versions fail if an infinite
non-goal path is encountered. For example, in Knuth’s 4 problem, depth-first search would
keep applying the factorial operator forever.

For similar reasons, both versions are nonoptimal. For example, in Figure 3.16, depth-
first search will explore the entire left subtree even if node C' is a goal node. If node J were
also a goal node, then depth-first search would return it as a solution instead of C, which
would be a better solution; hence, depth-first search is not optimal.

Section 3.4. Uninformed Search Strategies 87

The time complexity of depth-first graph search is bounded by the size of the state space
(which may be infinite, of course). A depth-first tree search, on the other hand, may generate ;
all of the O(b™) nodes in the search tree, where m is the maximum depth of any node; this -
can be much greater than the size of the state space. Note that m itself can be much larger
than d (the depth of the shallowest solution) and is infinite if the tree is unbounded.

So far, depth-first search seems to have no clear advantage over breadth-first search,
so why do we include it? The reason is the space complexity. For a graph search, there is
no advantage, but a depth-first tree search needs to store only a single path from the root
to a leaf node, along with the remaining unexpanded sibling nodes for each node on the
path. Once a node has been expanded, it can be removed from memory as soon as all its
descendants have been fully explored. (See Figure 3.16.) For a state space with branching
factor b and maximum depth m, depth-first search requires storage of only O(bm) nodes.
Using the same assumptions as for Figure 3.13 and assuming that nodes at the same depth as |) :
the goal node have no successors, we find that depth-first search would require 156 kilobytes |
instead of 10 exabytes at depth d = 16, a factor of 7 trillion times less space. This has
led to the adoption of depth-first tree search as the basic workhorse of many areas of Al, | i
including constraint satisfaction (Chapter 6), propositional satisfiability (Chapter 7), and logic |'
programming (Chapter 9). For the remainder of this section, we focus primarily on the tree- |
search version of depth-first search. .

BARGHACKING A variant of depth-first search called backtracking search uses still less memory. (See |
Chapter 6 for more details.) In backtracking, only one successor is generated at a time rather '
than all successors; each partially expanded node remembers which successor to generate |
next. In this way, only O(m) memory is needed rather than O(bm). Backtracking search '
facilitates yet another memory-saving (and time-saving) trick: the idea of generating a suc-
cessor by modifying the current state description directly rather than copying it first. This
reduces the memory requirements to just one state description and O(m) actions. For this to
work, we must be able to undo each modification when we go back to generate the next suc-
cessor. For problems with large state descriptions, such as robotic assembly, these techniques
are critical to success. |

3.4.4 Depth-limited search

The embarrassing failure of depth-first search in infinite state spaces can be alleviated by
supplying depth-first search with a predetermined depth limit £. That is, nodes at depth # are
S AKIRTED treated as if they have no successors. This approach is called depth-limited search. The
depth limit solves the infinite-path problem. Unfortunately, it also introduces an additional
source of incompleteness if we choose £ < d, that is, the shallowest goal is beyond the depth
limit. (This is likely when d is unknown.) Depth-limited search will also be nonoptimal if
we choose £ > d. Tts time complexity is O(b*) and its space complexity is O(b#). Depth-first
search can be viewed as a special case of depth-limited search with 7= co. ;
Sometimes, depth limits can be based on knowledge of the problem. For example, on ;

the map of Romania there are 20 cities. Therefore, we know that if there is a solution, it must
be of length 19 at the longest, so £ = 19 is a possible choice. But in fact if we studied the

88 Chapter 3. Solving Problems by Searching

function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem . INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if limit = 0 then return cutoff
else
cutoff-occurred? «— false
for each action in problem.ACTIONS(node STATE) do
child — CHILD-NODE(problem, node, action)
result — RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff-occurred? « true
else if result # failure then return result
if cutoff_occurred? then return cutoff else return foilure

Figure 3.17 A recursive implementation of depth-limited tree search.

map carefully, we would discover that any city can be reached from any other city in at most

DIAMETER 9 steps. This number, known as the diameter of the state space, gives us a better depth limit,
which leads to a more efficient depth-limited search. For most problems, however, we will
not know a good depth limit until we have solved the problem.

Depth-limited search can be implemented as a simple modification to the general tree-
or graph-search algorithm. Alternatively, it can be implemented as a simple recursive al-
gorithm as shown in Figure 3.17. Notice that depth-limited search can terminate with two
kinds of failure: the standard failure value indicates no solution; the cutoff value indicates
no solution within the depth limit.

3.4.5 Iterative deepening depth-first search

D ey 1terative deepening search (or iterative deepening depth-first search) is a general strategy,
often used in combination with depth-first tree search, that finds the best depth limit. It does
this by gradually increasing the limit—first 0, then 1, then 2, and so on—until a goal is found.
This will occur when the depth limit reaches d, the depth of the shallowest goal node. The
algorithm is shown in Figure 3.18. Iterative deepening combines the benefits of depth-first
and breadth-first search. Like depth-first search, its memory requirements are modest: O(bd)
to be precise. Like breadth-first search, it is complete when the branching factor is finite and
optimal when the path cost is a nondecreasing function of the depth of the node. Figure 3.19
shows four iterations of ITERATIVE-DEEPENING-SEARCH on a binary search tree, where the
solution is found on the fourth iteration.

lterative deepening search may seem wasteful because states are generated multiple
times. It turns out this is not too costly. The reason is that in a search tree with the same (or
nearly the same) branching factor at each level, most of the nodes are in the bottom level,
so it does not matter much that the upper levels are generated multiple times. In an iterative
deepening search, the nodes on the bottom level (depth d) are generated once, those on the

Section 3.4. Uninformed Search Strategies 89

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure |

for depth =0 to oo do i
result — DEPTH-LIMITED-SEARCH(problem, depth) _
if result # cutoff then return result

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth-
limited search with increasing limits. It terminates when a solutton is found or if the depth-
limited search returns failure, meaning that no solution exists. !

|

I |
Limit=0 *® @ Lo
g |

Limit = | »®

Limit = 2 »®

A e

Limit=3 »®

| !
e
| ¥
,! R
| R g
| | 4
! L
i | l;:
[o _!-
i
Figure 3.19 Four iterations of iterative deepening search on a binary tree. f " f
i
i I H 1
i1 4F
(i |
i I
(!
f
L

90

Chapter 3. Solving Problems by Searching

&

ITERATIVE
LENGTHENING
SEARCH

next-to-bottom level are generated twice, and so omn, up to the children of the root, which are
generated d times. So the total number of nodes generated in the worst case is

N(IDS) = (d)b+ (d — 1)b? + - + (1)b¢,
which gives a time complexity of O(b%)—asymptotically the same as breadth-first search.

There is some extra cost for generating the upper levels multiple times, but it is not large. For
example, if b = 10 and d = 5, the numbers are

N(IDS) = 50+ 400 + 3,000 + 20, 000 + 100, 000 = 123,450
N(BFS) = 10+ 100 + 1,000 + 10,000 + 100,000 = 111,110 .

If you are really concerned about repeating the repetition, you can use a hybrid approach
that runs breadth-first search until almost all the available memory is consumed, and then
runs iterative deepening from all the nodes in the frontier. In general, iterative deepening is
the preferred uninformed search method when the search space is large and the depth of the

solution is not known.
Iterative deepening search is analogous to breadth-first search in that it explores a com-

plete layer of new nodes at each iteration before going on to the next layer. It would seem
worthwhile to develop an iterative analog to uniform-cost search, inheriting the latter algo-
rithm’s optimality guarantees while avoiding its memory requirements. The idea is to use
increasing path-cost limits instead of increasing depth limits. The resulting algorithm, called
iterative lengthening search, is explored in Exercise 3.17. It turns out, unfortunately, that
iterative lengthening incurs substantial overhead compared to uniform-cost search.

3.4.6 Bidirectional search

The idea behind bidirectional search is to run two simultaneous searches—one forward from
the initial state and the other backward from the goal—hoping that the two searches meet in
the middle (Figure 3.20). The motivation is that 6%2 4 b%/2 is much less than b%, or in the
figure, the area of the two small circles is less than the area of one big circle centered on the
start and reaching to the goal.

Bidirectional search is implemented by replacing the goal test with a check to see
whether the frontiers of the two searches intersect; if they do, a solution has been found.
(It is important to realize that the first such solution found may not be optimal, even if the
two searches are both breadth-first; some additional search is required to make sure there
isn’t another short-cut across the gap.) The check can be done when each node is generated
or selected for expansion and, with a hash table, will take constant time. For example, if a
problem has solution depth d = 6, and each direction runs breadth-first search one node at a
time, then in the worst case the two searches meet when they have generated all of the nodes
at depth 3. For b= 10, this means a total of 2,220 node generations, compared with 1,111,110
for a standard breadth-first search. Thus, the time complexity of bidirectional search using
breadth-first searches in both directions is O(b%?). The space complexity is also O(b%?).
We can reduce this by roughly half if one of the two searches is done by iterative deepening,
but at least one of the frontiers must be kept in memory so that the intersection check can be
done. This space requirement is the most significant weakness of bidirectional search.

Section 3.4.

Uninformed Search Strategies 91

PREDECESSOR

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a

branch from the start node meets a branch from the goal node.

The reduction in time complexity makes bidirectional search attractive, but how do we
search backward? This is not as easy as it sounds. Let the predecessors of a state 2 be all
those states that have z as a successor. Bidirectional search requires a method for computing
predecessors. When all the actions in the state space are reversible, the predecessors of x are
just its successors. Other cases may require substantial ingenuity.

Consider the question of what we mean by “the goal” in searching “backward from the
goal.” For the 8-puzzle and for finding a route in Romania, there is just one goal state, so the
backward search is very much like the forward search. If there are several explicitly listed
goal states—for example, the two dirt-free goal states in Figure 3.3—then we can construct a
new dummy goal state whose immediate predecessors are all the actual goal states. But if the
goal is an abstract description, such as the goal that “no queen attacks another queen” in the
n-queens problem, then bidirectional search is difficult to use.

3.4.7 Comparing uninformed search strategies

Figure 3.21 compares search strategies in terms of the four evaluation criteria set forth in
Section 3.3.2. This comparison is for tree-search versions. For graph searches, the main
differences are that depth-first search is complete for finite state spaces and that the space and
time complexities are bounded by the size of the state space.

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
i First Cost First Limited Deepening (if applicable)
Complete? Yes® Yes™? No No Yes® Yes®d
Time o) OWFLETy o™y O@bY) O(b%) oY) |
Space O(b%) O L /<y Om) O(be) O(bd) O(b?/?)
Optimal? Yes© Yes No No Yes® Yes®:?
Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth
of the shallowest solution; m is the maximum depth of the search tree; [is the depth limit.
Superscript caveats are as follows: ¢ complete if b is finite; complete if step costs > ¢ for
positive ¢; ¢ optimal if step costs are all identical; ¢ if both directions use breadth-first search.

e e e e

92

Chapter 3. Solving Problems by Searching

3.5 INFORMED (HEURISTIC) SEARCH STRATEGIES

INFORMED SEARCH

BEST-FIRST SEARCH

EVALUATION
FUNCTION

HEURISTIC
FUNCTION

GREEDY BEST-FIRST
SEARCH

STRAIGHT-LINE
DISTANCE

This section shows how an informed search strategy—one that uses problem-specific knowl-
edge beyond the definition of the problem itself—can find solutions more efficiently than can
an uninformed strategy.

The general approach we consider is called best-first search. Best-first search is an
instance of the general TREE-SEARCH or GRAPH-SEARCH algorithm in which a node is
selected for expansion based on an evaluation function, f(n). The evaluation function is
construed as a cost estimate, so the node with the lowest evaluation is expanded first. The
implementation of best-first graph search is identical to that for uniform-cost search (Fig-
ure 3.14), except for the use of f instead of g to order the priority queue.

The choice of f determines the search strategy. (For example, as Exercise 3.21 shows,
best-first tree search includes depth-first search as a special case.) Most best-first algorithms
include as a component of f a heuristic function, denoted h(n):

h(n) = estimated cost of the cheapest path from the state at node # to a goal state.

(Notice that h(n) takes a node as input, but, unlike g(n), it depends only on the szate at that
node.) For example, in Romania, one might estimate the cost of the cheapest path from Arad
to Bucharest via the straight-line distance from Arad to Bucharest.

Heuristic functions are the most common form in which additional knowledge of the
problem is imparted to the search algorithm. We study heuristics in more depth in Section 3.6.
For now, we consider them to be arbitrary, nonnegative, problem-specific functions, with one
constraint: if 7 is a goal node, then A(n) = 0. The remainder of this section covers two ways
to use heuristic information to guide search.

3.5.1 Greedy best-first search

Greedy best-first search® tries to expand the node that is closest to the goal, on the grounds
that this is likely to lead to a solution quickly. Thus, it evaluates nodes by using just the
heuristic function; that is, f(n) = h(n).

Let us see how this works for route-finding problems in Romania; we use the straight-
line distance heuristic, which we will call hgpp. If the goal is Bucharest, we need to
know the straight-line distances to Bucharest, which are shown in Figure 3.22. For exam-
ple, hsr.p(In(Arad)) = 366. Notice that the values of hsyp cannot be computed from the
problem description itself. Moreover, it takes a certain amount of experience to know that
hsypp is correlated with actual road distances and is, therefore, a useful heuristic.

Figure 3.23 shows the progress of a greedy best-first search using hgyp to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu because it
is closer to Bucharest than either Zerind or Timisoara. The next node to be expanded will
be Fagaras because it is closest. Fagaras in turn generates Bucharest, which is the goal. For
this particular problem, greedy best-first search using hgrp finds a solution without ever

8 Our first edition called this greedy search; other authors have called it best-first search. Our more general
usage of the latter term follows Pearl (1984).

Section 3.5.

Informed (Heuristic) Search Strategies 93

*
A SEARCH

I Arad 366 Mehadia 241

Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151] Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374
Figure 3.22 Values of hgy p—straight-line distances to Bucharest. 4)

expanding a node that is not on the solution path; hence, its search cost is minimal. It is
not optimal, however: the path via Sibiu and Fagaras to Bucharest is 32 kilometers longer
than the path through Rimnicu Vilcea and Pitesti. This shows why the algorithm is called
“greedy”—at each step it tries to get as close to the goal as it can.

Greedy best-first tree search is also incomplete even in a finite state space, much like
depth-first search. Consider the problem of getting from lasi to Fagaras. The heuristic sug-
gests that Neamt be expanded first because it is closest to Fagaras, but it is a dead end. The
solution is to go first to Vaslui—a step that is actually farther from the goal according to
the heuristic—and then to continue to Urziceni, Bucharest, and Fagaras. The algorithm will
never find this solution, however, because expanding Neamt puts lasi back into the frontier,
Tasi is closer to Fagaras than Vaslui is, and so lasi will be expanded again, leading to an infi-
nite loop. (The graph search version is complete in finite spaces, but not in infinite ones.) The
worst-case time and space complexity for the tree version is O(b""), where m is the maximum
depth of the search space. With a good heuristic function, however, the complexity can be
reduced substantially. The amount of the reduction depends on the particular problem and on
the quality of the heuristic.

3.5.2 A%*search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A* search (pronounced “A-star
search”). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost
to get from the node to the goal:

f(n) = g(n) + h(n) .
Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost
of the cheapest path from 7 to the goal, we have

f(n) = estimated cost of the cheapest solution through n .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function A(n) satisfies certain conditions, A* search is
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except
that A* uses g + h instead of g.

e e

94 Chapter 3. Solving Problems by Searching
(a) The initial state
366
(b) After expanding Arad
253 329 374
(c) After expanding Sibiu
366 176 380 193
(d) After expanding Fagaras
|
|
Figure 3.23 Stages in a greedy best-first tree search for Bucharest with the straight-line
distance heuristic Agz,p. Nodes are labeled with their A-values.
Conditions for optimality: Admissibility and consistency
B The first condition we require for optimality is that ~{(n) be an admissible heuristic. An

admissible heuristic is one that never overestimates the cost to reach the goal. Because g(n)
is the actual cost to reach n along the current path, and f(n)=g(n) + h(n), we have as an
immediate consequence that f(n) never overestimates the true cost of a solution along the
current path through n.

Admissible heuristics are by nature optimistic because they think the cost of solving
the problem is less than it actually is. An obvious example of an admissible heuristic is the
straight-line distance hgyp that we used in getting to Bucharest. Straight-line distance is
admissible because the shortest path between any two points is a straight line, so the straight

Section 3.5.

Informed (Heuristic) Search Strategies 95

CONSISTENCY

MONOTONICITY

TRIANGLE
INEQUALITY

line cannot be an overestimate. In Figure 3.24, we show the progress of an A" tree search for
Bucharest. The values of ¢ are computed from the step costs in Figure 3.2, and the values of
hsrp are given in Figure 3.22. Notice in particular that Bucharest first appears on the frontier
at step (e), but it is not selected for expansion because its f-cost (450) is higher than that of
Pitesti (417). Another way to say this is that there might be a solution through Pitesti whose
cost is as low as 417, so the algorithm will not settle for a solution that costs 450.

A second, slightly stronger condition called consistency (or sometimes monotonicity)
is required only for applications of A* to graph search.” A heuristic h(n) is consistent if, for
every node n and every successor n’ of n generated by any action «, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to n' plus the estimated
cost of reaching the goal from n':

h(n) < c(n,a,n’) + h(n') .

This is a form of the general triangle inequality, which stipulates that each side of a triangle
cannot be longer than the sum of the other two sides. Here, the triangle is formed by n, n/,
and the goal G, closest to n. For an admissible heuristic, the inequality makes perfect sense:
if there were a route from n to G, via n/ that was cheaper than h(n), that would violate the
property that i(n) is a lower bound on the cost to reach G,.

Itis fairly easy to show (Exercise 3.29) that every consistent heuristic is also admissible.
Consistency is therefore a stricter requirement than admissibility, but one has to work quite
hard to concoct heuristics that are admissible but not consistent. All the admissible heuristics
we discuss in this chapter are also consistent. Consider, for example, hgr,p. We know that
the general triangle inequality is satisfied when each side is measured by the straight-line
distance and that the straight-line distance between n and n’ is no greater than c(n, a,n’).
Hence, hgyp is a consistent heuristic, :

Optimality of A*

As we mentioned earlier, A* has the following properties: the tree-search version of A* is
optimal if h(n) is admissible, while the graph-search version is optimal if h(n) is consistent.

We show the second of these two claims since it is more useful. The argument es-
sentially mirrors the argument for the optimality of uniform-cost search, with g replaced by
f—just as in the A* algorithm itself.

The first step is to establish the following: if h(n) is consistent, then the values of
f(n) along any path are nondecreasing. The proof follows directly from the definition of
consistency. Suppose 7' is a successor of n; then g(n') =g(n) + ¢(n, a,n’) for some action
a, and we have

f(n) = g(n') + h(n') = g(n) + c(n,a,n) + h(n') = g(n) + h(n) = f(n).

The next step is to prove that whenever A* selects a node n for expansion, the optimal path
to that node has been found. Were this not the case, there would have to be another frontier
node n’ on the optimal path from the start node to n, by the graph separation property of

9 With an admissible but inconsistent heuristic, A* requires some extra bookkeeping to ensure optimality.

96

Chapter 3. Solving Problems by Searching

(a) The initial state

366=0+366

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

Tirnisoad

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

447=118+329

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

Arad

449=75+374

447=118+329

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

418=418+0 615=455+160 607=414+193

Figure 3.24 Stages in an A* search for Bucharest. Nodes are labeled with f = g+ h. The
h values are the straight-line distances to Bucharest taken from Figure 3.22.

Section 3.5.

Informed (Heuristic) Search Strategies 97

CONTQUR

|

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the

contour value.

|

Figure 3.9; because f is nondecreasing along any path, n’ would have lower f-cost than n
and would have been selected first.

From the two preceding observations, it follows that the sequence of nodes expanded
by A* using GRAPH-SEARCH is in nondecreasing order of f(n). Hence, the first goal node
selected for expansion must be an optimal solution because f is the true cost for goal nodes
(which have h = 0) and all later goal nodes will be at least as expensive.

The fact that f-costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 3.25 shows
an example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400,
and so on. Then, because A* expands the frontier node of lowest f-cost, we can see that an
A" search fans out from the start node, adding nodes in concentric bands of increasing f-cost.

With uniform-cost search (A* search using ~(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C* is the cost of the
optimal solution path, then we can say the following:

e A" expands all nodes with f(n) < C*.
e A" might then expand some of the nodes right on the “goal contour” (where f(n) = C*)
before selecting a goal node.

Completeness requires that there be only finitely many nodes with cost less than or equal to
C”, a condition that is true if all step costs exceed some finite € and if b is finite.

Notice that A* expands no nodes with f(n) > C*—for example, Timisoara is not
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below

e e e =

=

~ -

e T —— =0

98

Chapter 3. Solving Problems by Searching

PRUNING

OPTIMALLY
EFFICIENT

ABSOLUTE ERROR

RELATIVE ERROR

Timisoara is pruned; because h gy, p is admissible, the algorithm can safely ignore this subtree
while still guaranteeing optimality. The concept of pruning—eliminating possibilities from
consideration without having to examine them—is important for many areas of AL

One final observation is that among optimal algorithms of this type—algorithms that
extend search paths from the root and use the same heuristic information—A” is optimally
efficient for any given consistent heuristic. That is, no other optimal algorithm is guaran-
teed to expand fewer nodes than A* (except possibly through tie-breaking among nodes with
f(n)=C™). This is because any algorithm that does not expand all nodes with f(n) < C*
runs the risk of missing the optimal solution.

That A* search is complete, optimal, and optimally efficient among all such algorithms
is rather satisfying. Unfortunately, it does not mean that A* is the answer to all our searching
needs. The catch is that, for most problems, the number of states within the goal contour
search space is still exponential in the length of the solution. The details of the analysis are
beyond the scope of this book, but the basic results are as follows. For problems with constant
step costs, the growth in run time as a function of the optimal solution depth d is analyzed in
terms of the the absolute error or the relative error of the heuristic. The absolute error is
defined as A = h* — h, where A" is the actual cost of getting from the root to the goal, and
the relative error is defined as ¢ = (h* — h)/h*.

The complexity results depend very strongly on the assumptions made about the state
space. The simplest model studied is a state space that has a single goal and is essentially a
tree with reversible actions. (The 8-puzzle satisfies the first and third of these assumptions.)
In this case, the time complexity of A" is exponential in the maximum absolute error, that is,
O(b?). For constant step costs, we can write this as O(b*¢), where d is the solution depth.
For almost all heuristics in practical use, the absolute error is at least proportional to the path
cost h*, so € is constant or growing and the time complexity is exponential in d. We can
also see the effect of a more accurate heuristic: O(b*?) = O((b)%), so the effective branching
factor (defined more formally in the next section) is b°.

When the state space has many goal states—particularly near-optimal goal states—the
search process can be led astray from the optimal path and there is an extra cost proportional
to the number of goals whose cost is within a factor ¢ of the optimal cost. Finally, in the
general case of a graph, the situation is even worse. There can be exponentially many states
with f(n) < C* even if the absolute error is bounded by a constant. For example, consider
a version of the vacuum world where the agent can clean up any square for unit cost without
even having to visit it: in that case, squares can be cleaned in any order. With /V initially dirty
squares, there are 2%V states where some subset has been cleaned and all of them are on an
optimal solution path—and hence satisfy f(n) < C*—even if the heuristic has an error of 1.

The complexity of A" often makes it impractical to insist on finding an optimal solution.
One can use variants of A* that find suboptimal solutions quickly, or one can sometimes
design heuristics that are more accurate but not strictly admissible. In any case, the use of a
good heuristic still provides enormous savings compared to the use of an uninformed search.
In Section 3.6, we look at the question of designing good heuristics.

Computation time is not, however, A"’s main drawback. Because it keeps all generated
nodes in memory (as do all GRAPH-SEARCH algorithms), A* usually runs out of space long

-

Section 3.5.

Informed (Heuristic) Search Strategies ‘ 99

ITERATIVE-
DEEPEN!NG

A

RECURSIVE
BEST-FIRST SEARCH

BACKED-UP VALUE

function RECURSIVE-BEST-FIRST-SEARCH(problem,) returns a solution, or failure
return RBFS(problem, MAKE-NODE(problem INITIAL-STATE), co)

function RBFS(problem, node, f-limat) returns a solution, or failure and a new f-cost limit
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
successors — []
for each action in problem.ACTIONS(node.STATE) do
add CHILD-NODE(problem, node, action) into successors
if successors is empty then return failure, co
for each s in successors do /* update f with value from previous search, if any */
s.f—max(s.g + s.h, node.f))
loop do
best — the lowest f-value node in successors
if best.f > f.limit then return failure, best.f
alternative «+ the second-lowest f-value among successors
result, best. f — RBES(problem, best, min(f_limit, alternative))
if result # failure then return result

Figure 3.26 The algorithm for recursive best-first search.

before it runs out of time. For this reason, A* is not practical for many large-scale prob-
lems. There are, however, algorithms that overcome the space problem without sacrificing
optimality or completeness, at a small cost in execution time. We discuss these next.

3.5.3 Memory-bounded heuristic search

The simplest way to reduce memory requirements for A* is to adapt the idea of iterative
deepening to the heuristic search context, resulting in the iterative-deepening A* (IDA") al-
gorithm. The main difference between IDA” and standard iterative deepening is that the cutoff
used is the f-cost (g4 h) rather than the depth; at each iteration, the cutoff value is the small-
est f-cost of any node that exceeded the cutoff on the previous iteration. IDA" is practical
for many problems with unit step costs and avoids the substantial overhead associated with
keeping a sorted queue of nodes. Unfortunately, it suffers from the same difficulties with real-
valued costs as does the iterative version of uniform-cost search described in Exercise 3.17.
This section briefly examines two other memory-bounded algorithms, called RBFS and MA*.

Recursive best-first search (RBFS) is a simple recursive algorithm that attempts to
mimic the operation of standard best-first search, but using only linear space. The algorithm
is shown in Figure 3.26. lIts structure is strmlar to that of a recursive depth-first search, but
rather than continuing indefinitely down the current path, it uses the f_limit variable to keep
track of the f-value of the best alternative path available from any ancestor of the current
node. If the current node exceeds this limit, the recursion unwinds back to the alternative
path. As the recursion unwinds, RBFS replaces the f-value of each node along the path
with a backed-up value—the best f-value of its children. In this way, RBES remembers the
[f-value of the best leaf in the forgotten subtree and can therefore decide whether it’s worth

e

e R e o s T =

ERTTRR e

AT T el K i

L)

3. o L X

100 Chapter 3. Solving Problems by Searching

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

(b) After unwinding back to Sibiu
and expanding Fagaras

449

391 430

(c) After switching back to Rimnicu Vilcea
and expanding Pitesti

449

Figure 3.27 Stages in an RBES search for the shortest route to Bucharest. The f-limit
value for each recursive call is shown on top of each current node, and every node is labeled
with its f-cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea, then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,
the expansion continues to Bucharest.

reexpanding the subtree at some later time. Figure 3.27 shows how RBFS reaches Bucharest.
RBFS is somewhat more efficient than IDA", but still suffers from excessive node re-
generation. In the example in Figure 3.27, RBFS follows the path via Rimnicu Vilcea, then

Section 3.5.

Informed (Heuristic) Search Strategies 101

MA
SMA*

“changes its mind” and tries Fagaras, and then changes its mind back again. These mind
changes occur because every time the current best path is extended, its f-value is likely to
increase—# is usually less optimistic for nodes closer to the goal. When this happens, the
second-best path might become the best path, so the search has to backtrack to follow it.
Each mind change corresponds to an iteration of IDA* and could require many reexpansions
of forgotten nodes to recreate the best path and extend it one more node.

Like A® tree search, RBFS is an optimal algorithm if the heuristic function A(n) is
admissible. Its space complexity is linear in the depth of the deepest optimal solution, but
its time complexity is rather difficult to characterize: it depends both on the accuracy of the
heuristic function and on how often the best path changes as nodes are expanded.

IDA" and RBFS suffer from using oo little memory. Between iterations, IDA* retains
only a single number: the current f-cost limit. RBFS retains more information in memory,
but it uses only linear space: even if more memory were available, RBES has no way to make
use of it. Because they forget most of what they have done, both algorithms may end up reex-
panding the same states many times over. Furthermore, they suffer the potentially exponential
increase in complexity associated with redundant paths in graphs (see Section 3.3).

It seems sensible, therefore, to use all available memory. Two algorithms that do this
are MA® (memory-bounded A") and SMA" (simplified MA"). SMA" is—well—simpler, so
we will describe it. SMA™ proceeds just like A*, expanding the best leaf until memory is full.
At this point, it cannot add a new node to the search tree without dropping an old one. SMA®
always drops the worst leaf node—the one with the highest f-value. Like RBES, SMA*
then backs up the value of the forgotten node to its parent. In this way, the ancestor of a
forgotten subtree knows the quality of the best path in that subtree. With this information,
SMA® regenerates the subtree only when all other paths have been shown to look worse than
the path it has forgotten. Another way of saying this is that, if all the descendants of a node n
are forgotten, then we will not know which way to go from 7, but we will still have an idea
of how worthwhile it is to go anywhere from 7.

The complete algorithm is too complicated to reproduce here,'” but there is one subtlety
worth mentioning. We said that SMA® expands the best leaf and deletes the worst leaf. What
if all the leaf nodes have the same f-value? To avoid selecting the same node for deletion
and expansion, SMA" expands the newest best leaf and deletes the oldest worst leaf. These
coincide when there is only one leaf, but in that case, the current search tree must be a single
path from root to leaf that fills all of memory. If the leaf is not a goal node, then even if it is on
an optimal solution path, that solution is not reachable with the available memory. Therefore,
the node can be discarded exactly as if it had no successors.

SMA" is complete if there is any reachable solution—that is, if d, the depth of the
shallowest goal node, is less than the memory size (expressed in nodes). It is optimal if any
optimal solution is reachable; otherwise, it returns the best reachable solution. In practical
terms, SMA® is a fairly robust choice for finding optimal solutions, particularly when the state
space is a graph, step costs are not uniform, and node generation is expensive compared to
the overhead of maintaining the frontier and the explored set.

10 A rough sketch appeared in the first edition of this book.

102

Chapter 3. Solving Problems by Searching

THRASHING

5

METALEVEL STATE
SPACE

OBJECT-LEVEL STATE
SPACE

METALEVEL
LEARNING

On very hard problems, however, it will often be the case that SMA”* is forced to switch
back and forth continually among many candidate solution paths, only a small subset of which
can fit in memory. (This resembles the problem of thrashing in disk paging systems.) Then
the extra time required for repeated regeneration of the same nodes means that problems
that would be practically solvable by A", given unlimited memory, become intractable for
SMA*. That is to say, memory limitations can make a problem intractable from the point
of view of computation time. Although no current theory explains the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.

3.5.4 Learning to search better

We have presented several fixed strategies—breadth-first, greedy best-first, and so on—that
have been designed by computer scientists. Could an agent learn how to search better? The
answer is yes, and the method rests on an important concept called the metalevel state space.
Each state in a metalevel state space captures the internal (computational) state of a program
that is searching in an object-level state space such as Romania. For example, the internal
state of the A* algorithm consists of the current search tree. Each action in the metalevel state
space is a computation step that alters the internal state; for example, each computation step
in A" expands a leaf node and adds its successors to the tree. Thus, Figure 3.24, which shows
a sequence of larger and larger search trees, can be seen as depicting a path in the metalevel
state space where each state on the path is an object-level search tree.

Now, the path in Figure 3.24 has five steps, including one step, the expansion of Fagaras,
that is not especially helpful. For harder problems, there will be many such missteps, and a
metalevel learning algorithm can learn from these experiences to avoid exploring unpromis-
ing subtrees. The techniques used for this kind of learning are described in Chapter 21. The
goal of learning is to minimize the total cost of problem solving, trading off computational
expense and path cost.

3.6 HEURISTIC FUNCTIONS

In this section, we look at heuristics for the 8-puzzle, in order to shed light on the nature of
heuristics in general.

The 8-puzzle was one of the earliest heuristic search problems. As mentioned in Sec-
tion 3.2, the object of the puzzle is to slide the tiles horizontally or vertically into the empty
space until the configuration matches the goal configuration (Figure 3.28).

The average solution cost for a randomly generated 8-puzzle instance is about 22 steps.
The branching factor is about 3. (When the empty tile is in the middle, four moves are
possible; when it is in a corner, two; and when it is along an edge, three.) This means
that an exhaustive tree search to depth 22 would look at about 3%? a 3.1 x 1010 states.
A graph search would cut this down by a factor of about 170,000 because only 9!/2 =
181, 440 distinct states are reachable. (See Exercise 3.4.) This is a manageable number, but

Section 3.6.

Heuristic Functions 103

MANHATTAN
DISTANCE

EFFECTIVE
BRANCHING FACTOR

[: '

7 2]4 1 2“
BN R
5‘ 6 3 4 5

8'31 6 7 8

Start State Goal State

Figure 3.28 A typical instance of the 8-puzzle. The solution is 26 steps long.

the corresponding number for the 15-puzzle is roughly 10'2, so the next order of business is
to find a good heuristic function. If we want to find the shortest solutions by using A*, we
need a heuristic function that never overestimates the number of steps to the goal. There is a
long history of such heuristics for the 15-puzzle; here are two commonly used candidates:

e h; = the number of misplaced tiles. For Figure 3.28, all of the eight tiles are out of
position, so the start state would have Ay = 8. hy is an admissible heuristic because it
is clear that any tile that is out of place must be moved at least once.

e ho = the sum of the distances of the tiles from their goal positions. Because tiles
cannot move along diagonals, the distance we will count is the sum of the horizontal
and vertical distances. This is sometimes called the city block distance or Manhattan
distance. Ao is also admissible because all any move can do is move one tile one step
closer to the goal. Tiles 1 to 8 in the start state give a Manhattan distance of

hg=3+14+2+2+2+3+3+2=18.

As expected, neither of these overestimates the true solution cost, which is 26.

3.6.1 The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor b*. If the
total number of nodes generated by A* for a particular problem is NV and the solution depth is
d, then b* is the branching factor that a uniform tree of depth d would have to have in order
to contain /N + 1 nodes. Thus,
NA+1=14b 402+ ()2

For example, if A" finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92. The effective branching factor can vary across problem instances, but usually
it is fairly constant for sufficiently hard problems. (The existence of an effective branching
factor follows from the result, mentioned earlier, that the number of nodes expanded by A*
grows exponentially with solution depth.) Therefore, experimental measurements of 0* on a
small set of problems can provide a good guide to the heuristic’s overall usefulness. A well-
designed heuristic would have a value of b* close to 1, allowing fairly large problems to be
solved at reasonable computational cost.

e

Chapter 3. Solving Problems by Searching

104
To test the heuristic functions h; and hy, we generated 1200 random problems with
solution lengths from 2 to 24 (100 for each even number) and solved them with iterative
deepening search and with A" tree search using both h; and hz. Figure 3.29 gives the average
number of nodes generated by each strategy and the effective branching factor. The results
suggest that Ao is better than Ay, and is far better than using iterative deepening search. Even
for small problems with d =12, A* with hy is 50,000 times more efficient than uninformed
iterative deepening search.
Search Cost (nodes generated) Effective Branching Factor
d IDS Af(hy) A'(ho) IDS A'(hy) A'(ho)
2 10 6 6 245 .79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 279 1.38 1.22
12| 3644035 227 73 2.78 1.42 1.24
14 - 539 113 - 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26
Figure 3.29 Comparison of the search costs and effective branching factors for the
[TERATIVE-DEEPENING-SEARCH and A" algorithms with Ay, hy. Data are averaged over
100 instances of the 8-puzzle for each of various solution lengths d.
One might ask whether hs is always better than hy. The answer is “Essentially, yes.” It
is easy to see from the definitions of the two heuristics that, for any node n, ha(n) > hi(n).
DOMINATION We thus say that ho dominates /). Domination translates directly into efficiency: A" using

ho will never expand more nodes than A* using h; (except possibly for some nodes with
f(n)=C~). The argument is simple. Recall the observation on page 97 that every node
with f(n) < C* will surely be expanded. This is the same as saying that every node with
h(n) < C* — g(n) will surely be expanded. But because hs is at least as big as hy for all
nodes, every node that is surely expanded by A" search with kg will also surely be expanded
with Ay, and h; might cause other nodes to be expanded as well. Hence, it is generally
better to use a heuristic function with higher values, provided it is consistent and that the
computation time for the heuristic is not too long.

3.6.2 Generating admissible heuristics from relaxed problems

We have seen that both h; (misplaced tiles) and ho (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that hy is better. How might one have come up with hy? Is it
possible for a computer to invent such a heuristic mechanically?

hq and hy are estimates of the remaining path length for the 8-puzzle, but they are also
perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the puzzle

Section 3.6.

Heuristic Functions 105

RELAXED PROBLEM

&

were changed so that a tile could move anywhere instead of just to the adjacent empty square,
then h; would give the exact number of steps in the shortest solution. Similarly, if a tile could
move one square in any direction, even onto an occupied square, then Ay would give the exact
number of steps in the shortest solution. A problem with fewer restrictions on the actions is
called a relaxed problem. The state-space graph of the relaxed problem is a supergraph of
the original state space because the removal of restrictions creates added edges in the graph.

Because the relaxed problem adds edges to the state space, any optimal solution in the
original problem is, by definition, also a solution in the relaxed problem; but the relaxed
problem may have better solutions if the added edges provide short cuts. Hence, the cost of
an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
Furthermore, because the derived heuristic is an exact cost for the relaxed problem, it must
obey the triangle inequality and is therefore consistent (see page 95).

If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically.!! For example, if the 8-puzzle actions are described as

A tile can move from square A to square B if
A is horizontally or vertically adjacent to B and B is blank,

we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square A to square B if A is adjacent to B.
(b) A tile can move from square A to square B if B is blank.
(c) A tile can move from square A to square B.

From (a), we can derive ho (Manhattan distance). The reasoning is that hy would be the
proper score if we moved each tile in tumn to its destination. The heuristic derived from (b) is
discussed in Exercise 3.31. From (c), we can derive h; (misplaced tiles) because it would be
the proper score if tiles could move to their intended destination in one step. Notice that it is
crucial that the relaxed problems generated by this technique can be solved essentially without
search, because the relaxed rules allow the problem to be decomposed into eight independent
subproblems. If the relaxed problem is hard to solve, then the values of the corresponding
heuristic will be expensive to obtain.!”

A program called ABSOLVER can generate heuristics automatically from problem def-
initions, using the “relaxed problem” method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle that was better than any preexisting
heuristic and found the first useful heuristic for the famous Rubik’s Cube puzzle.

One problem with generating new heuristic functions is that one often fails to get a
single “clearly best” heuristic. If a collection of admissible heuristics Ay ... hn, is available
for a problem and none of them dominates any of the others, which should we choose? As it
turns out, we need not make a choice. We can have the best of all worlds, by defining

h(n) = max{hi(n),..., hn(n)}.

11 In Chapters 8 and 10, we describe formal languages suitable for this task; with formal descriptions that can be
manipulated, the construction of relaxed problems can be automated. For now, we use English.

12 Note that a perfect heuristic can be obtained simply by allowing & to run a full breadth-first search “on the
sly.”” Thus, there 1s a tradeoff between accuracy and computation time for heuristic functions.

106

Chapter 3. Solving Problems by Searching

SUBPROBLEM

PATTERN DATABASE

onolll Bk

* 3]1 (*'* *

Start State Goal State

Figure 3.30 A subproblem of the 8-puzzle instance given in Figure 3.28. The task is to
gettiles 1, 2, 3, and 4 into their correct positions, without worrying about what happens to
the other tiles.

This composite heuristic uses whichever function is most accurate on the node in question.
Because the component heuristics are admissible, A is admissible; it is also easy to prove that
h is consistent. Furthermore, h dominates all of its component heuristics.

3.6.3 Generating admissible heuristics from subproblems: Pattern databases

Admissible heuristics can also be derived from the solution cost of a subproblem of a given
problem. For example, Figure 3.30 shows a subproblem of the 8-puzzle instance in Fig-
ure 3.28. The subproblem involves getting tiles 1, 2, 3, 4 into their correct positions. Clearly,
the cost of the optimal solution of this subproblem is a lower bound on the cost of the com-
plete problem. It turns out to be more accurate than Manhattan distance in some cases.

The idea behind pattern databases is to store these exact solution costs for every pos-
sible subproblem instance—in our example, every possible configuration of the four tiles
and the blank. (The locations of the other four tiles are irrelevant for the purposes of solv-
ing the subproblem, but moves of those tiles do count toward the cost.) Then we compute
an admissible heuristic hpp for each complete state encountered during a search simply by
looking up the corresponding subproblem configuration in the database. The database itself is
constructed by searching back!® from the goal and recording the cost of each new pattern en-
countered; the expense of this search is amortized over many subsequent problem instances.

The choice of 1-2-3-4 is fairly arbitrary; we could also construct databases for 5-6-7-8,
for 2-4-6-8, and so on. Each database yields an admissible heuristic, and these heuristics can
be combined, as explained earlier, by taking the maximum value. A combined heuristic of
this kind is much more accurate than the Manhattan distance; the number of nodes generated
when solving random 15-puzzles can be reduced by a factor of 1000.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the
5-6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it is

13 By working backward from the goal, the exact solution cost of every instance encountered is immediately
available. This is an example of dynamic programming, which we discuss further in Chapter 17.

e ———

Section 3.6.

Heunstic Functions 107

DISJCINT PATTERN
DATABASES

FEATURE

unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa. But
what if we don’t count those moves? That is, we record not the total cost of solving the 1-2-
3-4 subproblem, but just the number of moves involving 1-2-3-4. Then it is easy to see that
the sum of the two costs is still a lower bound on the cost of solving the entire problem. This
is the idea behind disjoint pattern databases. With such databases, it is possible to solve
random 15-puzzles in a few milliseconds—the number of nodes generated is reduced by a
factor of 10,000 compared with the use of Manhattan distance. For 24-puzzles, a speedup of
roughly a factor of a million can be obtained.

Disjoint pattern databases work for sliding-tile puzzles because the problem can be
divided up in such a way that each move affects only one subproblem—because only one tile
is moved at a time. For a problem such as Rubik’s Cube, this kind of subdivision is difficult
because each move affects 8 or 9 of the 26 cubies. More general ways of defining additive,
admissible heuristics have been proposed that do apply to Rubik’s cube (Yang ez al., 2008),
but they have not yielded a heuristic better than the best nonadditive heuristic for the problem.

3.6.4 Learning heuristics from experience

A heuristic function h(n) is supposed to estimate the cost of a solution beginning from the
state at node n. How could an agent construct such a function? One solution was given in
the preceding sections—namely, to devise relaxed problems for which an optimal solution
can be found easily. Another solution is to learn from experience. “Experience” here means
solving lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle problem provides
examples from which A(n) can be learned. Each example consists of a state from the solu-
tion path and the actual cost of the solution from that point. From these examples, a learning
algorithm can be used to construct a function ~(n) that can (with luck) predict solution costs
for other states that arise during search. Techniques for doing just this using neural nets, de-
cision trees, and other methods are demonstrated in Chapter 18. (The reinforcement learning
methods described in Chapter 21 are also applicable.)

Inductive learning methods work best when supplied with features of a state that are
relevant to predicting the state’s value, rather than with just the raw state description. For
example, the feature “number of misplaced tiles” might be helpful in predicting the actual
distance of a state from the goal. Let’s call this feature z1(n). We could take 100 randomly
generated 8-puzzle configurations and gather statistics on their actual solution costs. We
might find that when z;(n) is 5, the average solution cost is around 14, and so on. Given
these data, the value of 3 can be used to predict h(n). Of course, we can use several features.
A second feature xzo(n) might be “number of pairs of adjacent tiles that are not adjacent in the
goal state.” How should z1(n) and z2(n) be combined to predict h(n)? A common approach
is to use a linear combination:

h{n) = ciz1(n) + caza(n) .

The constants ¢; and cp are adjusted to give the best fit to the actual data on solution costs.
One expects both ¢ and ¢; to be positive because misplaced tiles and incorrect adjacent pairs

make the problem harder to solve. Notice that this heuristic does satisfy the condition that
h(n) =0 for goal states, but it is not necessarily admissible or consistent.

108 Chapter 3. Solving Problems by Searching

3.7 SUMMARY

This chapter has introduced methods that an agent can use to select actions in environments
that are deterministic, observable, static, and completely known. In such cases, the agent cai
construct sequences of actions that achieve its goals; this process is called search.

o Before an agent can start searching for solutions, a goal must be identified and a well
defined problem must be formulated.

e A problem consists of five parts: the initial state, a set of actions, a transition mode
describing the results of those actions, a goal test function, and a path cost function
The environment of the problem is represented by a state space. A path through th
state space from the initial state to a goal state is a solution.

e Search algorithms treat states and actions as atomic: they do not consider any interna
structure they might possess.

e A general TREE-SEARCH algorithm considers all possible paths to find a solutior
whereas a GRAPH-SEARCH algorithm avoids consideration of redundant paths.

o Search algorithms are judged on the basis of completeness, optimality, time compley
ity, and space complexity. Complexity depends on b, the branching factor in the stai
space, and d, the depth of the shallowest solution.

e Uninformed search methods have access only to the problem definition. The basj
algorithms are as follows:

— Breadth-first search expands the shallowest nodes first; it is complete, optim:
for unit step costs, but has exponential space complexity.

— Uniform-cost search expands the node with lowest path cost, g(n), and is optim
for general step costs.

— Depth-first search expands the deepest unexpanded node first. It is neither con
plete nor optimal, but has linear space complexity. Depth-limited search adds

depth bound.

— Iterative deepening search calls depth-first search with increasing depth limi
until a goal is found. It is complete, optimal for unit step costs, has time complexi
comparable to breadth-first search, and has linear space complexity.

~ Bidirectional search can enormously reduce time complexity, but it is not alwa’
applicable and may require too much space.
¢ Informed search methods may have access to a heuristic function h(n) that estimat
the cost of a solution from n.
— The generic best-first search algorithm selects a node for expansion according

an evaluation function.
- Greedy best-first search expands nodes with minimal A(n). It is not optimal t

1s often efficient.

Bibliographical and Historical Notes 109

— A® search expands nodes with minimal f(n) = g(n) + h(n). A" is complete and
optimal, provided that A(n) is admissible (for TREE-SEARCH) or consistent (for
GRAPH-SEARCH). The space complexity of A" is still prohibitive.

- RBFS (recursive best-first search) and SMA* (simplified memory-bounded A*)
are robust, optimal search algorithms that use limited amounts of memory; given

: enough time, they can solve problems that A* cannot solve because it runs out of

memory.

o The performance of heuristic search algorithms depends on the quality of the heuristic
function. One can sometimes construct good heuristics by relaxing the problem defi-
nition, by storing precomputed solution costs for subproblems in a pattern database, or
by learning from experience with the problem class.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The topic of state-space search originated in more or less its current form in the early years of
AL Newell and Simon’s work on the Logic Theorist (1957) and GPS (1961) led to the estab-
lishment of search algorithms as the primary weapons in the armory of 1960s Al researchers
and to the establishment of problem solving as the canonical Al task. Work in operations
research by Richard Bellman (1957) showed the importance of additive path costs in sim-
plifying optimization algorithms. The text on Automated Problem Solving by Nils Nilsson
(1971) established the area on a solid theoretical footing.

Most of the state-space search problems analyzed in this chapter have a long history
in the literature and are less trivial than they might seem. The missionaries and cannibals
problem used in Exercise 3.9 was analyzed in detail by Amarel (1968). It had been consid-
ered earlie—in Al by Simon and Newell (1961) and in operations research by Bellman and
Dreyfus (1962).

The 8-puzzle is a smaller cousin of the 15-puzzle, whose history is recounted at length
by Slocum and Sonneveld (2006). It was widely believed to have been invented by the fa-
mous American game designer Sam Loyd, based on his claims to that effect from 1891 on-
ward (Loyd, 1959). Actually it was invented by Noyes Chapman, a postmaster in Canastota,
New York, in the mid-1870s. (Chapman was unable to patent his invention, as a generic
patent covering sliding blocks with letters, numbers, or pictures was granted to Emest Kinsey
in 1878.) It quickly attracted the attention of the public and of mathematicians (Johnson and
Story, 1879; Tait, 1880). The editors of the American Journal of Mathematics stated, “The
‘15’ puzzle for the last few weeks has been prominently before the American public, and may
<afely be said to have engaged the attention of nine out of ten persons of both sexes and all
ages and conditions of the community.” Ratner and Warmuth (1986) showed that the general
n x n version of the 15-puzzle belongs to the class of NP-complete problems.

The 8-queens problem was first published anonymously in the German chess maga-
zine Schach in 1848; it was later attributed to one Max Bezzel. It was republished in 1850
and at that time drew the attention of the eminent mathematician Carl Friedrich Gauss, who

110

Chapter 3. Solving Problems by Searching

attempted to enumerate all possible solutions; initially he found only 72, but eventually he
found the correct answer of 92, although Nauck published all 92 solutions first, in 1850.
Netto (1901) generalized the problem to n queens, and Abramson and Yung (1989) found an
O(n) algorithm.

Each of the real-world search problems listed in the chapter has been the subject of a
good deal of research effort. Methods for selecting optimal airline flights remain proprietary
for the most part, but Carl de Marcken (personal communication) has shown that airline ticket
pricing and restrictions have become so convoluted that the problem of selecting an optimal
flight is formally undecidable. The traveling-salesperson problem is a standard combinato-
rial problem in theoretical computer science (Lawler et al., 1992). Karp (1972) proved the
TSP to be NP-hard, but effective heuristic approximation methods were developed (Lin and
Kemighan, 1973). Arora (1998) devised a fully polynomial approximation scheme for Eu-
clidean TSPs. VLSI layout methods are surveyed by Shahookar and Mazumder (1991), and
many layout optimization papers appear in VLSI journals. Robotic navigation and assembly
problems are discussed in Chapter 25.

Uninformed search algorithms for problem solving are a central topic of classical com-
puter science (Horowitz and Sahni, 1978) and operations research (Dreyfus, 1969). Breadth-
first search was formulated for solving mazes by Moore (1959). The method of dynamic
programming (Bellman, 1957; Bellman and Dreyfus, 1962), which systematically records
solutions for all subproblems of increasing lengths, can be seen as a form of breadth-first
search on graphs. The two-point shortest-path algorithm of Dijkstra (1959) is the origin
of uniform-cost search. These works also introduced the idea of explored and frontier sets
(closed and open lists).

A version of iterative deepening designed to make efficient use of the chess clock was
first used by Slate and Atkin (1977) in the CHESS 4.5 game-playing program. Martelli’s
algorithm B (1977) includes an iterative deepening aspect and also dominates A*’s worst-case
performance with admissible but inconsistent heuristics. The iterative deepening technique
came to the fore in work by Korf (1985a). Bidirectional search, which was introduced by
Pohl (1971), can also be effective in some cases.

The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase “heuristic search” and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search. Al-
though they analyzed path length and “penetrance” (the ratio of path length to the total num-
ber of nodes examined so far), they appear to have ignored the information provided by the
path cost g(n). The A* algorithm, incorporating the current path cost into heuristic search,
was developed by Hart, Nilsson, and Raphael (1968), with some later corrections (Hart et al.,
1972). Dechter and Pearl {1985) demonstrated the optimal efficiency of A",

The original A* paper introduced the consistency condition on heuristic functions. The
monotone condition was introduced by Pohl (1977) as a simpler replacement, but Pear] (1984)
showed that the two were equivalent.

Pohl (1977) pioneered the study of the relationship between the error in heuristic func-
tions and the time complexity of A*. Basic results were obtained for tree search with unit step

r

Bibliographical and Historical Notes

111

ITERATIVE
EXPANSION

costs and a single goal node (Pohl, 1977; Gaschnig, 1979; Huyn et al., 1980; Pearl, 1984) and
with multiple goal nodes (Dinh e al., 2007). The “effective branching factor” was proposed
by Nilsson (1971) as an empirical measure of the efficiency; it is equivalent to assuming a
time cost of O((b*)). For tree search applied to a graph, Korf ez al. (2001) argue that the time
cost is better modeled as O(b%~*), where k depends on the heuristic accuracy; this analysis
has elicited some controversy, however. For graph search, Helmert and Roger (2008) noted
that several well-known problems contained exponentially many nodes on optimal solution
paths, implying exponential time complexity for A" even with constant absolute error in A.

There are many variations on the A* algorithm. Pohl (1973) proposed the use of dynamic
weighting, which uses a weighted sum f,, (n) = wyg(n) + wxph(n) of the current path length
and the heuristic function as an evaluation function, rather than the simple sum f(n)=g(n)+
h(n) used in A*. The weights w, and w, are adjusted dynamically as the search progresses.
Poh!’s algorithm can be shown to be e-admissible—that is, guaranteed to find solutions within
a factor 1 + € of the optimal solution, where ¢ is a parameter supplied to the algorithm. The
same property is exhibited by the A? algorithm (Pearl, 1984), which can select any node from
the frontier provided its f-cost is within a factor 1 + ¢ of the lowest- f -cost frontier node. The
selection can be done so as to minimize search cost.

Bidirectional versions of A" have been investigated; a combination of bidirectional A*
and known landmarks was used to efficiently find driving routes for Microsoft’s online map
service (Goldberg et al., 2006). After caching a set of paths between landmarks, the algorithm
can find an optimal path between any pair of points in a 24 million point graph of the United
States, searching less than 0.1% of the graph. Others approaches to bidirectional search
include a breadth-first search backward from the goal up to a fixed depth, followed by a
forward IDA" search (Dillenburg and Nelson, 1994; Manzini, 1995).

A" and other state-space search algorithms are closely related to the branch-and-bound
techniques that are widely used in operations research (Lawler and Wood, 1966). The
relationships between state-space search and branch-and-bound have been investigated in
depth (Kumar and Kanal, 1983; Nau ef al., 1984; Kumar et al., 1988). Martelli and Monta-
nari (1978) demonstrate a connection between dynamic programming (see Chapter 17) and
certain types of state-space search. Kumar and Kanal (1988) attempt a “grand unification” of
heuristic search, dynamic programming, and branch-and-bound techniques under the name
of CDP—the “composite decision process.”)

Because computers in the late 1950s and early 1960s had at most a few thousand words
of main memory, memory-bounded heuristic search was an early research topic. The Graph
Traverser (Doran and Michie, 1966), one of the earliest search programs, commits to an
operator after searching best-first up to the memory limit. IDA* (Korf, 1985a, 1985b) was the
first widely used optimal, memory-bounded heuristic search algorithm, and a large number
of variants have been developed. An analysis of the efficiency of IDA® and of its difficulties
with real-valued heuristics appears in Patrick er al. (1992).

RBES (Korf, 1993) is actually somewhat more complicated than the algorithm shown
in Figure 3.26, which is closer to an independently developed algorithm called iterative ex-
pansion (Russell, 1992). RBFS uses a lower bound as well as the upper bound; the two al-
gorithms behave identically with admissible heuristics, but RBES expands nodes in best-first

—— e e

e

|

NS DS S B)

112

Chapter 3. Solving Problems by Searching

PARALLEL SEARCH

order even with an inadmissible heuristic. The idea of keeping track of the best alternative
path appeared earlier in Bratko’s (1986) elegant Prolog implementation of A" and in the DTA*
algorithm (Russell and Wefald, 1991). The latter work also discusses metalevel state spaces
and metalevel learning,.

The MA* algorithm appeared in Chakrabarti ef al. (1989). SMA", or Simplified MA®,
emerged from an attempt to implement MA® as a comparison algorithm for IE (Russell, 1992).
Kaindl and Khorsand (1994) have applied SMA™ to produce a bidirectional search algorithm
that is substantially faster than previous algorithms. Korf and Zhang (2000) describe a divide-
and-conquer approach, and Zhou and Hansen (2002) introduce memory-bounded A* graph
search and a strategy for switching to breadth-first search to increase memory-efficiency
(Zhou and Hansen, 2006). Korf (1995) surveys memory-bounded search techniques.

The idea that admissible heuristics can be derived by problem relaxation appears in the
seminal paper by Held and Karp (1970), who used the minimum-spanning-tree heuristic to
solve the TSP. (See Exercise 3.30.)

The automation of the relaxation process was implemented successfully by Priedi-
tis (1993), building on earlier work with Mostow (Mostow and Prieditis, 1989). Holte and
Hernadvolgyi (2001) describe more recent steps towards automating the process. The use of
pattern databases to derive admissible heuristics is due to Gasser (1995) and Culberson and
Schaeffer (1996, 1998); disjoint pattern databases are described by Korf and Felner (2002);
a similar method using symbolic patterns is due to Edelkamp (2009). Felner et al. (2007)
show how to compress pattern databases to save space. The probabilistic interpretation of
heuristics was investigated in depth by Pearl (1984) and Hansson and Mayer (1989).

By far the most comprehensive source on heuristics and heuristic search algorithms
is Pearl’s (1984) Heuristics text. This book provides especially good coverage of the wide
variety of offshoots and variations of A*, including rigorous proofs of their formal properties.
Kanal and Kumar (1988) present an anthology of important articles on heuristic search, and
Rayward-Smith er al. (1996) cover approaches from Operations Research. Papers about new
search algorithms—which, remarkably, continue to be discovered—appear in journals such
as Artificial Intelligence and Journal of the ACM.

The topic of parallel search algorithms was not covered in the chapter, partly because
it requires a lengthy discussion of parallel computer architectures. Parallel search became a
popular topic in the 1990s in both Al and theoretical computer science (Mahanti and Daniels,
1993; Grama and Kumar, 1995; Crauser et al., 1998) and is making a comeback in the era
of new multicore and cluster architectures (Ralphs et al., 2004; Korf and Schultze, 2005).
Also of increasing importance are search algorithms for very large graphs that require disk
storage (Korf, 2008).

EXERCISES

3.1 Explain why problem formulation must follow goal formulation.

3.2 Your goal is to navigate a robot out of a maze. The robot starts in the center of the maze

