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Abstract. The human brain is the best example of intelligence known, with 
unsurpassed ability for complex, real-time interaction with a dynamic world. AI 
researchers trying to imitate its remarkable functionality will benefit by learning 
more about neuroscience, and the differences between Natural and Artificial 
Intelligence. Steps that will allow AI researchers to pursue a more brain-
inspired approach to AI are presented. A new approach that bridges AI and 
neuroscience is described, Embodied Cultured Networks. Hybrids of living 
neural tissue and robots, called hybrots, allow detailed investigation of neural 
network mechanisms that may inform future AI. The field of neuroscience will 
also benefit tremendously from advances in AI, to deal with their massive 
knowledge bases and help understand Natural Intelligence. 

Keywords: Neurobiology, circular causality, embodied cultured networks, 
animats, multi-electrode arrays, neuromorphic, closed-loop processing, Ramon 
y Cajal, hybrot. 

1   Introduction 

An alien power plant was unearthed in a remote South American jungle. After 
excavating and dusting it off, the archeologists flip the switch, and it still works! It 
generates electricity continuously without needing fuel. Wouldn’t we want to make 
more of these power plants? Wouldn’t we want to know how this one works? What if 
the scientists and engineers who design power plants saw photos of the locals using 
electricity from the alien power plant, and knew it reliably powers their village. Yet 
they ignore this amazing artifact, and feel it has little relevance to their job. Although 
this scenario seems implausible, it is analogous to the field of AI today. We have, 
between our ears, a supremely versatile, efficient, capable, robust and intelligent 
machine that consumes less than 100 Watts of power. If AI were to become less 
artificial, more brain-like, it might come closer to accomplishing the feats routinely 
carried out by Natural Intelligence (NI). Imagine an AI that was as adept as humans 
at speech and text understanding, or reading someone's mood in an instant. Imagine 
an AI with human-level creativity and problem solving. Imagine a dexterous AI, 
which could precisely and adaptively manipulate or control physical artifacts such as 
violins, cars, and balls. Humans, thanks to our complex nervous system, are especially 
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good at interacting with the world in real time in non-ideal situations. Yet, little 
attention in the AI field has been directed toward actual brains. Although many of the 
brain’s operating principles are still mysterious, thousands of neuroscientists are 
working hard to figure them out.1   

Unfortunately, the way neuroscientists conduct their research is often very 
reductionistic [1], building understanding from the bottom up by small increments. A 
consequence of this fact is that trying to learn, or even keep up with, neuroscience is 
like trying to drink from a fire hose. General principles that could be applied to AI are 
hard to find within the overwhelming neuroscience literature.   

AI researchers, young and old, might do well to become at least somewhat 
bilingual. Taking a neuroscience course or reading a neuroscience textbook would be 
a good start. Excellent textbooks include (among others) Neuroscience [2], 
Neuroscience: Exploring the Brain [3], and Principles of Neural Science [4]. There 
are several magazines and journals that allow the hesitant to gradually immerse 
themselves into neuroscience, one toe at a time. These specialize in conveying general 
principles or integrating different topics in neuroscience. In approximate order of 
increasing difficulty, some good ones are: Discover, Science News, Scientific 
American Mind, Cerebrum, Behavioral and Brain Sciences (BBS), Trends in 
Neuroscience, Nature Reviews-Neuroscience, and Annual Review of Neuroscience. 
BBS deserves special mention, because of its unusual format: a 'target article' is 
written by some luminary, usually about a fairly psychological or philosophical aspect 
of brains. This is followed by in-depth commentaries and criticisms solicited from a 
dozen or more other respected thinkers about thinking. These responses provide every 
side of a complex issue, and often include many of the biological foundations of the 
cognitive functions being discussed. The responses are followed by a counter-
response from the author of the target article. BBS is probably the best scholarly 
journal that regularly includes and combines contributions from both neuroscientists 
and AI researchers.2   

In this networked era, the internet can be a cornucopia, or sometimes, a Pandora's 
Box for AI researchers who want to learn about real brains. Be wary of web pages 
expounding brain factoids, unless there is some form of peer review that helps 
maintain the quality and integrity of the information. Wikipedia is rapidly becoming 
an extremely helpful tool for getting an introduction to any arcane topic, and has an 
especially elaborate portal to Neuroscience.3 Caution: it is not always easy to find the 
source or reliability of information given there. A more authoritative source on the 
fields of computational neuroscience and intelligence is Scholarpedia.4 The Society 

                                                           
1 I will define neuroscience as all scientific subfields that aim to study the nervous system 

(brain, spinal cord, and nerves), including neurophysiology, neuropathology, neuropharma-
cology, neuroendocrinology, neurology, systems neuroscience, neural computation, neuro-
anatomy, neural development, and the study of nervous system functions, such as learning, 
memory, perception, motor control, attention, and many others. Neurobiology is thought of 
today as the basis of all neuroscience (ignoring some lingering dualism) and the terms are 
often used interchangably. 

2 BBS Online: http://journals.cambridge.org/action/displayJournal?jid=BBS 
3 http://en.wikipedia.org/wiki/WP:NEURO 
4 http://www.scholarpedia.org 
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for Neuroscience (SFN) website5 is an excellent and reliable source of introductory 
articles about many neuroscience topics. The SFN consists of over 30,000 (mostly 
American) neuroscientists who meet annually and present their latest research to each 
other. All of the thousands of abstracts for meetings back to the year 2000 are 
searchable on the Annual Meeting pull-down. Although not itself a repository of 
introductory neuroscience material, the Federation of European Neuroscience 
Societies website6 is a good jumping-off point for all things Euro-Neuro.  

2   What Do We Already Know About NI (Natural Intelligence) 
That Can Inform AI?  

2.1   Brains Are Not Digital Computers 

John von Neumann, the father of the architecture of modern digital computers, made a 
number of thought-provoking and influential analogies in his book, "The Computer 
and the Brain." [5] The brain-as-digital-computer metaphor has proven quite popular, 
and often gets carried too far. For example, a neuron's action potential7 is often 
referred to by the AI field as a biological implementation of a binary coding scheme. 
This and other misinterpretations of brain biology need to be purged from our 
thoughts about how intelligence may be implemented. Even with our rudimentary 
conception of how it is implemented in brains, there are clear differences between 
computers and brains, such as: 

2.2   Brains Don't Have a CPU  

The brain's processor is neither "central" nor a "unit". Its processing capabilities seem 
to be distributed across the entire volume of the brain. Some localized regions 
specialize in certain types of processing, but not without substantial interaction with 
other brain areas [6].  

2.3   Memory Mechanisms in the Brain Are Not Physically Separable from 
Processing Mechanisms  

Recent research has shown that in recalling a memory, similar brain regions are 
activated as during perceiving [7]. This may be because an important part of 
perceiving is comparing sensory inputs to remembered concepts. Memories are 
dynamic, and continually re-shaped by the recall process [8]. A computer architecture 
that unites the processor, RAM, and hard disk into one and the same substrate might 
be far more efficient. An architecture that implements memory as a dynamic process 
rather than a static thing may be more capable of interacting in real time with a 
dynamic world.  

                                                           
5 http://www.sfn.org 
6 http://fens.mdc-berlin.de 
7 Action potentials are regenerative electrical impulses that neurons evolved to send informa-

tion across long axons. They involve a fluctuation of the neuron membrane potential of ~0.1 
V across a few milliseconds. 
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2.4   The Brain Is Asynchronous and Continuous 

The computer is a rare type of artifact that has well-defined (discontinuous) states [9], 
thanks to the fact that its computational units are always driven to their binary extremes 
each tick of the system clock. There are many brain circuits that exhibit oscillations 
[10], but none keeps the whole brain in lock-step the way a system clock does for a 
digital computer. The phase of some neural events in relation to a circuit's ongoing 
oscillation is used to code for specific information [11], and phase is a continuous 
quantity.   

2.5   With NI, the Details of the Substrate Matter 

Digital computers have been very carefully designed so that the details of their 
implementation don't influence their computations. Vacuum tubes, discrete 
transistors, and VLSI transistors, since they all speak Boolean, can all run the same 
program and produce the same result. There is a clear, intentional separation between 
the hardware and the software. All neuroscience research so far suggests this 
separation does not exist in the brain.   

How do the details of its substrate influence the brain's computations? Every 
molecule that makes up the brain is in continuous motion, as with all liquids. The 
lipid bilayer that comprises the neuron's membrane is often referred to as a 2-
dimensional liquid and is part of the neural wetware. The detailed structure of the 
proteins that make up brain cells can only be determined when they are crystallized in 
a test tube, that is, purified and stacked into unnatural, static, repeating structures that 
form good x-ray diffraction patterns. In their functional form, proteins (and all brain 
molecules) are jostling around, continuously bombarded by the cytoplasm or 
cerebrospinal fluid that surrounds them, like children frolicking in a pen full of plastic 
balls. Small details about neurons' structure, such as the morphing of tiny (micron-
sized) synaptic components called dendritic spines [12], or the opening and closing of 
voltage-sensitive or neurotransmitter-sensitive ion channels, affect their function at 
every moment. All that movement of molecules and parts of cells is the substrate of 
NI, facilitating or impeding communication between pairs of brain cells and across 
functional brain circuits. Why should AI researchers concern themselves with the 
detailed, molecular aspects of brain function? Because, fully duplicating brain 
functionality may only be possible using a substrate as complex and continuous as 
living brain cells and their components are. 

That disappointing possibility should not keep us from trying at least to duplicate 
some brain functionality by taking cues from NI. Carver Mead, Rodney Douglas, and 
other neuromorphic engineers have designed useful analog circuits out of CMOS 
components that take advantage of more of the physics of doped silicon than just its 
ability to switch from conducting to non-conducting states [13]. The continuous 
"inter-spike interval" between action potentials in neurons is believed to encode 
neural information [14] and also seems to be responsible for some of the brain's 
learning abilities [15]. Neuromorphic circuits that use this continuous-time pulse-
coding scheme [13, 47] may be able to process sensory information faster and more 
efficiently than could digital circuits.  
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2.6   NI Thrives on Feedback and Circular Causality  

The nervous system is full of feedback at all levels, including the body and the 
environment in which it lives; it benefits in a quantifiable way from being embodied 
and situated [16, 17]. Unlike many AI systems, NI is highly interactive with the 
world. Human-engineered systems are more tractable when they employ assembly-
line processing of information, i.e., to take in sense data, then process it, then execute 
commands or produce a solution.  Most sensory input to living systems is a dynamic 
function of recent or ongoing movement commands, such as directing gaze, walking, 
or reaching to grasp something. With NI, this active perception and feedback is the 
norm [17, 18]. Animal behaviors abound with circular causality, new sensory input 
continuously modulating the behavior, and behavior determining what is sensed [19]. 
One beautiful example of active perception that humans are especially good at is 
asking questions. If we don't have enough information to complete a task, and a more 
knowledgeable person is available, we ask them questions. New AI that incorporates 
question-asking and active perception can solve problems quickly that would take too 
long to solve by brute force serial computation [16, 20].  

There are few brain circuits that involve unidirectional flow of information from the 
sensors to the muscles. The vast majority of brain circuits make use of what Gerald 
Edelman calls reentry [21]. This term refers to complex feedback on many levels, which 
neuroscientists have only begun to map, let alone understand. Neuroscience research 
suggests that a better understanding of feedback systems with circular causality would 
help us design much more flexible, capable, and faster AI systems [9]. 

2.7   NI Uses LOTS of Sensors 

One of the most stunning differences between animals and artificial intelligences is 
the huge number of sensors animals have. NI mixes different sensory modalities to 
enable rapid and robust real-time control. Our brains are very good at making the best 
use of whatever sense data are available. Without much training, blind people can 
deftly navigate unfamiliar places by paying attention to the echoes of sounds they 
make, even while mountain-biking off road!8[22] Bach y Rita's vibrotactile display 
placed a video camera's image onto a blind person's skin, in the form of a few 
hundred vibrating pixels. By actively aiming the camera, the user could "see" tactile 
images via their somatosensory system, allowing them to recognize faces and to avoid 
obstacles [23, 24]. The continuous flow of information into the brain from the sense 
organs is enormous. To make AI less artificial, we could strive to incorporate as much 
sensing power as we dare imagine. When AI adopts a design philosophy that 
embraces, rather than tries to minimize high-bandwidth input, it will be capable of 
increasingly more rapid and robust real-time control.  

2.8   NI Uses LOTS of Cellular Diversity 

There are more different types and morphologies of cells in the brain than in any other 
organ, perhaps than all organs and tissues combined. Many of these were catalogued 
by neuroscientist, Santiago Ramon y Cajal a century ago (Fig. 1) [25, 26], but more 
 

                                                           
8 http://www.worldaccessfortheblind.org/ 
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Fig. 1. Neurons and circuits traced a century ago by Spanish neuroanatomist, Santiago Ramon 
y Cajal (pictured in center). This montage depicts only a few of the many types of neuron 
morphologies found throughout the nervous system. (Adapted with permission from Swanson 
& Swanson ©1990 MIT Press). 

are still being discovered [27]. Another sign of the brain's complexity is the large 
amount of genetic information that allows it to develop and function. Both mice and 
men have ~30,000 genes in their genome, and over 80% of these are active in the 
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brain.9 All this cellular complexity and diversity may be crucial in creating an 
intelligent processor that is general-purpose and highly adaptable. 

2.9   NI Uses LOTS of Parallelism 

The brain's degree of parallelism is not rivaled by any human-made artifact. There are 
about 100 billion neurons in our brains, each connected to 1,000-10,000 others with 
over 200,000 km of axons, which we have barely begun to map [28]. The brain's 
circuits seem to have small-world connectivity [29], i.e., many local connections and 
relatively few, but crucial, long range connections. The latter integrate the activities of 
cooperating circuits running simultaneously and asynchronously. Although our 
knowledge of this elaborate connectivity is rudimentary, some general principles, 
such as small-world connectivity, could make future AI more capable. 

2.10   Delays Are Part of the Computation 

It is sometimes mistakenly stated that neurons are slow computational elements, since 
they fire action potentials at a few hundred Hz at most. The parallelism mentioned 
above is one way to enable rapid computation with "slow" elements. Modern 
computers, which are not very parallel if at all, reduce computation and transmission 
delays in every way possible, from shorter leads, to faster clocks, to backside caches. 
Any time spent getting information from here to there in a digital computer is viewed 
as a wasteful impediment to getting on with the computation of the moment. In the 
brain, delays are not a problem, but an important part of the computation. The subtle 
timing of action potentials carries information about the dynamics and statistics of the 
outside world [30]. The relative timing of arrival of two action potentials to the 
postsynaptic neuron determines whether the strength of their synapse is incrementally 
increased or decreased [31]. These pulse timings are analog quantities. The brain 
computes with timing, not Boolean logic [32]. Brain-inspired AI of the future will be 
massively parallel, have many sensors, and will make good use of delays and the 
dynamics of interactions between analog signals [33]. 

3   What Do We Not Know About How Brains Work, But Could 
     Learn? 

To realize this dream of AI that is closer to NI, there are a number of important 
questions about how brains work that must be pursued, such as: What is a memory? 
How do biological networks work? The neurons and glial cells both store and process 
information in a spatially distributed manner. But we have only a very vague and 
fuzzy idea of just how they do that. The Blue Brain Project is setting a giant 
supercomputer (the son of Deep Blue) to the task of simulating just one cortical 
minicolumn of a few thousand neurons [34]. There is a lot going on at the level of 
networks that we don’t even have the vocabulary to think about yet. Neurobiologists 
all believe that memories are stored by changes in the physical structure of brain cells 
such as increases in the number of branches or spines on a neuron's dendritic tree. We 
                                                           
9 See the Allen Institute Brain Atlas, http://www.brainatlas.org/aba/index.shtml 
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don’t all agree about what those changes might be, let alone how the changes are 
executed when salient sensory input is received. As hinted by Ramon y Cajal's 
drawings (Fig. 1), neurons have a stunning diversity of morphologies [35]. There is 
evidence that some aspects of their shape are altered by experience [36-38]. But how 
that relates to a memory being stored is not known.  

4   New Neuroscience Tools 

A new type of experimental animal, called the Hybrot, is taking shape in the 
Laboratory for Neuroengineering at the Georgia Institute of Technology. This is a 
hybrid robot, an artificial embodiment controlled by a network of living neurons and 
 

  

Fig. 2. Hybrots: hybrid neural-robotics for neuroscience research. A living neuronal network is 
cultured on a multi-electrode array (MEA) where its activity is recorded, processed in real time, 
and used to control a robotic or simulated embodiment, such as the K-Team Khepera or Koala 
(pictured at lower right). The robot’s input from proximity sensors is converted to electrical 
stimuli that are fed back to the neuronal network within milliseconds via a custom multi-
electrode stimulation system. The hybrot’s brain (MEA culture) can be imaged continuously on 
the microscope while its body behaves and learns. The microscope is enclosed in an incubator 
(lower left) to maintain the health of the living network. This closed-loop Embodied Cultured 
Networks approach may shed light on the morphological correlates of memory formation, and 
provide AI researchers with ideas about how to build brain-style AI. 
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glia cultured on a multi-electrode array (MEA) [39-41]. It will be helpful in studying 
some of these difficult neuroscience questions. We now have the hardware and 
software necessary to create a real-time loop whereby neural activity is used to 
control a robot, and its sensory inputs are fed back to the cultured network as patterns 
of electrical or chemical stimuli (Fig. 2; [42]).   

These embodied cultured networks bring in vitro neuroscience models out of 
sensory deprivation and into the real world. They form a much needed bridge between 
neuroscience and AI. An MEA culture is amenable to high-resolution optical imaging 
[43], while the hybrot is behaving and learning, from milliseconds to months [44]. 
This allows correlations to be made between neural function and structure, in a living, 
awake and behaving subject. One of our hybrots, called MEART, was used to create 
portraits of viewers in a gallery. Its sensory feedback, images of its drawings in 
progress, affected the next action of the robotic drawing arm, in a closed-loop fashion 
[45]. This has been used to explore the neural mechanisms of creativity. Whether a 
network of a few thousand neurons can be creative is still up for debate, but it is 
vastly more complex than any existing artificial neural network. By studying 
embodied cultured networks with these new tools, we may learn some new aspects of 
network dynamics, memory storage, and sensory processing that could be used to 
make AI less artificial [41].  

5   Neuroscience to AI and Back Again 

Biologically-inspired artificial neural networks [46], mixed analog/digital circuits [47] 
and computational neuroscience approaches that attempt to elucidate brain networks 
[48] (as opposed to cellular properties) are gradually becoming more tightly coupled 
to experimental neuroscience. The fields of Psychology and Cognitive Science have 
traditionally made progress using theoretical foundations having little or no basis in 
neuroscience, due to a lingering Cartesian dualism in the thinking of their 
practitioners [49]. However, with neuroscience advances in psychopharmacology 
(e.g., more targeted neuroactive drugs) and functional brain imaging (e.g., functional 
MRI), Psychology and Cognitive Science advances are becoming increasingly based 
on and inspired by biological mechanisms. It's time for AI to move in the brainwards 
direction. This could involve PhD programs that merge AI and neuroscience, journals 
that seek to unite the two fields, and more conferences (such as the one that spawned 
this book) at which AI researchers and neuroscientists engage in productive dialogs. 

Neuroscientists have not exactly embraced AI either. Both sides need to venture 
across the divide and learn what the other has to offer. How can neuroscience benefit 
from AI? As we have seen, brains are far too complicated for us to understand at 
present. AI can produce new tools for compiling the mass of neuroscience results 
published, and coming up with connections or general theoretical principles. On a 
more mundane but important level, we need AI just to help us deal with the massive 
data sets that modern neuroscience tools produce, such as multi-electrode arrays and 
real-time imaging. The new field of neuroinformatics has to date been mostly 
concerned with neural database design and management. Soon, with help from AI, it 
will incorporate more data mining, knowledge discovery, graphic visualization, 
segmentation and pattern recognition, and other advances yet to be invented. One can 
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imagine that by increasing the synergy between AI and neuroscience, a bootstrapping 
process will occur: more neuroscience research will inform better AI, and better AI 
will give neuroscientists the tools to make more discoveries and interpret them. 
Where it will lead, who knows, but it will be an exciting ride!   
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